
TE
AM
FL
Y

Team-Fly®

Game Design:
Theory & Practice

Richard Rouse III

Illustrations by
Steve Ogden

Atomic Sam character designed by

Richard Rouse III and Steve Ogden

Library of Congress Cataloging-in-Publication Data

Rouse, Richard.
Game design: theory & practice / by Richard Rouse III ; illustrations by Steve Ogden.

p. cm.
Includes bibliographical references and index.
ISBN 1-55622-735-3 (pbk.)
1. Computer games—Programming. I. Title.
QA76.76.C672 R69 2000
794.8'1526—dc21 00-053436

CIP

© 2001, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-735-3

10 9 8 7 6 5 4 3 2 1

0011

Product names mentioned are used for identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above

address. Telephone inquiries may be made by calling:

(972) 423-0090

ii

Copyright Notices
Atomic Sam design document and images ™ and ©1999-2000 Richard Rouse III. Atomic Sam

character designed by Richard Rouse III and Steve Ogden. All rights reserved. Used with kind

permission.

Portions of Chapter 18: Interview: Jordan Mechner originally appeared in Inside Mac Games

magazine. Used with kind permission.

Images from Duke Nukem 3D ® and © 2000 3D Realms Entertainment. All rights reserved.

Used with kind permission.

Images from the 3D version of Centipede ® and © 2000 Atari Interactive, Inc. All rights

reserved. Used with kind permission. Though the game is referred to as “Centipede 3D” in this

book in order to differentiate it from the older game, its proper name is simply “Centipede.”

Images from Super Breakout, Asteroids, Centipede, Millipede, and Tempest® or ™ and © 2000

Atari Interactive, Inc. All rights reserved. Used with kind permission.

Images from WarCraft, WarCraft II, StarCraft, and Diablo II ® or ™ and © 2000 Blizzard Enter-

tainment. All rights reserved. Used with kind permission.

Images from Hodj ’n’ Podj and The Space Bar © 2000 Boffo Games. All rights reserved. Used

with kind permission.

Images from Pathways into Darkness, Marathon, Marathon 2, Marathon Infinity, and Myth: The

Fallen Lords ® or ™ and © 2000 Bungie Software Products Corporation. All rights reserved.

Used with kind permission.

Images from Balance of Power, Trust and Betrayal: The Legacy of Siboot, Balance of Power II:

The 1990 Edition, Guns & Butter, Balance of the Planet, and the Erasmatron ® or ™ and © 2000

Chris Crawford. All rights reserved. Used with kind permission.

Images from Myst ® and ©1993 Cyan, Inc. All rights reserved. Used with kind permission.

Images from Tomb Raider, Tomb Raider II, and Thief II ® or ™ and © 2000 Eidos Interactive.

All rights reserved. Used with kind permission.

Images from Unreal and Unreal Tournament ® or ™ and © 2000 Epic Games. All rights

reserved. Used with kind permission.

Images from Sid Meier’s Gettysburg! and Sid Meier’s Alpha Centauri ™ and © 2000 Firaxis

Games. All rights reserved. Used with kind permission.

Images from Doom, Doom II, Quake II, and Quake III Arena ® and © 2000 id Software. All

rights reserved. Used with kind permission.

Images from Spellcasting 101 © 1990 Legend Entertainment Company, Spellcasting 201 © 1991

Legend Entertainment Company, and Superhero League of Hoboken © 1994 Legend Entertain-

ment Company. All rights reserved. Used with the kind permission of Infogrames, Inc.

iii

Images from Maniac Mansion, Loom, and Grim Fandango ® or ™ and © 2000 LucasArts Enter-

tainment Company, LLC. All rights reserved. Used with kind authorization.

Images from SimCity, SimEarth, SimAnt, SimCity 2000, SimCopter, SimCity 3000, and The

Sims ® and © 2000 Maxis, Inc. All rights reserved. Used with kind permission.

Images from Karateka, Prince of Persia, and The Last Express ® or ™ and © 2000 Jordan

Mechner. All rights reserved. Used with kind permission.

Images from F-15 Strike Fighter, Pirates!, F-19 Stealth Fighter, Covert Action, Railroad Tycoon,

Civilization, and Civilization II ® or ™ and © 2000 Microprose, Inc. All rights reserved. Used

with kind permission.

Images from Gauntlet®, Gauntlet II®, Xybots™, San Francisco Rush: The Rock - Alcatraz Edi-

tion™, San Francisco Rush: Extreme Racing®, San Francisco Rush 2049™, and Gauntlet

Legends® © 2000 Midway Games West, Inc. All rights reserved. Used with kind permission.

Images from Defender®, Robotron: 2048®, Joust®, and Sinistar® © 2000 Midway Amusement

Games, LLC. All rights reserved. Used with kind permission.

Images from Super Mario Bros., Super Mario 64, and The Legend of Zelda: Ocarina of Time ®

and © 2000 Nintendo of America. All rights reserved. Used with kind permission.

Images from Oddworld: Abe’s Oddyssee® and © 1995-2000 Oddworld Inhabitants, Inc. All

Rights Reserved. ® designate trademarks of Oddworld Inhabitants. All rights reserved. Used

with kind permission.

Images from Odyssey: The Legend of Nemesis™ and © 2000 Richard Rouse III. All rights

reserved. Used with kind permission.

Images from Damage Incorporated™ and © 2000 Richard Rouse III and MacSoft. All rights

reserved. Used with kind permission.

Images from the Riot Engine Level Editor © 2000 Surreal Software, Inc. All rights reserved.

Used with kind permission.

Images from The Next Tetris™ and © 1999 Elorg, sublicensed to Hasbro Interactive, Inc. by The

Tetris Company. Tetris © 1987 Elorg. Original Concept & Design by Alexey Pajitnov. The Next

Tetris™ licensed to The Tetris Company and sublicensed to Hasbro Interactive, Inc. All rights

reserved. Used with kind permission.

iv

Dedication
To my parents, Richard and Regina Rouse

v

Acknowledgments
Thanks to Steve Ogden for bringing Atomic Sam to life and providing the bril-

liant illustrations which enliven these pages.

Thanks to James Hague, Ian Parberry, and Margaret Rogers for looking over

my work and providing me with the invaluable feedback and support which have

improved this book tremendously.

Thanks to Chris Crawford, Ed Logg, Jordan Mechner, Sid Meier, Steve

Meretzky, and Will Wright for graciously subjecting themselves to my endless

questioning. To quote Mr. Wright, I’m “pretty thorough.”

Thanks to Jim Hill, Wes Beckwith, Beth Kohler, Kellie Henderson, Martha

McCuller, Alan McCuller, and everyone at Wordware for making this book become

a reality.

For their help with this book, thanks to Benson Russell, John Scott Lewinski,

Ari Feldman, Laura J. Mixon-Gould, Jeff Buccelatto, Jayson Hill, Laura Pokrifka,

Josh Moore, Lisa Sokulski, Dan Harnett, Steffan Levine, Susan Wooley, Chris

Brandkamp, Kelley Gilmore, Lindsay Riehl, Patrick Buechner, Scott Miller, Greg

Rizzer, Lori Mezoff, Jenna Mitchell, Ericka Shawcross, Maryanne Lataif, Bryce

Baer, Bob Bates, James Conner, Lisa Tensfeldt, Paula Cook, Donald Knapp, and

Diana Fuentes.

Special thanks to Margaret Rogers, June Oshiro and Matt Bockol, Ben Young,

Alain and Annalisa Roy, Gail Jabbour, Amy Schiller, Katie Young & Eric

Pidkameny, Rafael Brown, Eloise Pasachoff, Mark Bullock and Jane Miller, Dave

Rouse, Linda, Bob and Grayson Starner, Jamie Rouse, Alan Patmore and everyone

at Surreal, the Leaping Lizard crew, Brian Rice, Lee Waggoner, Pat Alphonso, Clay

Heaton, Alex Dunne, Gordon Cameron, Tuncer Deniz, Bart Farkas, Peter Tamte,

Nate Birkholtz, Al Schilling, Cindy Swanson and everyone at MacSoft, Doug

Zartman, Alex Seropian, Jason Jones, Jim McNally, Jeff O’Connor, Ira Harmon,

Gordon Marsh, Chuck Schuldiner, Glenn Fabry, and Derek Riggs.

About the AuthorAbout the Author
Richard Rouse III is a computer game designer, programmer, and writer at Surreal

Software (www.surreal.com). Rouse has been designing games professionally for

over seven years and has played a lead design role in the development of games for

the PC, Macintosh, Sega Dreamcast, Sony PlayStation, and PlayStation 2. His

credits include Centipede 3D, Odyssey: The Legend of Nemesis, and Damage Incor-

porated. At Surreal he currently spends all his waking hours working on a secret

PlayStation 2 action/adventure project, while also contributing where he can to

Drakan for PlayStation 2. Rouse has written about game design for publications

including Game Developer, SIGGRAPH Computer Graphics, Gamasutra, and

Inside Mac Games.

Your FeedbackYour Feedback
Your feedback to this book, including corrections, comments, or merely

friendly ramblings, is encouraged. Please mail them to the author at

rr3@paranoidproductions.com. You will also find the web page for this book,

which will be used to track corrections, updates, and other items of interest, at

www.paranoidproductions.com. See you there.

About the ArtistAbout the Artist
Steve Ogden has been an artist, illustrator, and cartoonist for almost 20 years, and

miraculously, his right hand shows no sign of dropping off. Among his projects in

the digital domain, he has worked on Bally’s Game Magic casino game as well as

Centipede 3D, and has just finished a stint as Art Director and Production Lead on

Cyan’s realMYST (while finishing the illustrations to this book during the few hours

he was supposed to be sleeping). He is now gearing up for work on Cyan’s next

game, if they can catch him and chain him to his desk again. To see more of his

work, both of the 2D and 3D variety, stop by his web site: www.lunaenter-

tainment.com. You can reach him at ogden@ lunaentertainment.com. He is now

going to crawl to a beach very far away and sleep for a while.

vii

Contents

Introduction . xviii

Chapter 1 What Players Want . 1
Why Do Players Play?. 2

Players Want a Challenge . 2

Players Want to Socialize . 3

Players Want a Dynamic Solitaire Experience. 5

Players Want Bragging Rights . 5

Players Want an Emotional Experience . 6

Players Want to Fantasize . 7

What Do Players Expect? . 8

Players Expect a Consistent World. 8

Players Expect to Understand the Game-World’s Bounds 9

Players Expect Reasonable Solutions to Work 10

Players Expect Direction . 10

Players Expect to Accomplish a Task Incrementally. 12

Players Expect to Be Immersed. 12

Players Expect to Fail . 14

Players Expect a Fair Chance . 14

Players Expect to Not Need to Repeat Themselves 15

Players Expect to Not Get Hopelessly Stuck . 16

Players Expect to Do, Not to Watch . 17

Players Do Not Know What They Want, But They Know It When They See It . 18

A Never-Ending List . 19

Chapter 2 Interview: Sid Meier 20

Chapter 3 Brainstorming a Game Idea: Gameplay,
Technology, and Story . 42
Starting Points . 43

Starting with Gameplay . 44

Starting with Technology . 45

Starting with Story . 47

Working with Limitations . 50

Odyssey: The Legend of Nemesis . 50

ix

Damage Incorporated . 51

Centipede 3D . 53

Embrace Your Limitations . 54

Established Technology . 55

The Case of the Many Mushrooms . 55

The Time Allotted . 57

If You Choose Not to Decide, You Still Have Made a Choice 58

Chapter 4 Game Analysis: Centipede 59
Classic Arcade Game Traits . 62

Input . 65

Interconnectedness . 66

Escalating Tension . 68

One Person, One Game . 71

Chapter 5 Focus. 73
Establishing Focus . 74

An Example: Snow Carnage Derby . 77

The Function of the Focus . 79

Maintaining Focus . 82

Fleshing Out the Focus . 83

Changing Focus . 84

Sub-Focuses . 88

Using Focus . 91

Chapter 6 Interview: Ed Logg 93

Chapter 7 The Elements of Gameplay 121
Unique Solutions . 122

Anticipatory versus Complex Systems . 122

Emergence . 123

Non-Linearity . 125

Types of Non-Linearity . 125

Implementation . 127

The Purpose of Non-Linearity. 129

Modeling Reality . 130

Teaching the Player . 132

Rewards . 134

Input/Output. 136

Controls and Input . 136

Output and Game-World Feedback . 141

Basic Elements . 145

Chapter 8 Game Analysis: Tetris 146
Puzzle Game or Action Game? . 147

Tetris as a Classic Arcade Game . 149

Contents

x

TE
AM
FL
Y

Team-Fly®

The Technology . 151

Artificial Intelligence . 153

Escalating Tension . 154

Simplicity and Symmetry. 155

Ten Years On, Who Would Publish Tetris? . 157

Chapter 9 Artificial Intelligence. 158
Goals of Game AI. 160

Challenge the Player . 161

Not Do Dumb Things . 163

Be Unpredictable . 164

Assist Storytelling . 167

Create a Living World . 169

The Sloped Playing Field . 170

How Real is Too Real? . 171

AI Agents and Their Environment . 172

How Good is Good Enough? . 175

Scripting. 177

Artificial Stupidity . 178

Chapter 10 Interview: Steve Meretzky 179

Chapter 11 Storytelling . 214
Designer’s Story Versus Player’s Story . 216

Places for Storytelling . 218

Out-of-Game . 219

In-Game . 224

External Materials . 227

Frustrated Linear Writers . 228

Game Stories . 230

Non-Linearity . 232

Working with the Gameplay . 233

The Dream . 234

Chapter 12 Game Analysis: Loom 236
Focused Game Mechanics . 238

User Interface . 239

The Drafts System . 241

Difficulty . 243

Story. 244

Loom as an Adventure Game . 245

Chapter 13 Getting the Gameplay Working 248
The Organic Process . 251

Too Much Too Soon . 251

Keep It Simple . 253

Contents

xi

Building the Game . 254

Core Technology . 254

Incremental Steps . 255

A Fully Functional Area . 256

Going Through Changes. 257

Programming . 259

When is It Fun? . 261

Chapter 14 Interview: Chris Crawford 263

Chapter 15 Game Development Documentation 291
Document Your Game . 293

Concept Document or Pitch Document or Proposal 293

Design Document . 294

Flowcharts . 295

Story Bible . 295

Script . 297

Art Bible . 300

Storyboards . 301

Technical Design Document. 301

Schedules and Business/Marketing Documents 302

No Standard Documentation . 302

The Benefits of Documentation . 303

Chapter 16 Game Analysis: Myth: The Fallen Lords 304
Use of Technology . 305

Game Focus . 308

Storytelling . 310

Hard-Core Gaming . 311

Multi-Player. 313

Overall . 314

Chapter 17 The Design Document 316
The Writing Style . 318

The Sections. 321

Table of Contents . 321

Introduction/Overview or Executive Summary 322

Game Mechanics. 323

Artificial Intelligence . 329

Game Elements: Characters, Items, and Objects/Mechanisms 331

Story Overview . 334

Game Progression . 335

System Menus . 337

One Man’s Opinion . 337

Inauspicious Design Documents . 338

Contents

xii

The Wafer-Thin or Ellipsis Special Document 338

The Back-Story Tome . 339

The Overkill Document . 340

The Pie-in-the-Sky Document . 341

The Fossilized Document . 342

A Matter of Weight . 343

Getting It Read . 343

Documentation is Only the Beginning . 344

Chapter 18 Interview: Jordan Mechner. 346

Chapter 19 Designing Design Tools. 378
Desired Functionality . 380

Visualizing the Level . 380

The Big Picture . 382

Jumping into the Game . 384

Editing the World . 386

Scripting Languages and Object Behaviors . 388

Us Versus Them. 390

The Best of Intentions . 392

A Game Editor for All Seasons. 394

Chapter 20 Game Analysis: The Sims 395
Abdicating Authorship . 396

Familiar Subject Matter. 398

Safe Experimentation . 399

Depth and Focus . 400

Interface . 401

Controlled Versus Autonomous Behavior . 403

A Lesson to Be Learned . 404

Chapter 21 Level Design . 406
Levels in Different Games . 408

Level Separation . 409

Level Order . 410

The Components of a Level . 412

Action . 413

Exploration. 413

Puzzle Solving . 415

Storytelling. 415

Aesthetics . 416

Balancing It All . 418

Level Flow . 418

Elements of Good Levels . 421

Player Cannot Get Stuck. 421

Contents

xiii

Sub-Goals . 422

Landmarks . 423

Critical Path . 423

Limited Backtracking . 423

Success the First Time . 424

Navigable Areas Clearly Marked . 424

Choices . 424

A Personal List. 425

The Process . 425

step 1. Preliminary . 425

step 2. Conceptual and Sketched Outline . 427

step 3. Base Architecture . 427

step 4. Refine Architecture Until It is Fun . 428

step 5. Base Gameplay. 429

step 6. Refine Gameplay Until It is Fun. 430

step 7. Refine Aesthetics . 430

step 8. Playtesting . 431

Process Variations . 431

Who Does Level Design?. 432

Collaboration . 433

Chapter 22 Interview: Will Wright 434

Chapter 23 Playtesting . 472
Finding the Right Testers . 473

Who Should Test . 474

Who Should Not Test . 477

When to Test . 479

How to Test . 481

Guided and Unguided Testing . 482

Balancing . 483

Your Game is Too Hard . 485

The Artistic Vision . 487

Conclusion . 489
Art . 489

The Medium. 490

The Motive . 491

Appendix Sample Design Document: Atomic Sam 493
Atomic Sam: Focus . 495

Atomic Sam . 496

Design Document . 496

Table of Contents . 496

I. Overview . 499

Contents

xiv

II. Game Mechanics. 500

Overview . 500

Camera . 501

In-Game GUI . 502

Replaying and Saving . 502

Control Summary . 503

General Movement. 503

Flying Movement . 504

Surfaces . 507

Picking Up Objects . 507

Throwing Projectiles. 508

Electric Piranha . 510

Actions . 510

Interactive Combat Environments. 512

Looking . 513

Friends . 513

Speaking . 514

Cut-Scenes . 515

Storytelling. 515

Levels . 516

III. Artificial Intelligence . 518

Enemy AI . 519

Player Detection . 519

Motion . 519

Flying . 520

Pathfinding . 520

Taking Damage . 520

Combat Attacks . 520

Evading. 521

Special Actions . 521

Trash Talking. 522

Falling into Traps . 522

Non-Combatant Agents . 523

Friends . 523

IV. Game Elements . 525

Items . 525

Characters . 527

V. Story Overview . 536

VI. Game Progression . 538

Setting . 538

Introduction . 540

Gargantuopolis . 540

The Electric Priestess’ Bubble Home . 540

Benthos. 541

Contents

xv

Harmony . 542

New Boston . 543

The Electric Priestess’ Bubble Home . 544

The Ikairus . 545

VII. Bibliography . 545

Glossary . 546

Selected Bibliography . 562

Index . 565

Contents

xvi

Introduction

My earliest recollection of playing a computer game was when I stumbled upon a

half-height Space Invaders at a tiny Mexican restaurant in my hometown. I was per-

haps six, and Space Invaders was certainly the most marvelous thing I had ever

seen, at least next to LegoLand. I had heard of arcade games, but this was the first

one I could actually play. Space Invaders, I knew, was better than television,

because I could control the little ship at the bottom of the screen using the joystick

and shoot the aliens myself instead of watching someone else do it. I was in love.

The irony of this story is that, at the time, I failed to comprehend that I had to stick

quarters into the game to make it work. The game was running in “attract” mode as

arcade games do, and my young mind thought I was controlling the game with the

joystick when I was actually not controlling anything. But the idea was still

mind-blowing.

This book is about developing original computer games that will hopefully

have the same mind-blowing effect on players that Space Invaders had on my

young brain. This book deals with that development process from the point of view

of the game designer. Many books have been written about the programming of

computer games, but I can remember my frustration in being unable to find a book

such as this one when I was an aspiring game designer. In some ways, I have writ-

ten this book for myself, for the person I was a decade ago. I hope that other people

interested in designing games will find this book informative. In my humble opin-

ion, it is the game designer who has the most interesting role in the creation of a

computer game. It is the game’s design that dictates the form and shape of the

game’s gameplay, and this is the factor which differentiates our artistic medium

from all others.

xvii

What is Gameplay?
I hear you asking, “But what is gameplay?” Many people think they know what

gameplay is, and indeed there are many different reasonable definitions for it. But I

have one definition that covers every use of the term you will find in this book. The

gameplay is the component of computer games which is found in no other art form:

interactivity. A game’s gameplay is the degree and nature of the interactivity that

the game includes, i.e., how the player is able to interact with the game-world and

how that game-world reacts to the choices the player makes. In an action game such

as Centipede, the gameplay is moving the shooter ship around the lower quadrant of

the screen and shooting the enemies that attack relentlessly. In SimCity, the

gameplay is laying out a city and observing the citizens that start to inhabit it. In

Doom, the gameplay is running around a 3D world at high speed and shooting its

extremely hostile inhabitants, gathering some keys along the way. In San Francisco

Rush, the gameplay is steering a car down implausible tracks while jockeying for

position with other racers. In StarCraft, the gameplay is maneuvering units around a

map, finding resources and exploiting them, building up forces, and finally going

head to head in combat with a similarly equipped foe. And in Civilization, the

gameplay is exploring the world, building a society from the ground up, discovering

new technologies, and interacting with the other inhabitants of the world.

Though some might disagree with me, the gameplay does not include how the

game-world is represented graphically or what game engine is used to render that

world. Nor does it include the setting or story line of that game-world. These aes-

thetic and content considerations are elements computer games may share with

other media; they are certainly not what differentiates games from those other

media. Gameplay, remember, is what makes our art form unique.

What is Game Design?
What, then, is game design? Having defined what exactly I mean when I refer to

gameplay, the notion of game design is quite easily explained: the game design is

what determines the form of the gameplay. The game design determines what

choices the player will be able to make in the game-world and what ramifications

those choices will have on the rest of the game. The game design determines what

win or loss criteria the game may include, how the user will be able to control the

game, and what information the game will communicate to him, and it establishes

how hard the game will be. In short, the game design determines every detail of

how the gameplay will function.

Introduction

xviii

Who is a Game Designer?
By this point it should be obvious what a game designer does: she determines what

the nature of the gameplay is by creating the game’s design. The terms “game

designer” and “game design” have been used in such a wide variety of contexts for

so long that their meaning has become dilute and hard to pin down. Some seem to

refer to game design as being synonymous with game development. These people

refer to anyone working on a computer game, be they artist, programmer, or pro-

ducer, as a game designer. I prefer a more specific definition, as I have outlined

above: the game designer is the person who designs the game, who thereby estab-

lishes the shape and nature of the gameplay.

It is important to note some tasks in which the game designer may be involved.

The game designer may do some concept sketches or create some of the art assets

that are used in the game, but he does not have to do so. A game designer may

write the script containing all of the dialog spoken by the characters in the game,

but he does not have to do so. A game designer may contribute to the programming

of the game or even be the lead programmer, but he does not have to do so. The

game designer may design some or all of the game-world itself, building the levels

of the game (if the project in question has levels to be built), but he does not have to

do so. The game designer might be taking care of the project from a management

and production standpoint, keeping a careful watch on the members of the team to

see that they are all performing their tasks effectively and efficiently, but he does

not have to do so. All someone needs to do in order to justifiably be called the

game’s designer is to establish the form of the game’s gameplay. Indeed, many

game designers perform a wide variety of tasks on a project, but their central con-

cern should always be the game design and the gameplay.

What is in This Book?
This book contains a breadth of information about game design, covering as many

aspects as possible. Of course, no single book can be the definitive work on a partic-

ular art form. What this book certainly is not is a book about programming

computer games. There are a wealth of books available to teach the reader how to

program, and as I discuss later in this book, knowing how to program can be a great

asset to game design. However, it is not a necessary component of designing a

game; many fine designers do not know how to program at all.

The chapters in this book are divided into three categories. First are the twelve

core chapters which discuss various aspects of the development of a computer

game, from establishing the game’s focus, to documenting the game’s design, to

establishing the game’s mode of storytelling, to playtesting the near-final product.

Introduction

xix

These chapters discuss the theory behind game design, and what a designer should

strive for in order to create the best game possible. The chapters also include dis-

cussions of the reality of game development, using examples from my own

experience, to delve into the actual practice of game design.

There are five analysis chapters included in this book, covering five excellent

games in five different genres. One of the most important skills a game designer

must have is the ability to analyze games that she enjoys in order to understand

what those games do well. By understanding these other games, the designer may

then attempt to replicate those same qualities in her own projects. That is not to

suggest that good game designers merely copy the work of other game designers.

Understanding the reasons why other games succeed will bring the designer a more

complete understanding of game design as a whole. Every game designer should

take the games that she finds most compelling and try to examine what makes them

tick. The examples I include in this book, Centipede, Tetris, Loom, Myth: The

Fallen Lords, and The Sims, are all very unique games. And though a given project

you are working on may not be similar to any of these games, a lot can be learned

from analyzing games of any sort. First-person shooter designers have had great

success in revitalizing their genre by looking at adventure games. Certainly,

role-playing game designers have recently learned a lot from arcade game design-

ers. Melding in techniques from other genres is the best way to advance the genre

you are working on and to create something truly original.

This book also includes a group of interviews with six of the most well-

respected game designers of the industry’s short history who have designed some of

the best games ever released. These are lengthy interviews that go deeper than the

short press kit style interviews one finds on the Internet or in most magazines. In

each interview the subject discusses the best titles of his career and why he believes

they turned out as well as they did. The designers also talk at length about their own

techniques for developing games. Throughout my own career in game develop-

ment, I have found interviews with other computer game designers to be

exceedingly helpful in learning how to perfect my craft. There is much information

to be gleaned from these chapters, ideas that can help any game designer, regardless

of how experienced he may be.

At the end of the book you will find a glossary. Though it is far from a com-

plete listing of game design terminology, it does cover many of the more esoteric

terms I use in the book, such as a personal favorite of mine, “surrogate.” Every

game designer has a set of jargon she uses to refer to various aspects of her craft,

and this jargon is seldom the same from one designer to the next. If nothing else,

the glossary should help you to understand my own jargon. For instance, it will tell

you the difference between gameplay and game mechanics. Furthermore, readers

who may find the content of this book to assume too much knowledge may find the

Introduction

xx

TE
AM
FL
Y

Team-Fly®

glossary helpful in sorting out what an RTS game is and what the two different

meanings for FPS are. Often, discussions of game design can degrade into ques-

tions of semantics, with no two sides ever meaning exactly the same thing when

they refer to a game’s “engine.” I hope that the glossary will help readers to avoid

that problem with this book.

Who This Book is For
This book is for anyone who wants to understand the computer game development

process better from a strictly game design standpoint. As I stated earlier, there are

plenty of books available to teach you how to program, or how to use Photoshop

and 3D Studio Max. This book will do neither of these things. Instead it focuses on

the more elusive topic of game design and how you can ensure that your title has

the best gameplay possible. Though solid programming and art are both central to a

game’s success, no amount of flashy graphics or cutting-edge coding will make up

for lackluster game design. In the end, it is the gameplay that will make or break a

project.

I have written this book in such a way as to encompass projects of different

scopes and sizes. It does not matter if the game you are working on is destined for

commercial release, if you hope to someday release it as shareware, or if you are

only making a game for you and your friends to play; this book should be helpful to

a game designer working in any of those circumstances. Furthermore, it does not

matter if you are working on the game with a large team, with only a few accompli-

ces, or going completely solo. In the book I often make reference to the “staff” of

your project. When I refer to “your programming staff” I may be referring to a team

of ten seasoned coders commanding massive salaries and pushing the boundaries of

real-time 3D technology, or I may be referring to just you, coding up every last

aspect of the game yourself. When I refer to “your playtesting staff” I may be refer-

ring to an experienced and thoroughly professional testing staff of fifteen who will

pride themselves on giving your game a thorough going-over, or I may be referring

to your cousins Bob and Judith who, like you, enjoy games and would love to play

your game. Good games certainly do not always come from the biggest teams.

Even today, when multi-million dollar budgets are the norm, the best games still

often result from the vision and determination of a lone individual, and he need not

always surround himself with a massive team to see that vision through to

completion.

Many places in this book make reference to you leading the design on the pro-

ject on which you are working. Of course, not every designer can be in the lead

position on every project, and even if you are the lead, you will often find yourself

without the absolute final say on what takes place in the game. In this regard, this

Introduction

xxi

book is written from a somewhat idealistic point of view. But regardless of how

much authority you actually have over the direction of the project, the important

point is to always know what you would do with the project if you could do what-

ever you wanted. Then you should campaign for this direction with the other people

on the team. If you are persuasive enough and if you are, in fact, correct in your

instincts, you have a good chance of convincing them to do it your way. Projects

are often led not by the people with the most seniority or who have the right title on

their business card; projects are lead by the people who “show up” to the task, who

care about their projects and are committed to them, and who are willing to put in

the time and effort to make the game the best it can be.

Theory and Practice
Every medium has a unique voice with which it can speak, and it is the responsibil-

ity of the user of a medium to find that voice. Computer games have a voice that I

firmly believe to be as strong as that available in any other media. Computer games

are a relatively young form when compared with the likes of the printed word,

music, the visual arts, or the theater, and I think this currently works against the

likelihood of computer games truly finding their most powerful voice. This book is

an attempt to help readers find that voice in their own projects. This can come in

both the more theoretical form of questioning why it is that players play games, but

also in the entirely more practical form of how to most effectively work with

playtesters. To have any chance of producing a great game, the game designer must

understand both the theoretical aspects and the practical necessities of game design.

Introduction

xxii

Chapter 1

What Players Want

“But when I come to think more on it, the biggest reason it has be-

come that popular is Mr. Tajiri, the main developer and creator of

Pokemon, didn’t start this project with a business sense. In other words,

he was not intending to make something that would become very pop-

ular. He just wanted to make something he wanted to play. There was

no business sense included, only his love involved in the creation.

Somehow, what he wanted to create for himself was appreciated by

others in this country and is shared by people in other countries.

. . . And that’s the point: not to make something sell, something very

popular, but to love something, and make something that we creators

can love. It’s the very core feeling we should have in making games.”

— Shigeru Miyamoto, talking about the creation of Pokemon

1

G
ame designers spend a lot of time concerning themselves with what game

players are looking for in a computer game. What can they put in their

computer games that has not been done before and will excite players?

Often game designers are so bereft of an idea of what gamers want that they instead

only include gameplay ideas that have been tried before, rehashing what was popu-

lar with game players last year. Surely if players liked it last year, they will like it

this year. But therein lies the rub. Gamers generally do not want to buy a game that

is only a clone of another game, a “new” game that only offers old ideas and brings

nothing original to the table. Nonetheless, successful games can be useful, not for

cloning, but for analysis. As game designers, we can look at the games that have

come out previously, that we have enjoyed in years past, and try to determine a set

of directives that explain what compelled us to try those games in the first place,

and why they held our interest once we started playing them.

Why Do Players Play?
The first question we should consider is: why do players play games in the first

place? Why do they choose to turn on their computer and run Doom instead of visit-

ing the art museum or going to see a movie? What is unique about computer games

versus other human entertainment pursuits? What do games offer that other activi-

ties do not? It is by understanding what is attractive about games that other media

do not offer that we can try to emphasize the differences, to differentiate our art

form from others. To be successful, our games need to take these differences and

play them up, exploit them to make the best gameplay experience possible.

Players Want a Challenge

Many players enjoy playing games since they provide them with a challenge. This

provides one of the primary motivating factors for single-player home games, where

social or bragging rights motivations are less of an issue. Games can entertain play-

ers over time, differently each time they play, while engaging their minds in an

entirely different way than a book, movie, or other form of art. In somewhat the

same way someone might fiddle with a Rubik’s Cube or a steel “remove the ring”

puzzle, games force players to think actively, to try out different solutions to prob-

lems, to understand a given game mechanism.

When a person faces a challenge and then overcomes it, that person has learned

something. It does not matter if that challenge is in a math textbook or in a com-

puter game. So, challenging games can be learning experiences. Players will learn

from games, even if that learning is limited to the context of the game, such as how

to get by level eight, and so forth. In the best games, players will learn lessons

through gameplay that can be applied to other aspects of their life, even if they do

2 Chapter 1: What Players Want

not realize it. This may mean that they can apply problem solving methods to their

work, use their improved spatial skills to better arrange their furniture, or perhaps

even learn greater empathy through game role-playing. Many players thrive on and

long for the challenges games provide, and are enriched by the learning that

follows.

Players Want to Socialize

I have a friend who maintains that games are antisocial. This is, of course, absurd,

as nearly all non-computer games require a social group in order to function. Games

arose as a communal activity many millennia ago out of a desire to have a challeng-

ing activity in which a group of friends and family could engage in. Computer game

designers need to remember that the roots of gaming, and an important part of its

appeal, are in its social nature.

For most people, the primary reason they play games is to have a social experi-

ence with their friends or family. I am not talking about computer games here, but

rather board and card games like chess, Monopoly, bridge, Scrabble, Diplomacy, or

The Settlers of Catan. People like to play these games because they like being with

their friends and want to engage in a shared activity that is more social than going

to a movie or watching TV. It is true that lots of people enjoy playing solitaire card

games as well, but there are many more multi-player games than there are single-

player. This is because people enjoy a social gameplaying experience.

But how does this apply to computer games? If one considers all the computer

games ever created, the majority of them are single-player only experiences. But of

course there are plenty of multi-player games, ranging from the “death-matches”

found in Doom and its imitators, to the classic M.U.L.E. game of wheeling and

dealing, to the persistent worlds founds in MUDs (Multi User Dungeons) or their

commercial equivalent, Ultima Online.

Almost all death-match style multi-player games are basically adaptations of

single-player games into multi-player incarnations. Though there are exceptions,

such as Quake III or Unreal Tournament, these games usually provide a single-

player (SP) game in addition to the multi-player (MP) game. The SP and MP games

are played with nearly the same set of rules and game mechanics. But even in these

single-player-turned-multi-player games, players like to socialize while playing.

Anyone who has ever played one of these games over a LAN in a room with a

bunch of their friends can testify to this. These LAN-fests are usually rich with con-

versation as players shout back and forth to each other, bragging over their most

recent “frag” or proclaiming how close they came to being killed. Games such as

Quake can also be played over the Internet, where the experience is quite a bit less

social, since players may be miles apart and are thus only able to communicate

through the computer. And the high-intensity and fast-action nature of these games

Chapter 1: What Players Want 3

doesn’t leave players much time to type messages to their opponents, if they hope

to survive for long. But these games do still provide chat functionality, and players,

when they are in a safe corner, after they have died, or between games, can send

conversational messages to each other. At more hectic points in the gameplay the

messages are short and typed on the fly, consisting of only a couple of letters. The

fact that players still try to chat with each other in these high-velocity games is tes-

tament to the players’ desire to socialize.

A separate category of multi-player games is what has come to be called “per-

sistent universe” or “massively multi-player” games. These games tend to be more

in the style of role-playing games, where players wander around “virtual worlds”

and meet and interact with the other characters in these worlds, characters who are

controlled by other players. These games tend to be played over large networks

such as the Internet, instead of over LANs, and as a result players only socialize

with each other through what they type into the computer. Since these games are

considerably slower paced than death-match games, there is a much greater oppor-

tunity for the players to chat with each other while playing. MUDs were the first

popular incarnation of this style of game, which were played primarily by college

students from the late 1980s on. At the time, college students were the main group

of people with free time who were hooked to the Internet. These games are

text-only, and provide their players with quests to accomplish in mostly fantasy set-

tings. The quests, however, take a backseat to the socialization and role-playing,

with players spending the vast majority of their time chatting with other players. A

lot of people are drawn into playing these games as a way to interact with their

friends, despite the fact that these friends are people they met online and who they

4 Chapter 1: What Players Want

Unreal
Tournament is an
example of a
game which
focuses primarily
on providing a
multi-player
experience.

have never seen in person. Indeed, the persistent worlds, MUDs in particular, draw

in a legion of players who are not interested in playing any single-player computer

games. These people play games in order to meet and talk to other people. The

games are an activity these people can engage in together while socializing.

As multi-player games have become more and more common, many game

developers have been quick to point out their advantages in terms of competitive

AI. Human opponents are much more unpredictable and challenging than any AI

that could be reasonably created for most games. This, they suggested, is why peo-

ple are drawn to multi-player games. But the biggest advantage of these

multi-player games is that they transform computer games into truly social experi-

ences, which is one of the largest motivating factors for people to play games.

Players Want a Dynamic Solitaire Experience

Perhaps I have confused the reader by saying first that players want to socialize and

then suggesting that players want a solitaire experience. Of course the two do not

happen at the same time; some game players are looking for a social experience,

and a different set are looking for something dynamic that they can engage in by

themselves. Sometimes friends are not available, or a player is tired of his friends,

or simply tired of having to talk to other people all the time. Similar to the differ-

ence between going to a movie theater with an audience versus renting a video

alone at home, the antisocial nature of single-player games attracts a lot of people

who have had enough of the other members of the human race.

But games are distinct from other solitaire experiences such as reading a book

or watching a video since they provide the players with something to interact with,

an experience that reacts to them as a human would, or at least in a manner resem-

bling a human’s reactions. But the players are always in control, and can start and

stop playing at any time. Thus the computer game “fakes” the interesting part of

human interaction without all of the potential annoyances. In this way, people are

able to turn to computer games for a dynamic and interactive yet antisocial

experience.

Players Want Bragging Rights

Particularly in multi-player gaming, players play games to win respect. Being able

to frag all of your friends in Doom will force them to have a grudging respect for

you: “Bob isn’t very good in algebra class, but he can sure annihilate me in a death-

match.” Even in single-player games, players will talk with their friends about how

they finished one game or about how good they are at another. Players will brag

about how they played the whole game through on the hardest difficulty in only a

few hours. If one looks at arcade games both old and new, the high-score table and

the ability to enter one’s name into the game, even if only three letters, provides a

Chapter 1: What Players Want 5

tremendous incentive for people to play a game repeatedly. Players who may not

have much to brag about in their ordinary lives, who may not be terribly physically

coordinated at sports or bookish enough to do well in school, can go down to the

arcade and point out to all their friends their initials in the Centipede game. Even

without telling anyone, players can feel a tremendous sense of self-satisfaction

when they beat a particular game. When players are victorious at a challenging

game, they realize they can do something well, probably better than most people,

which makes them feel better about themselves.

Players Want an Emotional Experience

As with other forms of entertainment, players may be seeking some form of emo-

tional payoff when they play a computer game. This can be as simple as the

adrenaline rush and tension of a fast-action game like Doom. Or it can be consider-

ably more complex, such as the player’s feeling of loss when her friendly robot

companion sacrifices himself for the player in Steve Meretzky’s Planetfall. Sadly,

many games’ emotional ranges are limited to excitement/tension during a conflict,

despair at repeated failure at a given task, and then elation and a sense of accom-

plishment when the player finally succeeds. It may seem strange that players would

play a game in order to feel despair. But many people enjoy watching plays that are

tragedies or movies that have sad endings, or listening to music that is out-and-out

depressing. People want to feel something when they interact with art, and it does

not necessarily need to be a positive, happy feeling. Perhaps the sense of catharsis

people obtain from these works makes them worth experiencing. Many classic

arcade games, such as Centipede or Space Invaders, are unwinnable. No matter

what the player does, eventually the game will beat him. These games are, in a

sense, lessons in defeat—tragedies every time the player plays them. Yet the player

keeps pumping in his quarters. This is why a player’s feeling of hopelessness as a

game repeatedly bests him is not to be ignored. The player is feeling something, and

some would say that is the goal of art.

Emotional range is not something computer games have explored as much as

they could. The example from Planetfall I cited above is one of the very few exam-

ples in computer games of a player becoming attached to a character in a game,

only to have him killed later on. Many developers are wary of making a game too

sad. But in the case of Planetfall, the tragic story twist of that game was exploited

for all the pathos it was worth by designer Steve Meretzky. It is a moment of trag-

edy that has stuck in many gamers’ memories. Game designers would be wise to

concentrate on expanding the emotional experience in games beyond excitement

and accomplishment, into more unexplored and uncharted emotional territory.

6 Chapter 1: What Players Want

Players Want to Fantasize

A major component of the popularity of storytelling art forms is the element of

fantasy. Whether one considers novels, films, or comic books, many people experi-

ence these works to “get away” from their own “mundane” lives and escape to an

altogether different world, one filled with characters who engage in exciting, inter-

esting activities, travel to exotic locales, and meet other fascinating people.

Certainly not all storytelling works portray exciting and glamorous protagonists, but

there is certainly a large segment of works that is labeled “escapist.” Some critics

deride such escapist pieces of art, and indeed a lot of very good books, movies, and

comics deal with more realistic settings and topics to great effect. The fact remains,

however, that many people want to be transported to a world more glamorous than

their own.

Computer games, then, have the potential to be an even more immersive form

of escapism. In games, players get the chance to actually be someone more excit-

ing, to control a pulp-fiction adventurer, daring swordsman, or space-opera hero.

While in books or films the audience can merely watch as the characters lead excit-

ing lives, in a well-designed computer game a player will actually get the chance to

live those lives themselves. Even better, these fantasy lives are not weighed down

with the mundane events of life. In most games, players do not have to worry about

eating, needing to get some sleep, or going to the bathroom. Thus, a game can cre-

ate a fantasy life without the tedious details. And, most importantly, the level of

fantasy immersion is heightened from that of other art forms because of the interac-

tive nature of gaming.

Another part of the fantasy fulfillment element of computer games is enabling

the player to engage in socially unacceptable behavior in a safe environment. Many

popular games have allowed players to pretend they are criminals or assassins.

Driver is a good example of this. Though the back-story explains that the player is

actually playing an undercover police officer, in Driver the player gets to pretend

she is a criminal who must evade the police in elaborate car chases. There is a dev-

ilish thrill to outrunning police cars, especially for anyone who has ever been pulled

over by one. Though most players would never consider driving in car chases in

real life, there’s something tempting and enticing about engaging in taboo activities.

Computer games provide a good medium for players to explore sides of their per-

sonality that they keep submerged in their daily lives.

Players may also fantasize about events in history. If the player could have been

Napoleon, would Waterloo have turned out differently? If the player were a railroad

baron in the twentieth century, would he be able to create a powerful financial

empire? A whole line of historical games, from wargames to economic simulations,

allow players to explore events in history, and see how making different choices

than the historical figures involved made will result in wildly different outcomes.

Chapter 1: What Players Want 7

While many people spend their time dwelling on the past, wondering how events

could have transpired differently if alternate decisions had been made, games can

give players a chance to find out how history might have been different.

Even without the elements of excitement and glamour, even if another person’s

life is not actually that exciting, it can be interesting to spend time as that person.

Good computer games can provide players with the otherwise unavailable opportu-

nity to see the world through someone else’s eyes. As millions of gamers can attest,

it is fun to role-play and it is fun to fantasize.

What Do Players Expect?
Once a player has decided he wants to play a given game because of one motivating

factor or another, he will have expectations for the game itself. Beyond the game

not crashing and looking reasonably pretty, players have certain gameplay expecta-

tions, and if these are not met, the player will soon become frustrated and find

another game to play. It is the game designer’s job to make sure the game meets

these expectations. So once they start playing, what do players want?

Players Expect a Consistent World

As players play a game, they come to understand what actions they are allowed to

perform in the world, and what results those actions will produce. Few things are

more frustrating than when the player comes to anticipate a certain result from an

action and then the game, for no perceivable reason, produces a different result.

Worse still is when the consequences of the player’s actions are so unpredictable

that a player cannot establish any sort of expectation. Having no expectation of

what will happen if a certain maneuver is attempted will only frustrate and confuse

players, who will soon find a different, more consistent game to play. It is the con-

sistency of actions and their results that must be maintained, for an unpredictable

world is a frustrating one to live in.

Fighting games are a particularly appropriate example of the importance of pre-

dictable outcomes from actions. Players do not want a maneuver to work

sometimes and fail other times, without a readily apparent reason for the different

outcomes. For instance, in Tekken, if the player misses a kick, it has to be because

her opponent jumped, blocked, was too far away, or some other reason that the

player can perceive. The player’s perception of the reason for the move’s failure is

important to emphasize. It may be that the internal game logic, in this case the colli-

sion system, will know why the player’s kick missed, but it is as bad as having no

reason if the player cannot easily recognize why the maneuver failed. Furthermore,

if only expert players can understand why their action failed, many novices will

become frustrated as they are defeated for no reason they can understand. If a kick

8 Chapter 1: What Players Want

TE
AM
FL
Y

Team-Fly®

fails in a situation that closely resembles another situation in which the same kick

succeeded, players will throw their hands up in frustration.

Pinball games are another interesting example. Of course, a pinball game is a

completely predictable game-world, since it is based on real-world physics. An

expert pinball player knows this, and will use it to his advantage. But the problem

comes with the novice. Inexperienced players will often fail to see what they “did

wrong” when the ball goes straight down between their flippers, or rolls down one

of the side gutters. These players will curse the pinball game as a “game of luck”

and not want to play anymore. Of course, the fact that players of different skill lev-

els will have radically different levels of success at a given pinball game shows that

it is not just a game of luck. But only those players who stick with the game

through numerous early failures will find this out. I am not suggesting that pinball

games should be abandoned or radically simplified, but one of their shortcomings is

that they alienate new players who cannot see the connections between their actions

and the outcome of the game.

Players Expect to Understand the Game-World’s Bounds

When playing a game, a player wants to understand which actions are possible and

which are not. He does not need to immediately see which actions are needed for a

given situation, but he should understand which actions it is possible to perform and

which are outside the scope of the game’s play-space.

For instance, in Doom, a player will intuitively figure out that she is not going

to be able to hold a discussion with the demons she is fighting. The player will not

Chapter 1: What Players Want 9

In Doom II, the
player will not
expect to be able
to start a
conversation with
the monsters he
is attacking.

even want to initiate a conversation with a demon during which she suggests sur-

render as the most logical course of action. The player understands that such

interpersonal discussion is out of the scope of the game. Suppose that Doom had

included a monster late in the game, a foe that could only be defeated if the player

was friendly to it, winning it over with her witty conversation. Players would have

been frustrated, since they came to understand, through playing the levels that led

up to that level, that in Doom all that is needed for victory is to blast everything that

moves, while avoiding getting hit. Talking is completely out of the scope of the game.

Of course, a chatty monster in Doom is an extreme example of a game having

unpredictable bounds, but plenty of games break this design principle. These games

have players performing actions and completing levels using a certain type of game

mechanism, and then later on insert puzzles that can only be solved using an

entirely new mechanism. The problem is that the player has been taught to play the

game a certain way, and suddenly the game requires the player to do something else

entirely. Once players come to understand all of the gameplay mechanisms that a

game uses, they don’t want new, unintuitive mechanisms to be randomly

introduced.

Players Expect Reasonable Solutions to Work

Once a player has spent some time playing a game, he comes to understand the

bounds of the game-world. He has solved numerous puzzles, and he has seen what

sort of solutions will pay off. Later in the game, then, when faced with a new puz-

zle, the player will see what he regards as a perfectly reasonable solution. If he then

tries that solution and it fails to work for no good reason, he will be frustrated, and

he will feel cheated by the game.

This sort of difficulty in game design is particularly true in games that try to

model the real-world to some degree. In the real-world there are almost always

multiple ways to accomplish a given objective. Therefore, so too must it be in a

computer game set in the real-world. Of course, a designer always provides at least

one solution to a puzzle, and granted that solution may be perfectly reasonable. But

there may be other equally reasonable solutions, and unless the designer makes

sure those solutions work as well, players will discover and attempt these non-

functioning alternate solutions and will be irritated when they do not work. It is the

game designer’s task to anticipate what the player will try to do in the game-world,

and then make sure that something reasonable happens when the player attempts

that action.

Players Expect Direction

Good games are about letting the players do what they want, to a point. Players

want to create their own success stories, their own methods for defeating the game,

10 Chapter 1: What Players Want

something that is uniquely theirs. But at the same time, players need to have some

idea of what they are supposed to accomplish in this game. Not having direction is a

bit too much like real life, and players already have a real life. Many gamers are

probably playing the game in order to get away from their real lives, to fantasize

and escape. They usually do not play games in order to simulate real life on their

computer.

Players want to have some idea of what their goal is and be given some sugges-

tion of how they might achieve that goal. With a goal but no idea of how to achieve

it, players will inevitably flail around, trying everything they can think of, and

become frustrated when the maneuvers they attempt do not bring them any closer to

their goal. Of course, without an idea of what their goal is, players are left to just

wander aimlessly, perhaps enjoying the scenery, marveling at the immersive

game-world. Yet without something to do in that game-world, it is pointless as a

game. If the players do not know what their goal is, the goal might as well not exist.

The classic example of the goal-less game is SimCity. In fact, Will Wright, the

game’s creator, calls it a “software toy” instead of a game. SimCity is like a toy in

that the player can do whatever she wants with it, without ever explicitly being told

that she has failed or succeeded. In some ways SimCity is like a set of Legos, where

a player can build whatever she wants just for the thrill of creation. The trick, how-

ever, is that SimCity is a city simulator, wherein the player is allowed to set up a

city however she wants. But since the game simulates reality (constructing and run-

ning a city), and the player knows what is considered “success” in reality (a

booming city full of lovely stadiums, palatial libraries, and happy citizens), she will

naturally tend to impose her own rules for success on the game. She will strive to

Chapter 1: What Players Want 11

SimCity 3000
is the third in a
series of city
simulation
“software toys,”
which let users
play without
giving them a
specific goal.

make her idea of the perfect city, and keep its citizens happy and its economy buoy-

ant. In a subtle way, the player is directed by her own experience with reality. If

SimCity had been a simulation of a system that players were completely unfamiliar

with, it would certainly have been less popular. Though the game does not explic-

itly have a goal, the very nature of the game and its grounding in reality encourages

players to come up with their own goals. And so, what starts out as a toy becomes a

game, and thus the players are compelled to keep playing.

Players Expect to Accomplish a Task Incrementally

Given that players understand what their goal in the game-world is, players like to

know that they are on the right track toward accomplishing that goal. The best way

to do this is to provide numerous sub-goals along the way, which are communicated

to the player just as is the main goal. Then, a player is rewarded for achieving these

sub-goals just as he is for the main goal, but with a proportionally smaller reward.

Of course one can take this down to any level of detail, with the sub-goals having

sub-sub-goals, as much as is necessary to clue the player in that he is on the right

track. Without providing feedback of this kind, and if the steps necessary to obtain a

goal are particularly long and involved, a player may well be on the right track and

not realize it. When there is no positive reinforcement to keep him on that track, a

player is likely to try something else. And when he cannot figure out the solution to

a particular obstacle, he will become frustrated, stop playing, and tell all his friends

what a miserable time he had playing your game.

Players Expect to Be Immersed

A director of a musical I was once in would become incensed when actors waiting

in the wings would bump into the curtains. She suggested that once the audience

sees the curtains moving, their concentration is taken away from the actors on the

stage. Their suspension of disbelief is shattered. They are reminded that it is only a

play they are watching, not real at all, and that there are people jostling the curtains

surrounding this whole charade. Perhaps exaggerating a bit, this director suggested

that all of Broadway would collapse if the curtains were seen shaking.

But she had a point, and it is a point that can be directly applied to computer

games. Once a player is into a game, she is in a level, she has a good understanding

of the game’s controls, she is excited, and she is role-playing a fantasy; she does not

want to be snapped out of her experience. Certainly the game should not crash.

That would be the most jarring experience possible. Beyond that, the player does

not want to think about the game’s GUI. If the GUI is not designed to be transpar-

ent and to fit in with the rest of the game-world art, it will stick out and ruin her

immersion. If a character that is supposed to be walking on the ground starts walk-

ing into the air for no recognizable reason, the player will realize it is a bug and her

12 Chapter 1: What Players Want

suspension of disbelief will be shattered. If the player comes to a puzzle, figures out

a perfectly reasonable solution to it, and that solution does not work, the player will

again be reminded that she is “only” playing a computer game. All of these pitfalls

and many others detract from the player’s feeling of immersion, and each time the

player is rudely awakened from her game-world fantasy, the harder it is to

reimmerse herself in the game-world. Remember that many players want to play

games in order to fulfill fantasies. And it is very hard to fulfill a fantasy when the

game’s idiosyncrasies keep reminding the player that it is just a game.

Another important aspect of player immersion is the character the player is con-

trolling in the game. Most all games are about role-playing to some extent. And if

the character the player is controlling, his surrogate in the game-world, is not some-

one the player likes or can see himself as being, the player’s immersion will be

disrupted. For instance, in the third-person action/adventure game Super Mario 64,

the player is presented with a character to control, Mario, who does not have a very

distinct personality. Mario has a fairly unique look in his pseudo-plumber getup,

but he never really says much, and acts as something of a blank slate on which the

player can impose his own personality. On the other hand, some adventure games

have starred characters who acted like spoiled brats, and the player has to watch as

his character says annoying, idiotic things over and over again. Each time the char-

acter says something that the player would never say if he had the choice, the

player is reminded that he is playing a game, that he is not really in control of his

character as much as he would like to be. In order for the player to become truly

immersed, he must come to see himself as his game-world surrogate.

Chapter 1: What Players Want 13

Despite all his
fame, Mario
does not have
a very distinct
personality. He is
pictured here in
Super Mario 64.

Players Expect to Fail

Players tend not to enjoy games which can be played all the way through the first

time they try it out. For if the game is so unchallenging that they can storm right

through it on their first attempt, it might as well not be a game. If they wanted

something that simple they might as well have watched a movie. Remember that

gamers are drawn to playing games because they want a challenge. And a challenge

necessarily implies that the players will not succeed at first, that many attempts

must be made to overcome obstacles before they are finally successful. A victory

that is too easily achieved is a hollow victory. It is not unlike winning a fistfight

with someone half your size.

It is important to understand that players want to fail because of their own

shortcomings, not because of the idiosyncrasies of the game they are playing. When

a player fails, she should see what she should have done instead and she should

instantly recognize why what she was attempting failed to work out. If the player

feels that the game defeated her through some “trick” or “cheap shot,” she will

become frustrated with the game. Players need to blame only themselves for not

succeeding, but at the same time the game must be challenging enough that they do

not succeed right away.

It is also a good idea to let players win a bit at the beginning of the game. This

will suck the player into the game, making them think, “this isn’t so hard.” Players

may even develop a feeling of superiority to the game. Then the difficulty must

increase or “ramp up” so that the player fails. By this time the player is already

involved in the game, he has time invested in it, and he wants to keep playing, to

overcome the obstacle that has now defeated him. If a player is defeated too early

on in the game, he may decide it is too hard for him, or not understand what sort of

rewards he will get if he keeps playing. By allowing the player to win at first, a

player will know that success is possible, and will try extra hard to overcome what

has bested him.

Players Expect a Fair Chance

Players do not want to be presented with an obstacle where their only chance of sur-

mounting the obstacle is through trial and error, where an error results in their

character’s death or the end of their game. A player may be able to figure out the

proper way to overcome the obstacle through trial and error, but there should be

some way the player could figure out a successful path on his first try. So, extending

this rule to the whole game, without ever having played the game before the player

should be able to progress through the entire game without dying, assuming that the

player is extremely observant and skilled. It may be that no player will ever be this

skilled on his first time playing, and, as we discussed, ideally the designer wants the

player to fail many times before completing the game. However, it must be

14 Chapter 1: What Players Want

theoretically possible for the player to make it through on his first try without dying.

Players will quickly realize when the only way around an obstacle is to try each dif-

ferent possible solution until one works. And as players keep dying from each

shot-in-the-dark attempt they make, they will realize that due to short-sighted

design, there was no real way to avoid all of these deaths. They will be frustrated,

and they will curse the game, and soon they will not waste their time with it any

longer.

Players Expect to Not Need to Repeat Themselves

Once a player has accomplished a goal in a game, she does not want to have to

accomplish it again. If the designer has created an extremely challenging puzzle,

one that is still difficult to complete even after the player has solved it once, it

should not be overused in the game. For instance, the same painfully difficult puzzle

should not appear in identical or even slightly different form in different levels of a

3D action/adventure, unless the defeating of the difficult puzzle is a lot of fun and

the rewards are significantly different each time the puzzle is completed. If it is not

a lot of fun to do, and the player has to keep solving it throughout the game, she will

become frustrated and will hate the game designer for his lack of creativity in fail-

ing to come up with new challenges.

Of course, many games are built on the principle of the player repeating him-

self, or at least repeating his actions in subtly varied ways. Sports games such as

NFL Blitz and racing games such as San Francisco Rush are all about covering the

same ground over and over again, though the challenges presented in any one play-

ing of those games are unique to that playing. Classic arcade games like Centipede

and Defender offer roughly the same amount of repetition. Tetris is perhaps the

king of repetitive gameplay, yet players never seem to grow tired of its challenge.

The games in which players do not want to repeat themselves are the games in

which exploration is a key part of the player’s enjoyment and in which the chal-

lenges presented in any specific playing are fairly static and unchanging. After

exploring a game-world once, subsequent explorations are significantly less inter-

esting. While every time the player engages in a game of Defender, San Francisco

Rush, or NFL Blitz the game is unique, every time the player plays Tomb Raider,

Doom, or Fallout the challenges presented are roughly the same. Therefore, players

do not mind the repetition in the former games while they will become quickly

frustrated when forced to repeat themselves in the latter.

Game players’ lack of desire to repeat themselves is why save-games were cre-

ated. With save-games, once a player has completed a particularly arduous task she

can back up her progress so she can restore to that position when she dies later.

When a game presents a player with a huge, tricky challenge and, after many

attempts, she finally overcomes it, the player must be given the opportunity to save

Chapter 1: What Players Want 15

her work. Allowing the player to save her game prevents her from having to repeat

herself.

Some games will even automatically save the player’s game at this newly

achieved position, a process sometimes known as checkpoint saving. This method

is somewhat superior since often a player, having succeeded at an arduous task, will

be granted access to a new and exciting area of gameplay, one which she will

immediately want to explore and interact with. Often, in her excitement, she will

forget to save. Then, when she is defeated in the new area, the game will throw her

back to her last save-game, which she had made prior to the challenging obstacle.

Now the player has to make it through the challenging obstacle once again. How-

ever, if the game designer recognizes that the obstacle is a difficult one to pass, he

can make the game automatically save the player’s position, so that when the player

dies in the new area, she is able to start playing in the new area right away. How-

ever, automatic saves should not be used as a replacement for player-requested

saves, but should instead work in conjunction with them. This way players who are

accustomed to saving their games will be able to do it whenever they deem it

appropriate, while gamers who often forget to save will be allowed to play all the

way through the game without ever needing to hit the save key. Indeed, automatic

saving provides the player with a more immersive experience: every time the player

accesses a save-game screen or menu, she is reminded that she is playing a game. If

a player can play through a game without ever having to save her game, her experi-

ence will be that much more transparent and immersive.

Players Expect to Not Get Hopelessly Stuck

There should be no time while playing a game that the player is incapable of

somehow winning, regardless of how unlikely it may actually be. Many older

adventure games enjoyed breaking this cardinal rule. Often in these games, if the

player failed to do a particular action at a specific time, or failed to retrieve a small

item from a location early in the game, the player would be unable to complete the

game. The problem was that the player would not necessarily realize this until

many hours of fruitless gameplay had passed. The player’s game was essentially

over, but he was still playing. Nothing is more frustrating than playing a game that

cannot be won.

As an example, modern 3D world exploration games, whether Unreal or Super

Mario 64, need to concern themselves with the possibility that the player can get

hopelessly stuck in the 3D world. Often this style of game provides pits or chasms

that the player can fall down into without dying. It is vital to always provide ways

out of these chasms, such as escape ladders or platforms which allow the player to

get back to his game. The method of getting out of the pit can be extremely diffi-

cult, which is fine, but it must be possible. For what is the point of having the

16 Chapter 1: What Players Want

player fall into a pit from which he cannot escape? If he is incapable of escape, the

player’s game-world surrogate needs to be killed by something in the pit, either

instantly on impact (say the floor of the pit is electrified) or fairly soon (the pit is

flooding with lava, which kills the player within ten seconds of his falling in).

Under no circumstances should the player be left alive, stuck in a situation from

which he cannot continue on with his game.

One of the primary criticisms leveled against Civilization, an otherwise excel-

lent game, is that its end-games can go on for too long. When two countries remain

and one is hopelessly far behind the other, the game can tend to stretch on past the

point of interest while the dominant power tracks down and slaughters the opposi-

tion. Indeed, the less advanced country is not technically without hope. That player

can still come from behind and win the game; it is not completely impossible. That

player is not stuck to the same degree as the player trapped in the pit with no exit,

but the player is so far behind that it might as well be impossible; the luck they

would need to have and the mistakes the dominant power would have to make are

quite staggering. The solution to this is perhaps to allow the AI to figure out when it

is hopelessly overpowered and surrender, just as a player who is hopelessly far

behind will do the same by quitting and starting a new game.

Players Expect to Do, Not to Watch

For a time the industry was very excited about the prospect of “interactive movies.”

During this period computer game cut-scenes got longer and longer. Slightly

famous film actors started starring in the cut-scenes. Games became less and less

Chapter 1: What Players Want 17

Level designers
for 3D action/
adventure
games, such as
Unreal, need to
create maps
which prevent
the player from
ever getting
permanently
stuck behind a
piece of
architecture.

interactive, less, in fact, like games. And the budgets ballooned. Then, surprise sur-

prise, gamers did not like these types of games. They failed to buy them. Companies

collapsed, and everyone in the industry scratched their heads wondering what had

gone wrong. Of course the gamers knew, and the game designers were soon able to

figure out what was amiss. The problem was that players wanted to do, they did not

want to watch. And they still feel the same way.

I am not completely against cut-scenes; they can be a very useful tool for com-

municating a game’s story, or for passing along to the player information she will

need in order to succeed at the next piece of gameplay. That said, I do believe that

cut-scenes should be stripped down and minimized to the absolute shortest length

that is necessary to give some idea of the game’s narrative, if any, and set up the

next sequence of gameplay. Cut-scenes over one minute in length, especially those

that fail to provide information essential for completing the next gameplay

sequence, should be avoided. It does not matter if the cut-scene is text scrolling

along the back of the screen, full-motion video with live actors, cell animation, or

done using the game-engine, the entirety of this break in the gameplay should not

take longer than a minute. If there is gameplay involved in some way, such as the

player planning out troop placement for the next mission, then it is not really a

cut-scene and can be as long as is necessary. And certainly, if the cut-scene contains

information critical to the gameplay, the designer will want to let the player replay

the cut-scene as many times as he desires.

The quality of the cut-scene really does not matter either. There have been

many games with the most atrocious “acting” ever witnessed, usually as performed

by the assistant producer and the lead tester. There have been games with Holly-

wood-quality production and content, some with even better. But in the end, if the

game is any good, gamers are going to want to get back to it, and they are going to

want to skip the cut-scene.

In short, the reason people play games is because they want something different

from what a movie, book, radio show, or comic can provide. I did not include

among the reasons why people play games “because the library is closed” or

“because the TV is on the blink.” Gamers want a game, and game designers should

give it to them.

Players Do Not Know What They Want, But
They Know It When They See It

One could see this as an argument against focus groups, but that is not quite it. Hav-

ing playtesters is a very important part of game development. By playtesters, I mean

people looking not for bugs in your game, but rather analyzing the gameplay and

providing constructive feedback about it. A designer should have lots of people

18 Chapter 1: What Players Want

TE
AM
FL
Y

Team-Fly®

playing her game once it is at a stage in development where a majority of the

gameplay can be judged.

On the other hand, having a focus group of gamers before a game has been cre-

ated just to “bounce ideas around” is pretty much useless. Gamers are good, of

course, at judging whether a game they are playing is any fun or not. They may not

be able to explain in a useful way what exactly they like or dislike about a particu-

lar game, but they certainly know when they are having a good time, whether they

are having their fantasies fulfilled, whether they are being appropriately challenged,

or if a game gets them excited. But just because they enjoy a wide range of finished

games does not mean they are qualified to critique raw game ideas. Similarly, game

ideas they come up with are not certain to be good ones. It is the rare person who

can discuss the idea of a computer game and determine if is likely the final game

will be fun or not. People with these skills are those best suited to become game

designers. Not all game players have these skills, so when asked what sort of game

they might be interested in playing, gamers may not really know what they want.

But, as I say, they will know it when they see it.

A Never-Ending List
Of course, this exploration of what players want could fill a whole book and could

continue indefinitely. I encourage readers, whether aspiring game designers or those

who have already had a number of games published, to create their own list of what

they think gamers want. Think of what frustrates you while you play a game and

what portions of a game deliver to you the greatest satisfaction. Then try to deter-

mine why you react to a game mechanic as you do. What did it do right and what

did it do wrong? This will allow you to establish your own list of rules, which you

can then apply to your own designs. Without feedback from playtesters it is often

hard to determine whether your game is entertaining and compelling or not. But

with a set of rules you can systematically apply to your design, you may just figure

out whether anyone will like your game.

Chapter 1: What Players Want 19

Chapter 2

Interview: Sid Meier

Sid Meier is certainly the most famous and well-respected Western

computer game designer, and deservedly so. In his nearly twenty years of

developing games, he has covered all manner of game designs and all

types of subject matter. He co-founded Microprose and at first focused on

flight simulators, culminating in his classic F-15 Strike Eagle and F-19

Stealth Fighter. Subsequently, he shifted to the style of game he is better

known for today, developing such classics as Pirates!, Railroad Tycoon,

Covert Action, and finally Civilization, this last game being one of the

most universally admired game designs in the history of the form. Most

recently, at his new company Firaxis, Meier created the truly unique RTS

wargame Gettysburg! What strikes one most looking back over his games

is their consistent level of quality and the fact that he never repeats him-

self, always preferring to take on something new and different for his

personal projects. If anyone has a solid grasp on what makes a game a

compelling experience, it is Sid Meier.

20

Your first published games were flight simulators. Eventually you drifted over to

doing what you are now known for, strategy games. What drove you from one

genre to the other?

It was not a

deliberate plan. I

think I’ve always

tried to write games

about topics that I

thought were inter-

esting. There are just

a lot of different top-

ics, I guess. A lot of

things that I’ve writ-

ten games about are

things that, as a kid,

I got interested in, or

found a neat book

about the Civil War,

or airplanes, or whatever. I think the other thing that drove that a little bit was the

technology. That at certain times the technology is ready to do a good job with this

kind of game or that kind of game. Or the market is ready for a strategy game, for

example, or a game that you’ve wanted to do for a while but you didn’t think the

time was right. The shift, specifically from flight simulators to strategy, came about

for two reasons, I think. One, I had just finished F-19 Stealth Fighter, which

included all of the ideas I had up to that point about flight simulation. Anything I

did after that would be better graphics or more sounds or more scenarios or what-

ever, but I didn’t feel I had a lot of new ideas at that point about flight simulation.

Everything I thought was cool about a flight simulator had gone into that game. And

the other thing was that I had spent some time playing SimCity and a game called

Empire which got me to thinking about strategy in a grand sense, a game that really

had a significant amount of scope and time and a lot of interesting decisions to be

made. The combination of those two factors led me to do first Railroad Tycoon and

then Civilization after that, as kind of a series of strategy games.

I find it dangerous to think in terms of genre first and then topic. Like, say, “I

want to do a real-time strategy game. OK. What’s a cool topic?” I think, for me at

least, it’s more interesting to say, “I want to do a game about railroads. OK, now

what’s the most interesting way to bring that to life? Is it in real-time, or is it turn-

based, or is it first-person . . . ” To first figure out what your topic is and then find

interesting ways and an appropriate genre to bring it to life as opposed to coming

the other way around and say, “OK, I want to do a first-person shooter, what hasn’t

been done yet?” If you approach it from a genre point of view, you’re basically

Chapter 2: Interview: Sid Meier 21

F-19 Stealth Fighter

saying, “I’m trying to fit into a mold.” And I think most of the really great games

have not started from that point of view. They first started with the idea that,

“Here’s a really cool topic. And by the way it would probably work really well as a

real-time strategy game with a little bit of this in it.”

So when you come up with your ideas for new games, you start with the setting of

the game instead of with a gameplay genre.

I think a good

example of that is

Pirates! The idea

was to do a pirate

game, and then it

was, “OK, there’s

not really a genre

out there that fits

what I think is cool

about pirates. The

pirate movie, with

the sailing, the

sword fighting, the

stopping in differ-

ent towns and all

that kind of stuff, really doesn’t fit into a genre.” So we picked and chose different

pieces of different things like a sailing sequence in real-time and a menu-based

adventuring system for going into town, and then a sword fight in an action

sequence. So we picked different styles for the different parts of the game as we

thought they were appropriate, as opposed to saying, “We’re going to do a game

that’s real-time, or turn-based, or first-person, or whatever” and then make the

pirates idea fit into that.

I think it’s interesting that Pirates! was designed with all those mini-games, but

you haven’t really used discrete sub-games so much since. Did you not like the

way the mini-games came together?

Well, I think it worked pretty well in Pirates! It doesn’t work for every situa-

tion. One of the rules of game design that I have learned over the years is that it’s

better to have one great game than two good games. And, unless you’re careful, too

many sub-games can lose the player. In other words, if you’ve got a good mini-

game, then the player’s going to get absorbed in that. And when they’re done with

that, they may well have lost the thread of what your story was or if any game is too

engrossing it may disturb the flow of your story. Frankly, the mini-games in Pirates!

were simple enough that you didn’t lose track of where you were or what your

22 Chapter 2: Interview: Sid Meier

Pirates!

objective was or what you were trying to do. But I wrote a game a couple of years

later called Covert Action which had more intense mini-games. You’d go into a

building, and you’d go from room to room, and you’d throw grenades and shoot

people and open safes and all that kind of stuff and you’d spend probably ten min-

utes running through this building trying to find more clues and when you came out

you’d say to yourself, “OK, what was the mission I was on, what was I trying to do

here?” So that’s an example for me of the wrong way to have mini-games inside of

an overall story.

I’ve read that Covert Action was one of your personal favorites among the games

you designed.

I enjoyed it but it

had that particular

problem where the

individual mini-

sequences were a lit-

tle too involving and

they took you away

from the overall

case. The idea was

that there was this

plot brewing and you

had to go from city

to city and from

place to place finding

these clues that

would tell you piece by piece what the overall plot was and find the people that

were involved. I thought it was a neat idea, it was different. If I had it to do over

again, I’d probably make a few changes. There was a code-breaking sequence, and

circuit unscrambling, and there were some cool puzzles in it. I thought that overall

there were a lot of neat ideas in it but the whole was probably not quite as good as

the individual parts. I would probably do a couple of things differently now.

So Covert Action seems to have had similar origins as Pirates! You started with, “I

want to do a covert espionage game . . . ”

Right, what are the cool things about that. And unfortunately, the technology

had gotten to the point where I could do each individual part in more detail and that

for me detracted from the overall comprehensibility of the game.

In Pirates! and Covert Action, the player can see their character in the game, and

the player is really role-playing a character. By contrast, in Railroad Tycoon,

Chapter 2: Interview: Sid Meier 23

Covert Action

Civilization, or Gettysburg!, the player does not really have a character to

role-play. I’m curious about that shift in your game design, where the player used

to be a specific character and now is more of a god-like figure.

It’s good to be God. I think that’s really a scale issue more than a specific game

design choice. It’s fun to see yourself, and even in a game like Civilization you see

your palace, you do tend to see things about yourself. But the other thing is that a

pirate looks cool, while a railroad baron doesn’t look especially cool. Why go to the

trouble to put him on the screen? I’ve never really thought too much about that, but

I think it’s probably more of a scale thing. If you’re going through hundreds and

thousands of years of time, and you’re a semi-godlike character doing lots of differ-

ent things, it’s less interesting what you actually look like than if you’re more of a

really cool individual character.

So how did you first start working on Railroad Tycoon?

Well, it actually

started as a model

railroad game with

none of the economic

aspects and even

more of the low-level

running the trains.

You would actually

switch the switches

and manipulate the

signals in the original

prototype. It kind of

grew from that with a

fair amount of inspi-

ration from 1830, an

Avalon Hill board

game designed by

Bruce Shelley, who I

worked with on Railroad Tycoon. So, that inspired a lot of the economic side, the

stock market aspects of the game. As we added that, we felt that we had too much

range, too much in the game, that going all the way from flipping the switches to

running the stock market was too much. We also wanted to have the march of tech-

nology with the newer engines over time, all the way up to the diesels. So there was

just too much micro-management involved when you had to do all the low-level

railroading things. So we bumped it up one level where all of the stuff that had to

happen on a routine basis was done for you automatically in terms of switching and

signaling. But if you wanted to, and you had an express or a special cargo or

24 Chapter 2: Interview: Sid Meier

Railroad Tycoon

something, you could go in there and manipulate those if you really wanted to make

sure that train got through on time, or a bridge was out and you had to stop the

trains. But the origin of that was as a model railroading game and we added some

of the more strategic elements over time.

It really was the inspiration for Civilization in a lot of ways, in terms of combin-

ing a couple of different, interesting systems that interacted continuously. The

economic, the operational, the stock market, all interesting in their own right, but

when they started to interact with each other was when the real magic started to

happen. As opposed to Pirates! and Covert Action, where you had individual

sub-games that monopolized the computer. When you were sword fighting, nothing

else was going on. Here you had sub-games that were going on simultaneously and

interacting with each other and we really thought that worked well both in Railroad

Tycoon and later in Civilization, where we had military, political, and economic

considerations all happening at the same time.

So in a way, you are still using sub-games; they just happen to all be in play all

the time.

It’s not episodic in the way that Pirates! was. Whenever you’re making a deci-

sion you’re really considering all of those aspects at the same time. That’s part of

what makes Civilization interesting. You’ve got these fairly simple individual sys-

tems; the military system, the economic system, the production system are all pretty

easy to understand on their own. But once you start trading them off against each

other, it becomes more complex: “I’ve got an opportunity to build something here.

My military really needs another chariot, but the people are demanding a

temple . . . ” So these things are always in play and I think that makes the game

really interesting.

In Railroad Tycoon you’ve got a very interesting economic simulation going, but

at the same time the player has the fun of constructing a railroad, much as a child

would. Do you think that contributed to the game’s success?

It actually started there. And it was really the first game that I had done where

you had this dramatic, dramatic change from the state at the beginning of the game

to the state at the end of the game. Where, at the beginning of the game you had

essentially nothing, or two stations and a little piece of track, and by the end of the

game you could look at this massive spiderweb of trains and say, “I did that.” And,

again, that was a concept that we carried forward to Civilization, the idea that you

would start with this single settler and a little bit of land that you knew about and by

the end of the game you had created this massive story about the evolution of civili-

zation and you could look back and say, “That was me, I did that.” The state of the

game changed so dramatically from the beginning to the end, there was such a sense

of having gotten somewhere. As opposed to a game like Pirates! or all the games

Chapter 2: Interview: Sid Meier 25

before that where you

had gotten a score or

had done something,

but there was not this

real sense that the

world was completely

different. I think that

owes a lot to SimCity,

probably, as the first

game that really did a

good job of creating

that feeling.

Were you at all inspired by the Avalon Hill board game Civilization when you

made your computer version?

We did play it, I was familiar with it, but it was really less of an inspiration

than, for example, Empire or SimCity. Primarily, I think, because of the limitations

of board games. There were some neat ideas in there, but a lot of the cool things in

Civ., the exploration, the simultaneous operation of these different systems, are very

difficult to do in a board game. So there were some neat ideas in the game, and we

liked the name. [laughter] But in terms of actual ideas they were probably more

from other sources than the Civilization board game.

A lot of your games seem to be inspired in part from board games. But, as you

just said, Civilization would never really work as a board game. How do you take

an idea that you liked in a board game and transfer it into something that really

is a computer game instead of just a straight translation?

Before there were computers, I played a lot of board games and I was into

Avalon Hill games, et cetera. I think they provided a lot of seed ideas for games.

Often they are a good model of what’s important, what’s interesting, and what’s not

about a topic. But once you get into mechanics and interface and those kind of

things, really there starts to be a pretty significant difference between board games

and computer games. There’s a lot of interesting research material sometimes in

board games. Often they’re interesting for “we need some technologies” or “we

need to think about which units,” et cetera. There’s that kind of overlap in terms of

the basic playing pieces sometimes. But how they are used and so forth, those

things are pretty different between board games and computer games. I would say

26 Chapter 2: Interview: Sid Meier

Railroad Tycoon

board games provide an interesting review of topics that are available and topics

that are interesting. But once it gets into the actual game itself there is a wide differ-

ence between computer games and board games, in my mind.

One of the most remarkable things about Civilization is its addictive quality. I was

wondering if that came about by luck, or if you planned it from the start.

We didn’t really

envision that. We

intend for all of our

games to be fun to

play and hope that

they are addictive to

some degree. But

Civilization had a

magic addictiveness

that we really didn’t

design, that we really

didn’t anticipate. I

think any game where

everything falls

together in a really

neat way is going to

have that quality. I

think that it’s really a result of how well the pieces fit together and how I think we

picked a good scale, a good complexity level, a good number of things to do. I think

we made some wise decisions in designing that game. And the sum of all those

decisions is addictiveness. And I think that it was a good topic. A lot of things were

right about that game, and that all came together to create this addictive quality. It

was not something that we designed in, but it was something that we were kind of

aware of. About halfway through the process we realized that, wow, this game

really is a lot of fun to play. It was a pleasant discovery for us.

So you don’t have any advice for how other designers can try to achieve that

addictiveness in their own games?

I think in hindsight we know, or we think we know, why the game is addictive,

or have our theories. One thing is what we call “interesting decisions.” To us that

means you are presented with a stream of decision points where the decisions are

not so complex that you are basically randomly choosing from a list of options. A

too-complex decision is one where you say, “Oh, I’ve got these three options. Yeah,

I could spend five minutes analyzing the situation, but I really want to get on with

the game so I’m going to pick B because it looks good.” And on the other extreme

Chapter 2: Interview: Sid Meier 27

Civilization

there’s the too-simple decisions: “It’s obvious that I must choose A, because it is

clearly better than all of the other options.” In Civ. we try to present you choices

where they are easy enough to understand, but in a certain situation you might

choose A, in a slightly different situation B is a good choice, in another situation C

is a good choice. So you’re really saying, “Here are the three technologies that I can

go for next.” And you say to yourself, “Well, right now I’m about to get into a con-

flict with those no-good Romans. So I really need that technology that gives me the

next cool military unit. But, well, that map-making looks kind of interesting. Next

time I might take that because I want to do some exploring.” So if you can create

decisions where the player is always saying, “Next time, I’m going to try that one,

because that looks interesting too,” that creates this whole idea that there’s this rich-

ness there that you’re only scratching the surface of this time.

The addictive quality, I think, also falls out of the fact that you’ve got multiple

things happening or in process at the same time. On the one hand you’ve got your

next technology churning away over there. Your scientists are working on that. And

this city is making that first tank that you’re looking forward to. Over here is a unit

wandering around to the next continent, and pretty soon he’ll find something inter-

esting. You’ve got different things that you are looking forward to in the game, and

there’s never a time when those are all done. There’s never a reset state. There’s

always two or three things happening in the game that you are looking forward to

when they finish. So there’s never actually a good time to stop playing. I think that

really helps the “you can never stop playing the game” phenomenon.

I know Gettysburg! was not your first real-time game, but it seems to have been in

part inspired by the big hit RTS games like Command & Conquer and WarCraft.

I think the tech-

nology had gotten to

the point where you

could have a whole

bunch of little guys

running around doing

stuff on the screen in

real-time. And what

you call “real-time,”

it’s kind of a weird

term because we’ve

done real-time games

forever, but we didn’t

think of them as real-

time because it just

seemed a natural

28 Chapter 2: Interview: Sid Meier

Gettysburg!

TE
AM
FL
Y

Team-Fly®

thing. But I guess when turn-based got to be its own genre, we had to make a dis-

tinction. I think Gettysburg! is a game that I wanted to do for a long time, but the

technology didn’t really lend itself to being able to do it until fairly recently. We

finally got to the point where we could have a bunch of guys marching around the

screen on a realistic-looking battlefield, loading their muskets, shooting and

wheeling in different formations, and doing all that sort of stuff that I had visualized

as what was cool about a Civil War battle. The time came along when that was

doable.

It seems like it takes what WarCraft and the other, simpler RTS games did well,

but then adds a deeper level of simulation, where you have flanking bonuses and

other more traditional wargame features. Was it your goal to take a more com-

plex wargame and merge it with the fast-paced RTS format?

Again, the idea was to do a Gettysburg battle game, and then the genre of

“real-time” made the most sense. I’d always had a feeling in playing any other

board game that something was missing. The sense that I get from reading the histo-

ries, the stories of the battles, is not captured in a board game or in any of the games

I had played about Gettysburg. The time pressure, the sense of confusion, the sense

of these different formations, et cetera, didn’t make any sense until you actually had

to make the decisions yourself. And then all of sudden you realize, “Boy, it wasn’t

quite that easy to do that obvious maneuver that would have won the battle if only

they had tried it,” or “Now I understand why they lined up in these formations that

seemed pretty stupid to me before.” A lot of things started to make sense when the

battle came to life. And that was the idea, to include enough Civil War tactics like

flanking, morale, and things like that to really capture the flavor of a Civil War bat-

tle without overwhelming the player with hard-core wargaming concepts. By

representing the key factors that influenced the battle or that influenced tactics, you

could naturally learn how to be a commander. You wouldn’t have to follow a set of

rules, but you would realize that, “Oh, if I give these guys some support they’re

going to be better soldiers, and if I can come in on the flank then that’s a better

attack.” And you go through a learning process as opposed to being told how to be a

good general. You learn that along the way. That was the intention.

I was wondering about the “click-and-drag” method you had the player use for

directing his troops somewhere. It’s very different from what other RTS games

employ. Did you use it because you thought it was a better system, even though it

was not the standard?

I’m not sure I’d do that the same way today. I think that click-and-drag made a

certain amount of sense, especially since as you dragged we were showing with the

arrow interesting things about the path that you would take. I’m also a big fan of

standard interfaces, so if I had that to do today, I probably would try to go with

Chapter 2: Interview: Sid Meier 29

more of the standard RTS interface. I think at the time that we were doing that, it

was pretty early. WarCraft was out, but I don’t think StarCraft was out, and Age of

Empires came out at just about the same time. So the interface standard had not

coalesced when we did that. I think that in recognition of that we gave the player the

option to use the right-click/left-click way of doing things too. But if I had that to do

today, I would probably make the standard RTS method the default and make the

click-and-drag the option.

As opposed to Railroad Tycoon or Civilization, Gettysburg! has discrete scenarios:

you play for a while and then that battle ends, you get a new briefing, and your

troops reset. Why did you opt for that style of gameplay progression?

Well, I did that

because the stupid

battle of Gettysburg

had too many units!

[laughter] I would

have preferred a com-

plete battle at the kind

of level that the actual

game turned out to

be. Basically, to make

the game fun, I have

found that you need

to have somewhere

between ten and

twenty-five discrete

units that you can

move around. Unfor-

tunately the entire battle had seventy or eighty regiments, so it would have been

totally out of control. We tried for a while actually fudging the scale, and saying,

“You’ll actually be given brigades but they’ll act like regiments and then you can

fight the whole battle.” But it didn’t feel right skewing the scale in that way. So, we

got to the point where it was, “OK, the most fun and most interesting battles are of

this scale. And that really means that it’s a portion of the battle. And we have to

accept that, and live with that, and make the best of that.” And I think the scenario

system was an attempt to do that.

I think that in an ideal world I could have picked the Battle of Hunter’s Run or

something where there were only three brigades and it was all capturable in a single

scenario. But nobody’s going to buy The Battle of Hunter’s Run, they all want Get-

tysburg! So it’s an unfortunate part of history that it happened to be such a large

battle. And, I think it worked fairly well. But I understand when people say, “Well, I

30 Chapter 2: Interview: Sid Meier

Gettysburg!

really want the whole battle.” And we tried to give them that, and show them that

they really didn’t want that in this system. It was a case where history and reality

didn’t create probably the ideal situation for the game system that we had. But it

was our feeling that, as opposed to either giving you the whole battle and over-

whelming you with eighty units, or trying to play some pretty convoluted games to

get the whole battle into that scale, we thought that the scenario system was the best

compromise in trying to make it playable but also historically realistic. And I think

there are some cool scenarios in there. It probably skews it a little more toward the

hard-core, Civil War interested person but they can’t all be Civilization.

So you are still working on your dinosaur-themed game. What are your goals

with that project?

Well, the goal of the game is really the same as all the games that I’ve worked

on: to figure out what is the really cool part, the unique part, the interesting part of

this topic, and find a way to turn that into a computer game. I’ve thought that dino-

saurs were cool for the longest time, and I think it’s a topic that needs to be

computer-motized. I try to take the approach of putting into the game a lot of things

that are scientifically true or historically accurate, but that’s not to be educational,

it’s to let the player use their own knowledge in playing the game. Most people

know something about dinosaurs, or something about history, and if they can apply

that knowledge to the game, then that makes it a lot more interesting and makes

them feel good about themselves. It’s not because they read the manual that they’re

good at the game, it’s because of what they know. They realize that it’s cool to have

gunpowder and the wheel and things like that.

So in the same sense, people know that the T. rex is the baddest dinosaur. So we

use things in the game to make it valuable to know some basic facts about whatever

the topic is. We try and put that amount of realism and accuracy into the game. And

then make it fun on top of that. In the same way that a movie gives you all the fun

and the action sequences and all the important parts of a story and then jumps

quickly over the boring things. I think the game has the same responsibility, to bring

you to the key decision points and then move you on to the next interesting thing.

We’re trying to take that same approach with the dinosaur game, to bring them to

life, to figure out what’s cool and unique about them while cutting out all the dull

parts. We’re really in a “working that out” phase, and we don’t have a lot to say

about the specifics of that; hopefully in another few months we’ll be able to talk a

little bit more about how that’s going to turn out.

Chapter 2: Interview: Sid Meier 31

Relatively speaking, you’ve been making computer games for a long time, since

the early ’80s. I was wondering how you thought the industry has changed over

that time?

I think there’s been a general, overall improvement in the quality of the games. I

think there are some great games out there right now. I like StarCraft, Age of

Empires, Diablo, The Sims I thought was really interesting, and RollerCoaster

Tycoon was a hoot, a lot of fun. So I think those games compare very favorably to

anything that’s been done. I think they’re overall better games than we were doing

five or ten years ago. I think you can certainly see the improvement in presentation,

graphics, video, and all that kind of stuff. The core of the games, the game design

stuff, I think is a pretty slow evolutionary process. I think in terms of game design,

games like Pirates! and SimCity and Civilization really stand up. I think they’re

really pretty strong designs, even today. I think they haven’t been eclipsed by what’s

going on now. So I think that in terms of game design, the rule that says that things

get twice as good every year, processors get twice as fast, et cetera, I don’t think

that applies. I think game design is a pretty gradual, evolutionary process, where we

build on what’s gone on before, and make it a little bit better, a little bit more inter-

esting. Every so often a new genre comes along to open our eyes to some new

possibilities. I think that will continue, but it’s interesting to me that a three-year-

old computer is completely obsolete, but a three-year-old game can still be a lot

of fun.

As long as you can get it to run . . .

Right, as long as you have that three-year-old computer to run it on. There’s a

different pace, I think. Technology moves at one pace, a very quick pace, and game

design evolution moves at a much slower pace.

Do you think that game design evolution has slowed since the early days of the

industry?

I don’t see a significant change. I think one phenomenon is that we only remem-

ber the good games from the past. The past seems like it had all sorts of great

games, and the present seems like it has a few great games and a lot of crap. And I

think there was a lot of crap in those days too, it has just all faded away. I think

there is a lot of great game design work going on today. Before there was a lot more

unexplored territory, and that gave us the opportunity to be a little more innovative.

But with online technology and things like that, that opens up a lot of new areas for

being innovative. So I don’t see a substantial difference between the amount of

good work being done today versus what was going on years ago.

32 Chapter 2: Interview: Sid Meier

You have worked at both small development studios, Microprose in the early days

and Firaxis, as well as a big one, latter-day Microprose. Do you find that one

environment is better at fostering the creation of good games?

I’m personally much more comfortable in the small environment. That may be

more of a personal feeling than any kind of a rule about where good games happen.

I think the trend certainly has been to bigger groups, bigger teams, bigger bigger

bigger. And that may be just the way things are. If there’s anything that makes me

feel a little bit old it is the fact that I’m not as comfortable in the big group environ-

ment as clearly some of the other developers. I think some of the younger

developers who grew up in that mode are much more comfortable with the big pro-

jects. I was in Los Angles for the E3 show, and the winner of the Hall of Fame

award was Hironobu Sakaguchi who designed Final Fantasy, which is a massive,

massive, massive game. It would totally frighten me to tackle something that big.

But there are designers who just thrive on that. I think it’s a personal preference for

designers, and I think since I started in the time when there was no such thing as a

gigantic team that I am comfortable in that smaller mode, while other designers pre-

fer the larger projects. Primarily it’s a personal preference.

Since you started in game development, development teams have grown from one

or two people to a standard number of twenty or more. Do you think that has

made games less personal?

I think it did, but there are still games today that have that personal touch. And I

think those are the good games. I think that a lot of the games that are not so much

fun are those that have this “designed by committee, programmed by a horde” feel-

ing to them. And, yeah they look good, and they are kind of reminiscent of maybe

one or two other games that were good. But they don’t have that personal spark. To

me, RollerCoaster Tycoon is a good example of a personal game. It really feels like

somebody thought that was cool. Nobody said, “That’s goofy” or “That’s stupid.” A

lot of the ideas there are very clever, but if you brought it up before a committee

they would say, “Oh really, won’t people think that’s silly?” And even Final Fan-

tasy, in spite of its massive team, is really the product of one person’s vision. And if

you can keep that going in a big team, that’s great. But I think that it becomes

harder and harder the larger the team is to keep that personal vision alive and not get

watered down by the committee approach.

You still serve as both lead programmer and lead designer on your projects. Are

you happiest filling both roles?

I cannot imagine working in another way. It’s just much more efficient for me to

have an idea and just type it into the computer than to try to explain it to somebody

else and see what happens. So, again, it’s my personal style, but to me it’s the most

efficient way to get something done.

Chapter 2: Interview: Sid Meier 33

On most modern projects at other companies, you have one person who’s the lead

designer, and one person who’s the lead programmer, and they’re both very busy.

It would appear that performing both roles you would be completely

overwhelmed.

Well, I think they probably spend half their time talking to each other, which is

something I don’t have to do. I would see a certain efficiency in cutting out all those

meetings. But certainly it works both ways. Either way can work, but my personal

preference is for the designer/programmer approach.

Now that you are working on a larger team, how do you communicate your game

design vision to the rest of the team and get them excited about the project?

Our primary tool is the prototype. In our development, one of the advantages of

being a programmer/designer is that, within a week or two we can throw together

something that feels like a game. That gives people the idea of what the game is

going to be about, how it’s going to work, the general parameters of it. Again, if

we’re working on a historical or scientific topic most people are half-way into it

already, they know something about the topic. And then just talking, saying here’s

the kind of game I want to do, and here are the three or four really cool things that

are going to happen in the game that are going to be the payoffs. Putting those

things together I think gives people a pretty good idea of what direction we’re

headed. At that point you want people not to get the whole picture, but to figure out

where they fit in and can contribute their own things that hopefully you hadn’t even

thought of, in terms of cool art or cool sounds or neat ideas. In a way you don’t

want it to be so complete that it feels done, because you want people to feel that

they can make their own contributions above and beyond what you’ve already

thought of.

So if someone else comes up with some cool ideas to add to your game design,

you’re happy to incorporate those even though you didn’t come up with them.

I’m happy to steal those and claim they were my ideas years later. [laughter]

With your prototyping system, do you ever try out a game and then it just doesn’t

work out as you had hoped?

Yup, I have a whole group of directories on my hard drive that fall into that cat-

egory. And many of the games that turned out to be products started in a very

different direction. Civilization, for example, was originally much more like

SimCity, much more zone this territory for farms, and place a city here and watch it

grow. Initially it was much more of a stand back and watch it evolve approach; it

only became turn-based after a couple of months. I mentioned that Railroad Tycoon

started out as a model railroading game. A lot of times the prototypes will have to

be radically modified to work. That’s the whole idea of the prototype: to pretty

34 Chapter 2: Interview: Sid Meier

quickly give you an idea of does the idea work, does it not work, and what are the

major problems. It lets you focus on the big issues first, and hopefully straighten

those out.

Your games seem very easy to pick up and learn to play. But at the same time

they have very deep, interesting gameplay. How do you manage to accomplish

both?

The easy-to-play

part is pretty well

understood. I think

interface conventions,

and again getting

back to the idea of a

familiar topic helps

people to get right

into it because they

know a little bit of

what they should be

doing. You want to

give the players a lot

of positive feedback

early in the game to

give them the idea

they’re on the right

track. In Civilization, pretty quickly the people add something to your palace, and

you get a population milestone, and your first city is formed. You want to give the

players, especially in the early stages, the idea that they’re on the right track, that

everything they do, the computer acknowledges it, recognizes it, and thinks it’s

really cool. That gets the players into the game.

In terms of the depth, that’s really because we play the games. The other advan-

tage of prototyping is that if you have a game that takes two years to write, you

spend one year and eleven months playing the game. You get pretty bored with the

beginning of the game after a while. In one sense you are putting that depth in the

game to keep yourself interested in writing this game. If there’s twenty or forty

hours of gameplay in a scenario, it’s because we have played those scenarios for

twenty or forty hours and found that, after about twenty hours, it gets a little thin.

We have to come in with a new thing and make this problem a little more interest-

ing, a little more complex at that point. So a lot of the depth comes out of the fact

that we have intensively played the game for long periods of time.

Chapter 2: Interview: Sid Meier 35

Civilization

Do you find that prototyping facilitates balancing as well?

Playing the prototype really facilitates balancing. It also really helps with writ-

ing the AI if you’ve played the game enough so that you really understand what are

good strategies, bad strategies, and interesting strategies. Having played the game

quite a bit helps to write the AI, it’s good for the depth. The danger is that you lose

sight of the beginning player. That’s why we go back to playtesting at the end of the

game’s development. And we say, “Here’s what we think the game is, try and play

it.” And we invariably find that they can’t play it. There’s just too much of that cool

stuff in there. So we say, “All right, where are you getting stuck?” We’re essentially

unable to see the game in that light anymore. But you need to have both the depth

and the ease of entry. Those are both important.

Your games all are grounded in history or real-life events, as opposed to many

games which have fantasy or science fiction settings. Is this because you enjoy

creating a game-world that the player is already somewhat familiar with?

I do think that’s important. It does add a lot when you can apply your own

knowledge to a game. I think that makes you feel better about yourself, and I think

that’s a positive thing. I think it also gives me a lot more to work with in terms of a

historical or realistic situation. I probably grew up in a time also when there was

less of the Middle Earth, the fantasy, the Star Wars, et cetera. Kids these days think

these things are just as real as history. Space ships, magicians, and wizards are as

real to a lot of kids as airplanes, submarines, and things like that. It’s kind of an evo-

lutionary thing, but in my growing up it was things like airplanes, submarines, the

Civil War, and the Roman Empire that were interesting and cool things, and I try to

translate those things into games.

I am curious about how you balance historical realism with the gameplay. Gettys-

burg! seems to be one case where you had to break the gameplay up into

scenarios to keep it both historically accurate and fun.

That was one of the few times that we actually gave in to historical reality. In

general our rule is if you come to a conflict between fun and history, you go with

the fun. You can justify any game decision somewhere in history. Our decisions are

made almost exclusively to the benefit, hopefully, of the gameplay as opposed to the

historical accuracy. In Gettysburg! we came to a situation that we could just not

fudge, though we tried. We tried as hard as we could to fudge that situation. In

many other situations we come to an idea that we think is going to work well for the

game and then we find the historical precedent or an explanation historically to jus-

tify it. In no sense do we try and stay slavishly accurate because, basically, we’re

trying to create a situation which is fluid where you’re not just going down the path

of history, you’re creating your own history. Even though the pieces are realistic,

you can take them off in a completely different direction that never really happened.

36 Chapter 2: Interview: Sid Meier

Certainly, part of the

fun of Civilization is

that the Zulus can

take over the world,

or the Mongols. Any-

body can take over

the world; it’s not

necessarily the Amer-

icans who are going

to win in the end.

We’re not slaves to

history.

At least since your days developing flight simulators, your games have not really

been on the cutting edge of technology in terms of graphics. Was that a conscious

decision on your part?

As I have said, in our prototyping process, things change almost up until the last

minute. Most of the cutting-edge technologies are things that need to be researched

from day one, and are gigantic investments in technology. And given that we’re in a

mode where things are changing constantly, it’s practically impossible to merge

those two approaches. The research project can’t start really unless you know

exactly what you want, or pretty much what you want. And we don’t usually know

that at the beginning. And we’re not willing to put ourselves in that straightjacket in

terms of game design. And I think a lot of times that’s what it is. If you are commit-

ted to a first-person 3D viewpoint where you can see a certain amount, and you find

out that to make your game fun you really need to see more, you really need to get

more context for your location or whatever, you’re kind of screwed at that point.

Often there’s a conflict also between the functionality of the graphics and the

loveliness of the graphics. A game that looks good but doesn’t give you the infor-

mation you need to play or doesn’t give you the clarity, I think that’s the wrong

trade-off. We try and make games that we think look good. But in any good game

the great graphics are happening in your imagination and not on the screen. If we

tell you that the people have declared “we love the king day” in a certain town, if

you’re really into the game, that’s a lot more meaningful, and you create a much

more exciting image in your mind than anything we could show you on the screen.

And vice versa, if you’re not into the game, then anything that comes on the screen

you’re going to pick apart anyway. Our goal is to involve you in the game itself and

Chapter 2: Interview: Sid Meier 37

Gettysburg!

have you create your own really cool mental images based on some suggestions that

we give you on the screen.

You were one of the first game designers to get your name above the title on the

box. I was curious how that came about.

Well, the way that

happened goes back

to Pirates! That was

the first game that

had my name on it. In

those days I was

working at

Microprose and my

partner was Bill

Stealey who did the

business/marketing

side of things while I

did the develop-

ment/creative stuff.

And the previous

game before Pirates! was one of the flight simulator games, and I said to Bill,

“Well, I’m going to work on this game about pirates.” And he said, “Pirates? Wait a

minute, there are no airplanes in pirates. Wait a minute, you can’t do that.” “Well, I

think it’s going to be a cool game.” And he answered, “Well, who’s going to buy a

pirates game? Maybe if we put your name on it, they’ll know that they liked F-15 or

whatever, and they might give it a try, OK.” There was a real concern that there was

this pirates game coming out, but nobody’s going to be interested, because who

wants a pirates game? People want flight simulators. So it was to say, “Sure, you

want a flight simulator, but maybe you might want to try this pirates game because

it was written by the guy who wrote that flight simulator that you’re playing.” I

guess it was branding in a very crude, early form. It was because we were making

this big switch in the type of game that I was working on, and to try to keep that

connection between the games.

So it wasn’t your lust for fame?

[laughter] No, no. Even today, fame is not a computer game thing. I think it’s

good. It’s still a pretty non-personality oriented business. I think that people remem-

ber great games, and they know to a certain extent who’s involved. But there’s not a

cult of Robin Williams or, you know, movie stars who really have a cult of person-

ality. I think it’s good. Once we get the idea that we can get away with anything just

because we’re who we are, that’s not a good thing.

38 Chapter 2: Interview: Sid Meier

F-15 Strike EagleTE
AM
FL
Y

Team-Fly®

But that sort of confidence led to Pirates!, didn’t it?

[laughter] Well, it was a good game. Had it not been a good game, that strategy

would not have worked.

A lot of your games have had sequels of one kind or another, but you have never

been the lead designer on one of them. Why is this?

I think they are a fine thing to do in general, especially if they’re done well. I

seldom go back to a topic primarily because I haven’t run out of ideas yet, so I’d

rather do a dinosaur game than go back to an older title. I don’t have a lot of energy

to get too involved in the sequels. Some of them turn out well, some of them turn

out not quite so well. As opposed to letting the topic fade away, I think doing a

sequel is often a good idea. In an ideal world, I’d like to be involved in everything,

but I can’t really do that. So I tend to be more interested in being involved in a new

product as opposed to a sequel. It’s certainly gratifying that people want another

Railroad Tycoon or Civilization, et cetera, I think that’s great. I’m happy that it can

be done. On Civilization III, since it’s being done inside of Firaxis, I’m able to take

a more direct part in that, which I think is good. I would have liked to have done

Railroad Tycoon II and do a new Pirates!, et cetera, if I had an infinite amount of

time. But it’s just not feasible.

I hear a lot of people talking about storytelling in games. Usually by storytelling

they mean using cut-scenes or branching dialog trees or devices like that. Your

games have never been very concerned with that side of storytelling.

To me, a game of

Civilization is an epic

story. I think the kind

of stories I’m inter-

ested in are all about

the player and not so

much about the

designer. There are

players that are more

comfortable in situa-

tions where they’re

making small deci-

sions and the

designer’s making the

big decisions. But I

think games are more

interesting when the

player makes the big

Chapter 2: Interview: Sid Meier 39

Civilization

decisions and the designer makes the small decisions. I think, in some sense, games

are all about telling stories. They have a story created more by the player and less

by the designer, in my mind. I think in Civilization there are fantastic stories in

every game, they’re just not in the more traditional sense of a story. We have,

amongst our rules of game design, the three categories of games. There are games

where the designer’s having all the fun, games where the computer is having all the

fun, and games where the player is having all the fun. And we think we ought to

write games where the player is having all the fun. And I think a story can tend to

get to the point where the designer is having all the fun or at least having a lot of the

fun, and the player is left to tidy up a few decisions along the way, but is really

being taken for a ride. And that’s not necessarily bad, but our philosophy is to try to

give the player as much of the decision making as possible.

Though Gettysburg! had a multi-player option, by and large your games have

been single-player only for a long time. What do you think of the emerging popu-

larity of multi-player gaming?

I think down the road I would like to get more into multi-player, perhaps even a

game that is primarily multi-player. But I still enjoy essentially single-player games,

so I’m not sure exactly when or how that’s going to happen. Online multi-player

gaming is probably the only revolutionary development in our technology we’ve

seen since I started writing computer games. Everything else has been pretty much

evolutionary. Better graphics, better speed, more memory, et cetera. But the

multi-player online thing was a revolutionary change in the tools that we had to

make games. I’m interested in doing something along those lines, but I’m not sure

what it would be right now.

In an old Next Generation magazine interview, you said, “Games are going to take

over the world. It’s going to take a while, but there’s something inherently more

engaging about computer games than any other form of entertainment.” Board

games have certainly been around a long time, but have not yet taken over the

world. I wondered what it is about computer games that you find so compelling.

Yeah, I think I stand by that statement. I think that it’s the element of

interactivity that makes them unique. They interact personally with you as a player,

as opposed to movies, television, or music, which don’t. There’s this phenomenon

of watching television and using the remote control to desperately try to make it an

interactive experience, going from one channel to another... [laughter] But the

interactivity of computer games is what differentiates it and makes it so very power-

ful. Now, we’re still learning how to use that tool and in a lot of other ways we’re

not as good as television, movies, et cetera. But I think that as we learn to use the

advantages that we have, they’re more powerful advantages than the advantages of

other entertainment media.

40 Chapter 2: Interview: Sid Meier

I think that board games are kind of interactive, but they require other players.

The computer brings a lot of power to the equation that board games don’t take

advantage of. If anything, the advent of the Internet and multi-player play, that com-

bined with interactivity seems to me like a really powerful combination. I think as

we learn to use that element of our technology too, games can be very very compel-

ling. The question that pops up is do people want games that are that interesting to

play? There was the whole Deer Hunter phenomenon, and there was Slingo and

things like that and I’m still working to integrate that into my model of the world,

and I haven’t totally succeed in doing that. But what that tells me is that there’s a

broader range of potential gamers than I am really familiar with. And part of our

learning process is going to be to integrate them into the way that we design games

and the way that we create games. But I still think we’re going to take over the

world.

Sid Meier Gameography

Hellcat Ace, 1982

NATO Commander, 1983

Spitfire Ace, 1984

Solo Flight, 1984

F-15 Strike Eagle, 1985

Decision in the Desert, 1985

Conflict in Vietnam, 1985

Crusade in Europe, 1985

Silent Service, 1986

Gunship, 1986

Pirates!, 1987

F-19 Stealth Fighter, 1988

Railroad Tycoon, 1990

Covert Action, 1990

Civilization, 1991

Colonization, 1994 (Consultant)

Civilization II, 1996 (Consultant)

Gettysburg!, 1997

Alpha Centauri, 1999 (Consultant)

Chapter 2: Interview: Sid Meier 41

Chapter 3

Brainstorming a Game
Idea: Gameplay,
Technology, and Story

“You know what’s the number one dumbest question I get

asked when I’m out at some great university lecturing? I’m always

asked ‘Where do you get your ideas?’ For about forty years I’ve

been yanking their chain when I answer ‘Schenectady.’ They stare

at me, and I say, ‘Yeah, Schenectady, in New York. There’s this idea

service, see, and every week I send ’em twenty-five bucks, and

every week they send me a freshly picked six-pack of ideas.’”

— Harlan Ellison

42

H
arlan Ellison might scoff at the idea of trying to explain where ideas come

from. Certainly, if you are a novelist having trouble coming up with ideas,

it may be time to wonder if you have chosen the right profession. Simi-

larly, a good game designer, at any given moment, will be able to come up with no

less than five solid ideas he would like to try to make into a computer game. There

is no shortage of ideas in the gaming world. Aspiring game designers often think

they can sell their idea to a development company. They seem to be under the

impression that game developers are just sitting around waiting for a hot idea to

come around so they can spend several million dollars to make it a reality. On the

contrary, the challenge in game development is not coming up with a good idea, but

in following through and being able to craft a compelling game around that idea.

That’s what the rest of this book endeavors to explore.

In the arena of computer game design, the process of coming up with a game

idea that will work is complicated by a number of factors fiction authors do not

need to worry about. In part this is because computer game ideas can come from

three distinct, unrelated areas of the form: gameplay, technology, and story. These

different origins are interconnected in interesting ways, with the origin of the

game’s idea limiting what one will be able to accomplish in the other areas. So

when a game designer starts thinking about the game he is hoping to make—think-

ing about it in terms of gameplay, technology, or story—it is important that he

consider how that initial idea will impact all aspects of the final game.

Starting Points

Perhaps a quick example is in order. Say a game designer feels the need to create a

game based around the specific stories of Greek mythology. This would be starting

from a story. Immediately this limits the type of gameplay she will be going for.

Chances are a Civilization-style strategy game is out, since that sort of game really

has nothing to do with the classical stories of Zeus, Heracles, Ares, and so on. A

real-time strategy game is out of the question as well, since it is not good at telling

stories involving only a few protagonists. A high-end flight simulator is probably

not going to work either. She could, however, still pursue it through an action game,

a role-playing game, or an adventure game. Similarly, the technology is limited. In

order to tell the story of the Greek gods, she will need some way to communicate a

lot of back-story information to the player. There will need to be technology in

place that can allow this. Furthermore, if she chooses the technology to be

employed by the game at this point, this will have still further impact on what type

of gameplay will be possible. For example, choosing an isometric 2D engine will

best lend itself to an RPG or an adventure game instead of an action game. If a 3D

technology is to be used, in order to tell the story of Greek mythology properly it

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 43

will need to support both indoor and outdoor environments, which immediately

eliminates a lot of 3D game engines.

For each decision the designer makes about the game she is hoping to create,

she needs to understand how that limits what the game will be. If the designer tries

to fit a type of gameplay around an ill-suited engine the game will suffer in the end:

trying to do a Populous-esque “god-sim” using a first-person, indoor Quake-style

3D engine is a big mistake. Just as if one tried to tell the story of the Greek gods

through flight simulator gameplay, the game would simply fail to work. Herein lies

the difficulty with many “high-concept” ideas, often the brainchildren of marketing

specialists who want to capture disparate markets with one product. If the parts do

not work together, it does not matter how many markets the concept covers: no

gamers will be interested in playing the final game.

Starting with Gameplay

Starting with gameplay is one of the most common starting points for game devel-

opment, especially for designer or management driven projects. Thinking about a

style of gameplay is often the easiest core for someone to latch onto, especially if

that gameplay is similar to an existing game. “It’s a racing game!” “It’s a flight sim-

ulator!” “It’s a 3D action/adventure like Super Mario 64!” “It’s a first-person

shooter like Doom!” Often a game developer will have enjoyed a game in one of

these genres and will want to apply his own spin to it. With a general idea for a

game that is interesting to him, the designer will want to work out what his particu-

lar game is going to accomplish in terms of gameplay. What type of racing game

will it be? What aspects of racing are we trying to capture for the player? With a

more specific idea of what type of gameplay he wants to create, the designer should

start thinking about how that will impact the technology the game will require and

what sort of story, if any, the game will be able to have.

Depending on the type of gameplay you are hoping to create for the player, you

need to analyze what sort of technology that undertaking will require. Does the

game need a 3D engine, or will 2D be enough or even more appropriate? What sort

of view will the player have of the game-world? Will it be fixed or dynamic? Does

the action transpire fast and furious with a large number of entities moving around

on the screen at once? Are the game-worlds large or small? All of these questions

and many more need to be analyzed to understand what the game’s engine must

accomplish in order to properly execute the gameplay idea. Of course the technol-

ogy you choose to employ for your gameplay must be one that will actually run on

the target system, whether it be the PC, a console, or a custom-made arcade cabinet.

You must also ask if the game’s programming team is up to creating the required

technology. Technological feasibility may end up limiting the scope of your

gameplay. Even worse, will the engine team’s existing technology work or will they

44 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

need to scrap it and start from scratch? Is there enough budget and time to trash it

and start over? If you find that you need to adapt your gameplay to match the

engine, you really are not starting out with gameplay as the origin of your idea, but

instead with technology, as I will discuss below. If you are starting out with a gam-

ing engine that must be used, it is in your best interest to not fight that technology

with incompatible gameplay. Instead you should try to think up your gameplay idea

in terms of what is well suited to that engine.

The type of gameplay your game will employ similarly limits what type of

story can be told. An RPG can tell a much more complex and involved story than

an action/adventure game, and in turn an action/adventure can tell a more substan-

tial story than an arcade shooter. Certain types of stories just will not fit with certain

types of gameplay, such as the Greek mythology in a flight simulator example dis-

cussed previously. Similarly, a romantic story might not fit with a strategy game,

and a tale about diplomacy would not fit so well with a fast-action first-person

shooter. Since you made the choice to come up with your gameplay style first, you

need to ask yourself what sort of story is best suited to that gameplay, and try to tell

that tale. Sometimes a designer will have both a story he wants to tell and a type of

gameplay he wants to explore, and will attempt to do both in the same game, even

if the two do not go well together. Do not try to cobble an inappropriate story, either

in terms of complexity or subject matter, around gameplay that is ill suited to that

type of narrative. Save the story for a later date when you are working on a title

with gameplay that will support that story better. And while your technology is lim-

ited by what your team is capable of accomplishing in the time allotted, the story is

limited only by your own ability to tell it. You should pick the story best suited to

your gameplay and go with it.

Starting with Technology

Going into a project with a large portion of the game’s technology already devel-

oped is also a fairly common occurrence. If this is not the development team’s first

project together at a new company, then it is likely that there will be an existing

technology base that the project is supposed to build from. Even if the project is to

use a “new” engine, this often only means an older engine updated, and as a result,

the style of game best suited to the engine will not change significantly. Even if an

engine is being written from scratch for the project, it is likely that the lead pro-

grammer and her team are best equipped to create a certain type of engine, be it

indoor or outdoor, real time or pre-rendered, 3D or 2D, with a complex physics sys-

tem for movement or something more simple. The programmers may be interested

in experimenting with certain special lighting or rendering effects, and will create

an engine that excels at these objectives. The designer is then presented with this

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 45

new technology and tasked with coming up with a game that will exploit the sophis-

ticated technology to full effect.

Other times it is predetermined that the project will be using an engine licensed

from some other source, either from another game developer or a technology-only

company. Sometimes the project leaders have enough foresight to consider the type

of game they want to make first and then pick an engine well suited to that. More

often, the engine licensing deal that seems to deliver the most “bang for the buck”

will be the one chosen. Then, with an engine choice decided, the team is tasked

with creating a game and story that will fit together well using that technology.

Just as starting with a desired sort of gameplay dictated what type of engine

should be created, starting with set technology requires that the game designer con-

sider primarily gameplay that will work with that sort of technology. If the engine

is 3D, the designer will need to create a game that takes place in a 3D world and

uses that world to create interesting 3D gameplay. If the engine is only 2D, a

first-person shooter is out of the question. If the engine has a sophisticated physics

system, a game should be designed that makes use of the physics for puzzles and

player movement. Of course, the designer does not need to use every piece of tech-

nology that a programmer feels compelled to create, but it is always better to have

your gameplay work with the engine instead of fight against it. Usually when a pro-

ject is using a licensed game engine, that technology will often have been created

with a certain type of gameplay in mind. The designer needs to seriously consider

how far he should deviate from that initial technology, for it is surely going to be

easier to make the engine perform tasks for which it was intended instead of push-

ing it in directions its programmers never imagined. For instance, the oft-licensed

Quake engine was created for handling an indoor, first-person perspective, fast-

action game involving a lot of shooting. Though some teams that have licensed that

engine have tried to push it in different directions, the most artistically successful

licensee thus far, Valve, retained much of the standard Quake gameplay that the

engine excelled at for their game Half-Life. Certainly Valve added a lot of their own

work to the engine, technology that was necessary in order to do the type of game

they wanted to do. But at the same time they did not try to do something foolish

such as setting their game primarily outdoors or using only melee combat. When

technology is handed to a game designer who is told to make a game out of it, it

makes the most sense for the designer to embrace the limitations of that technology

and turn them into strengths in his game.

The technology can also limit what sort of story can be told. Without a

sophisticated language parser, it is going to be difficult to tell a story in which

players need to communicate with characters by typing in questions. Without an

engine that can handle outdoor environments reasonably well, it is going to be

difficult to make a game about mountain climbing. Without robust artificial

intelligence it is going to be hard to make a good game about diplomacy. Without

46 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

compression technology that can store and play back large sounds, it will be hard

to have huge amounts of dialog and hence hard to have characters whose dialects

are important to the story. Without the ability to have large numbers of moving

units on the screen at once, it will be impossible to tell a story where the player

must participate in epic, massive battles between armies. The game designer

needs to consider how the story line will be communicated to the player through

the engine that he must use. Trying to tell a story with an inadequate engine is

just as likely to compromise the game as tying a particular story to inappropriate

gameplay. Again using the example of Half-Life mentioned above, if the team at

Valve had tried to set their game in Death Valley and involve the player battling

gangs of twenty giant insects at once, the Quake engine would have ground to a

halt and the game would have been miserable to play. In the Death Valley sce-

nario, Valve might have been telling the story they wanted to, but no one would

have cared since the game would have been miserably slow and looked horren-

dous. For the greater good of the game, the story and the technology must be

compatible with each other.

Starting with Story

Finally, it is certainly possible that the brainstorming for your game may start with

a setting you want to employ, a story you want to tell, or a set of characters you

want to explore. This is probably a less common starting point than technology or

gameplay. Indeed, since many games have no story whatsoever, the very concept of

a game starting with a story may seem strange. At the same time it is not unheard of

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 47

The designers of
Half-Life smartly
used the indoor
first-person
shooter
gameplay
established by
Quake, the
engine licensed
for the game’s
creation.
Pictured here:
Quake II.

for a game designer to think of a story she wants to tell, and only then start explor-

ing what sort of technology and gameplay will be best suited to communicating that

story. Any good game designer who thinks up such a story will have a tendency to

think of it in terms of how it would transpire in a game, how the player can interact

with that story, and how the story may unfold in different ways depending on the

player’s actions in the game-world. So a designer may not be thinking solely of the

story but also of the gameplay. But the story can be the jumping-off point, the cen-

tral vision from which all other aspects of the game are determined.

Of course the type of story to be told will have a dramatic effect on the type of

gameplay the project will need to have. If the designer wants to tell the story of a

group of friends battling their way through a fantastical world full of hostile crea-

tures, a first-person shooter with teammates might be appropriate. Any sort of story

which involves the player talking to a large range of characters and going on

“quests” for those characters might be addressed with more RPG-style mechanics.

Telling the story of the battle of Waterloo could be perfectly addressed in a project

with wargame-style strategic play, with the gameplay adjusted in order to best bring

out the aspects of Waterloo with which the designer is primarily concerned. Does

the designer want the player to have a general’s eye view of the game? In that case

gameplay that allows for the tracking of tactics and logistics should be used. Or

does the designer want to tell the story more from the view of the soldiers who had

to fight that battle? Then gameplay that would allow the player to track and manip-

ulate her troops unit by unit would be appropriate. If conversations with non-player

characters (NPCs) are an important part of communicating the story, the designer

will need to design game mechanics that allow for such conversations, using

typed-in sentences, branching dialog choices, or whatever will work best. The

designer needs to find gameplay that will allow the player to experience the most

important elements of whatever story she is trying to tell.

Of course, the technology will have to match up with the story as well, primar-

ily in order to support the gameplay the designer decides is best suited to telling

that story. If conversations are an important part of communicating the story, the

programming team will need to be able to develop a conversation system. If world

exploration and discovery are a big part of telling the story, perhaps a 3D engine is

best suited to the gameplay, one that allows the player to look anywhere he wants

with the game camera. The designer may find that specifically scripted events are

important to communicating aspects of the tale; the player must be able to observe

unique events that transpire at specific times in different parts of the world. In this

case, the programmers will need to give the level designer the ability to set up these

scenes. The technology is the medium of communication to the player, and thereby

the story is directly limited by what the technology is capable of telling.

Good examples of story-centered game design are some of the adventure

games created by Infocom and LucasArts. All of the adventure games from these

48 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

TE
AM
FL
Y

Team-Fly®

companies used very standardized play mechanics and technology. The game

designers worked with the company’s proprietary adventure game creation

technology, either the Infocom text-adventure authoring tool or LucasArts’

SCUMM system. By the time the game designer came on to the project, his

process of creation started with creating a story he wanted to tell. Certainly the

story had to be one that was well suited to the adventure game format and that

could be implemented using the existing tool set. Both Infocom’s and LucasArts’

tools were general purpose enough to allow the designer to create a wide range of

games, with a good amount of variation in terms of the storytelling possible, even

though the core mechanics had to consist of a typing-centered text adventure in the

case of Infocom and a point-and-click graphical adventure for LucasArts. The game

designers’ primary driving motivation in the game’s creation was the telling of a

story, with the designing of game mechanics and the developing of technology

much less of a concern. Just as a film director is limited by what she can shoot with

a camera and then project on a certain sized screen at 24 frames per second, the

adventure game designers at Infocom and LucasArts were limited by the mechanics

of the adventure game authoring system they were using. Since for both the film

director and the adventure game designer the mechanics of the medium were firmly

established well before they began their project, their primary concern became the

telling of a story.

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 49

Maniac Mansion
was the first of
the story-
centered
adventure
games from
LucasArts to use
the SCUMM
system.

Working with Limitations

Experienced game designers already understand the limitations placed on the

creation of games by the technology, gameplay, and story. When they take part in

brainstorming sessions these game designers have a good gut-sense of how making

certain choices about the game in question will limit its creation further down the

road. For each decision that is made about the game, many doors are closed. When

enough decisions about the nature of the game have been made, it may be that there

is only one type of game that can possibly accomplish all that the designers want.

The stage for making major decisions is over, and now all that lies ahead are the

thousands of smaller implementation issues.

For three of the games I have completed, Odyssey: The Legend of Nemesis,

Damage Incorporated, and Centipede 3D, I began development from a different

starting point. Coincidentally, one game started with story, another with technology,

and the third with gameplay. Throughout each game’s development I made every

effort to remember where the game was coming from and what it was hoping to

accomplish. The origins and objectives limited everything else about the game,

resulting in only one acceptable game that achieved the goals I had set.

Odyssey: The Legend of Nemesis

Odyssey started with a story. I actually inherited this project at a point where a sig-

nificant part of the 2D technology and RPG game mechanics were in place. Some

story existed but it was by no means complete, and I was not terribly excited by it.

As my first game project that was actually likely to be published, I immediately set

to work rewriting the story into something in which I was personally invested. For

years I had been wanting to get into game development in order to tell interactive,

non-linear stories, and so I immediately set to writing just such a story, wherein the

player would be presented with moral choices beyond just “to kill or not to kill.” I

wanted to create a game in which the choices the players made would actually

change the outcome of the story in a meaningful way. So I charged blindly forward,

with the story as my only concern.

Fortunately, the technology and game mechanics that were in place by and

large supported this story I wanted to tell. Where they did not, I changed the game

mechanics as necessary. When NPC AI had to function in a certain way to support

the story, I made the AI work that way. When forced conversations became

required, where an NPC could walk up to the player and initiate a conversation with

him instead of the other way around, I implemented the appropriate game

mechanic. The levels were designed with no other goal than to support the story.

Since the levels were not designed with exciting battles in mind, combat situations

in the game were not as compelling as they could have been. I was not interested in

50 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

the combat so much as the story. The constant conflict with strange, marauding

creatures was something people expected in an RPG and so it remained in, but I

made combat such that it was very much secondary to exploring the story. This

ended up turning the game into almost more of an adventure than an RPG, but that

was fine with me, since it was what supported the story best.

Looking at it today, I can see that Odyssey has many flaws in it. But I do not

think that these problems arose because it was a game whose development started

with a story. This may be a rare way to begin game development, but it can still be

a viable starting point. If I had possessed a better sense of game design at the time, I

could have taken efforts to make the rest of the game as interesting as the story was,

while never undermining or diminishing the impact of the game’s epic tale.

Damage Incorporated

In the case of Damage Incorporated, the publisher, MacSoft, had obtained the

license to a sophisticated (at the time) technology that they wanted to use for a

game. It was the technology Bungie Software had created for use in Marathon and

Marathon 2, two games of which I remain very fond. Marathon 2, in particular,

remains one of the best first-person shooters ever made, easily holding its own

against Doom. What Marathon 2 lacked in fast-action battles and the atmosphere of

menace that Doom created so well, it more than made up for with a compelling and

complex story line, superior level design, and a good (though simple) physics

model. As a result of my having enjoyed the Marathon games so much, I decided

to make my game embrace the technology and gameplay that Marathon had

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 51

Levels in
Odyssey: The
Legend of
Nemesis were
designed around
the game’s story.

established. I would craft my game around the technology that had been licensed

and use that technology to the greatest effect I possibly could.

With a starting point of technology, I crafted gameplay and a story that could

succeed using the Marathon technology. Of course, we added features to the

gameplay and engine. The primary addition to the game mechanics was the player’s

ability to order teammates around the game-world, thereby adding a real-time strat-

egy element to the mix. We added to the engine numerous enhancements which

allowed for swinging doors, moving objects, and other effects necessary to create a

game-world that more resembled the real-world. I was still concerned with story in

the game, though not to as great an extent as I had been with Odyssey. Since having

conversations with NPCs did not really fit in with Marathon’s game mechanics, I

involved characters through the player’s teammates, who would chatter amongst

themselves as the player maneuvered them through the game-world.

One of the game’s weaknesses was that at the start of the project I did not fully

understand the limitations of the Marathon engine. It was best suited to creating

indoor environments, so when it did create outdoor areas, they ended up looking

fake, especially when they were supposed to represent real-life locations on Earth.

Modeling the exterior of an alien world in the engine, as Marathon 2 had done, was

one thing, but creating environments that looked like the woods in Nebraska was

another. Around half of the levels in Damage Incorporated are set outside, and

none of these outdoor areas ended up looking very good. If I had understood the

technology better, I could have designed the game to take place in more indoor

environments, thereby better exploiting what the engine did well.

52 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

Damage
Incorporated
(pictured) had its
origins in the
licensed
Marathon
technology.

Interestingly, at the same time I was using the Marathon 2 engine to create

Damage Incorporated, MacSoft had another team using the same engine to create a

game called Prime Target. The members of that team did not like Marathon 2 as

much as I did, and wanted to create more of a Doom-style shooter, with faster, sim-

pler, more intense combat. Instead of starting with the technology and running with

the type of gameplay it handled well, they started with a type of gameplay they

wanted to achieve and modified the engine to better support that. As a result, the

Prime Target team spent a much greater amount of time modifying the engine to

suit their needs than we did. Because of this Prime Target became a significantly

different game from either Marathon 2 or Damage Incorporated. Not a better or

worse game, merely different. The differences can be traced back to the origins of

the idea for their game, and the way they approached using a licensed engine.

Centipede 3D

The Centipede 3D project was started when the publisher, Hasbro Interactive,

approached the game’s developer, Leaping Lizard Software, about using their

Raider technology for a new version of Centipede. Hasbro had recently found suc-

cess with their modernization of Frogger, and wanted to do the same for Centipede,

the rights to which they had recently purchased. Producers at Hasbro had seen a pre-

view for Raider in a magazine, and thought it might be well suited to the project.

Hasbro had a very definite idea about the type of gameplay they wanted for Centi-

pede 3D: game mechanics similar to the classic Centipede except in a 3D world.

The team at Leaping Lizard agreed. At the time, not many new games were utilizing

simple, elegant arcade-style gameplay, and adapting it to a 3D world would be a

unique challenge.

For the development of Centipede 3D, the origin of the game’s development lay

in gameplay. Re-creating the feel of the original Centipede was at the forefront of

everyone’s minds throughout the project’s development. When Hasbro set out to

find a company with a technology capable of handling the game, they knew to look

for an engine that could handle larger, more outdoor areas, because those were the

type of locations a modernized Centipede would require. They knew not to go for a

Quake-style technology in order to achieve the gameplay they wanted. Leaping

Lizard’s Raider engine was a good match with the gameplay, but not a perfect one.

Much work was required to modify it to achieve the fast responsiveness of a classic

arcade game. Raider employed a physics system which was by and large not

needed by Centipede 3D, and so much of it was stripped out. Thus the technology

was molded to fit the gameplay desired.

Centipede 3D’s story was the simplest in any of the games I have worked on. In

part this is because one of the traits of classic arcade games was their lack of

involvement in any real storytelling. For games like Centipede, Pac-Man, and

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 53

Space Invaders, setting was enough; all the games needed was a basic premise

through which the gameplay could take place. Furthermore, everyone working on

the Centipede 3D project had as their primary concern the gameplay, and story was

simply less important. As we envisioned the game, it was the simple, addictive

gameplay that would draw players into Centipede 3D, not the story. The classic

arcade style of gameplay simply did not call for it. The primary effect of the meager

story line was to provide a setup and to affect the look of the game, to explain why

the player is flying around blasting centipedes and mushrooms, and why the

game-worlds change in appearance every few levels. Just as the original Centipede

used the setting of a garden and bugs to explain the game’s gameplay, the new Cen-

tipede 3D used the story line only to support the gameplay. In the end, Centipede

3D was all about the gameplay.

Embrace Your Limitations

In many ways, developing a game is all about understanding your limitations and

then turning those limitations into advantages. In this chapter I have discussed how

the designer must understand where his game idea is coming from: gameplay, story,

or technology. With this understanding, the designer must recognize how this limits

the other attributes of the game—how a certain gameplay calls for a certain type of

story and technology, how one story requires a specific technology and gameplay,

and how technology will lend itself to specific types of games and stories. It is the

designer’s job to make all the pieces fit together, and to find the perfect parts to

make a compelling game.

54 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

The new, 3D
version of
Centipede was
based on the
classic “bug
shooter”
gameplay found
in the original
Centipede.

It is a very rare case indeed for a designer to be able to think of whatever game

she wants and then search out the perfect implementation of that idea. In almost all

cases, the designer is limited by the situation that is presented to her. The limita-

tions may come in the form of the technology available, the team she has to work

with, the budget available to develop the game, and the amount of time allowed for

its creation. Though the producer is primarily responsible for making sure the game

is on time and on budget, the designer must concern herself with all of the limita-

tions she is faced with if she hopes to create a good game in the final analysis.

Established Technology

Often a designer at a larger company is required to work with whatever technology

that company has. This may be an engine left over from a previous game, or it may

be that the programming team only has experience working in 2D and as a result the

only technology they will be able to viably develop in a reasonable time frame will

be 2D as well. Even if the designer is fortunate enough to be able to seek out a tech-

nology to license for a project, that designer will still be limited by the quality of the

engines that are available for licensing and the amount of money she has to spend.

If the developer is a lone wolf, working solo as both designer and programmer

on a project, one might think the designer could make whatever he wants. Of

course this is not the case, as the designer will quickly be limited by his own skills

as a programmer and by the amount of work he can actually accomplish by himself.

No single programmer is going to be able to create a fully featured 3D technology

to rival the likes of Quake III, IV, or XIII. It is simply not possible. Functioning as

the sole programmer and designer on a project has many benefits, but it certainly

limits what one will be able to accomplish.

Even if a programmer is able to create the perfect engine for her game, what if

it is simply too slow? If a large number of fully articulated characters in an outdoor

real-time 3D environment are required for your gameplay, on today’s technology

the frame rate is going to be languid. Throw in some truly sophisticated AI for each

of those creatures and your game will get down to 1 FPS, becoming, in essence, a

slide show. If she must make that game, the designer has to wait until the process-

ing power required is available, which may not be for years to come. Hearing that a

project has been put on hold until the technology improves usually has the direct

result of causing the publisher to stop making milestone payments.

The Case of the Many Mushrooms

When working on Centipede 3D, we were constantly troubled by our frame rate.

Remember, for that game, our primary concern was to achieve gameplay which was

in the spirit of the original arcade classic. But Centipede’s gameplay hinged on the

presence of a lot of mushrooms on the screen at once, with similarly large numbers

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 55

of other insects, arachnids, and arthropods flying around the world, threatening to

destroy the player’s little “shooter” ship. Furthermore, the gameplay necessitated a

top-down view which provided a fairly large viewing area of the game-world, so

that the player would be able to see the maneuverings of those deadly creatures. The

end result was that there could be several hundred 24-polygon mushrooms, twelve

40-polygon centipede segments, and numerous other creatures all on the screen at

once. On top of that, Hasbro wanted Centipede 3D to be a mass-market title, so the

product’s minimum system requirement had been predetermined to be a 133 MHz

Pentium with no hardware graphics acceleration. On top of all that, Centipede’s

fast-action gameplay required a similarly fast frame rate to be any fun at all.

While working on the project, we were constantly confronted with the problem

of escalating polygon counts, with artists always attempting to shave a few poly-

gons off of the much-used mushroom model. At one point, one artist suggested that

perhaps if we could reduce the mushroom to two pyramids sitting on top of each

other, we would have the absolute minimum representation of a mushroom, while

using only six or eight polygons. Indeed, it was suggested, if all of the game’s mod-

els went for a minimalist representation, we could use the polygon limitation to our

advantage, creating a unique game-world filled with objects that looked as if they

were created by a cubist. It would certainly be a unique look for a game, and would

fit in quite well with Centipede 3D’s already somewhat surreal game-world.

“Embrace your limitations!” I proclaimed in the midst of this discussion, not unlike

a weary professor might finally proclaim, “Eureka!” All present thought my procla-

mation to be quite funny, but thinking about it later I decided it was actually quite

true for game development. Unfortunately, we were too far along in development to

convert all of our art to the minimalist implementation we had thought of, not to

mention the potential troubles of trying to sell the publisher on the idea of a mini-

malist game.

In general, though, I still think that game developers need to embrace their lim-

itations as soon as they discover them. When presented with an engine that must be

used for a project, why go out of your way to design a game that is ill suited to that

technology? Your game design may be fabulous and well thought out, but if the

technology you must use is not capable of implementing it well, you will still be

left with a bad game in the end. It is better to shelve an idea that is incompatible

with your technology (you can always come back to it later) and come up with a

design better suited to the tools you have. Once you have identified the limitations

that the engine saddles you with, it is best to embrace those limitations instead of

fighting them. This is not to suggest that a designer should always design the sim-

plest game that she can think of or that sophisticated, experimental designs should

not be attempted. If a shrewd theater director knows a given actor is interested in

working with him, he will pick the best play to show off the particular skills of that

56 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

actor. Similarly, a designer should consider what the technology lends itself to and

use that as the basis for the game she designs and the story she sets out to tell.

The Time Allotted

Limitations that I have not discussed much in this chapter but which are nonetheless

very important in game development are the budget and schedule with which a

designer may be presented. Though these are primarily the concern and responsibil-

ity of the project’s producer, the game designer needs to know how these factors

will limit the project just as the technology, gameplay, or story may. When choosing

the technology to be used, the designer must ask himself: can it be completed in the

amount of time scheduled for the project? Can it be completed in time for level

implementation and balancing? Does the suggested design call for the creation of

such a large number of complex levels and heavily scripted behaviors that they can-

not be completed in eighteen months by only one designer? Just as the timeline will

limit the amount of time that can be spent on the project, the budget will affect how

many people can be working on the project during that time. It may be that, given

double the budget, the game design could be easily completed in a year and a half,

but with only half the budget the designer will need to scale back the design to

come up with something feasible. Again, if development is running six months late

with no end in sight and as a result the publisher pulls the plug, it does not matter

how brilliant your game design may have been in theory. No one will get to play

your game because you failed to fully consider the logistics of implementing it. And

if you fail to allocate enough time for fine-tuning and balancing the gameplay, your

publisher may demand you ship a game you consider unfinished. What might have

been a great game will be a bad one because there was not enough time to really

finish it.

Lone wolf developers have it a bit easier in terms of time constraints and bud-

getary limitations. If a single person is creating all of the art, code, and design for

the game, and is developing the game on her own time without relying on income

from its development in order to survive, she is much more free to follow wherever

her muse takes her, for as long as she likes. Of course, she is still limited by her

own talents, by the quality of the art she can create, and by the limits of her pro-

gramming skills, but at least these are the only limitations. In terms of creating art,

there is a lot to be said for not being beholden to the person writing the checks.

Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story 57

If You Choose Not to Decide, You Still Have Made a
Choice

So often producers, programmers, artists, and designers fail to consider the limita-

tions of the game idea they are planning to develop. Whether it springs from notions

of gameplay, suggestions of technology, or thoughts about a story, as soon as a

game idea takes on form it begins limiting what the game can be if it is to be suc-

cessful. Game developers need to understand that not every technology will work

with every game design, nor every design with every story, nor even every story

with every technology.

Often developers will try to take a bunch of compelling concepts and attempt to

stuff them all into one game. The lead programmer may be interested in developing

a cutting-edge inverse kinematics system. The lead game designer might have

wanted to try a real-time strategy game ever since he played Age of Empires for the

first time. The game’s writer may think there’s entirely too much violence in com-

puter games and therefore wants to write a tale of romance. If the producer is a

fool, she may even be thrilled that the members of her team are so excited about

what they are developing and that, by combining IK, RTS, and romance, the result

will be a breakthrough game.

Of course anyone with a whit of sense knows this game is doomed to fail. If, at

the brainstorming session, the team were able to decide which aspect of the game

they wanted to concentrate on, the team could work to make the game as a whole as

good as possible. Suppose they choose the IK as what they all think would make

for the best complete game. Then the designer can mull it over and realize a Street

Fighter II-style fighting game would probably make the best use of an IK system.

And the writer could come up with a story about a human fighting one by one

through the pantheon of Greek gods, hoping one day to meet his true love, Hera.

This game has a fighting chance of being fun to play, because all of the components

are working together. In the end, you do not want your game to consist only of an

excellent technology or a compelling story or a brilliant game design. If none of

these components support each other your game will be just as bad as if you were

working with a hackneyed story, a thin game design, and an incomplete technology.

58 Chapter 3: Brainstorming a Game Idea: Gameplay, Technology, and Story

TE
AM
FL
Y

Team-Fly®

Chapter 4

Game Analysis:
Centipede

Designed by Ed Logg with Donna Bailey
Released in 1981

O
ne can think of the classic arcade game as a form of the computer game, in

the same way that a silent slapstick comedy is a form of film or the

hard-boiled detective novel is a form of literature. The classic arcade

game form fell out of favor with the commercial gaming companies pretty much as

59

soon as the technology was available to move beyond it. However, many independ-

ent game developers still work on classic arcade games either for their own

amusement or to be released as freeware or shareware titles. Many of these labors of

love are imitations of established classic arcade games, but many others are interest-

ing experiments in new gameplay. There remains something uniquely compelling

about the form, and the fact that one does not need to have a sophisticated 3D

engine to make a wonderfully entertaining classic arcade game helps to make the

form an appealing one in which to work.

It bears mentioning that when I refer to the classic arcade game, I do not mean

to imply that all classic arcade games are classics. Many of them are quite bad. As

with any media, the old arcade games that are remembered and talked about

decades after their release tend to be the best ones, thus creating the false impres-

sion of a “golden age.” The bad arcade games have fallen between the cracks of

history. The term “classic arcade game” refers to the form as a classic one, not to

the games themselves, just as one might refer to “classical music.” Surely the term

“arcade game” is not limiting enough, since this would seem to include every game

found in an arcade, including modern racing, gun, and fighting games, none of

which are what I consider to be part of the form I am concerned with here.

The classic arcade game form had its commercial and creative heyday in the

late 1970s through the early 1980s, when machines exhibiting the form lined the

arcades. Looking at the games as a whole, one can come up with a series of traits

that they all shared. Some of these aspects of the form may have been arrived at

because of the commercial considerations of the arcades. The thought was to get a

player to easily understand a game, so that by the end of his very first game he had

a good sense of how the game worked and what was necessary for success. Second,

a player’s game, even the game of an expert, could not last very long, since any one

player had only paid a quarter, and if the game only earned a single quarter in a half

hour, it would not be profitable to operate. Players needed to be sucked in to replay

the games, to keep plunking in quarters. As a result, in some ways the arcade games

had to be more refined than home games are today. Once the player has purchased a

home game, often for at least a hundred times the cost of a single arcade game play,

the sale is completed. If he is not completely disgusted with the game he is unlikely

to return it. Features such as scoring and high-score tables only served to increase

the arcade game’s addictive nature and encourage players to keep spending money.

In addition, the technical restrictions of the day limited what the games could

do, and thereby influenced what the game could accomplish in terms of gameplay.

Had the designers had the RAM and processing power to include fully scrolling

game-worlds that were many times the size of the screen, they probably would

have. If the games had been able to replay full-motion video of some sort, perhaps

the designers would have incorporated more story line into the games. But the fact

60 Chapter 4: Game Analysis: Centipede

remains that a unique genre of computer games emerged, and if the commercial and

technical limitations shaped the form, so be it. Just as early films had to work with

the limitations of silence and short running times, computer game designers were

limited in what they could create, and were able to come up with brilliant games

nonetheless. Often, working within a series of strict constraints forces artists to

focus their creativity in a fashion which leads to better work than if they could do

anything they wanted.

One key ingredient to many classic arcade games was their wild variation in

gameplay styles. Centipede, Missile Command, Pac-Man, and Frogger are as dif-

ferent from each other as they possibly could be. Many classic arcade games

featured variations on a theme: Centipede, Space Invaders, Galaga, and Tempest all

revolved around the idea of shooting at a descending onslaught of enemies. How-

ever, the gameplay variations these games embraced are far more radical than the

tiny amount of variation one will find in modern games, which are more content to

endlessly clone already-proven gaming genres. Despite the wild variety of

gameplay that can be found in classic arcade games, one can still look back on

these games as a collective, as an artistic movement in the brief history of computer

games. By analyzing the form’s shared traits, modern game designers can learn a

lot about how they can make their own games more compelling experiences for the

player.

Chapter 4: Game Analysis: Centipede 61

Tempest is one
of many classic
arcade games
that is centered
on shooting at
enemies which
keep getting
closer. Tempest
is memorable
because of the
many unique
twists included.

Classic Arcade Game Traits
� Single Screen Play: In a classic arcade game, the bulk of the gameplay takes

place on a single screen, with the player maneuvering his game-world surrogate

around that screen, sometimes only in a portion of that screen. This was done,

no doubt, in part because of technological limitations. But it also has very

important artistic ramifications on the game’s design: the player, at any time, is

able to see the entire game-world, and can make his decisions with a full

knowledge of the state of that game-world. Obviously, empowering the player

with that kind of information seriously impacts the gameplay. Many of the

games in the classic arcade game form would include more than one screen’s

worth of gameplay by switching play-fields or modifying existing ones to

create additional “levels.” Examples of this include Joust, Pac-Man, and Mario

Bros. Though these games may have included more than a single screen in the

entire game, at any one time the player’s game-world still consisted of just that

one screen.

� Infinite Play: The player can play the game forever. There is no ending to the

game, and hence no winning it either. This was done in part to allow players to

challenge themselves, to see how long they could play on a single quarter.

Players can never say, “I beat Asteroids,” and hence players are always able to

keep playing, to keep putting in quarters. At the same time, having an

unwinnable game makes every game a defeat for the player. Every game ends

with the player’s death, and hence is a kind of tragedy. Having an unwinnable

game also necessitates making a game that can continuously get harder and

harder for the player, hence a game design with a continuous, infinite ramping

up of difficulty. With the advent of the home market, game publishers no longer

wanted players to play a single game forever. Instead they want players to

finish the games they have and buy another one. This is one reason why it is

rare to see a game with infinite play any more.

� Multiple Lives: Typically, classic arcade games allow the player a finite

number of lives, or a number of “tries” at the game before her game is over.

Perhaps derived from pinball games, which had been providing the player with

three or five balls for decades, multiple lives allowed the novice player a

chance to learn the game’s mechanics before the game was over. Given

adequate chances to try to figure out how the game works, the player is more

likely to want to play again if she made progress from one life to the next.

Having lives enables the game to provide another reward incentive for the

player playing well: extra lives. Having multiple lives also sets up a game

where dying once is not necessarily the end of the game, and encourages

players to take risks they might not otherwise.

62 Chapter 4: Game Analysis: Centipede

� Scoring/High Scores: Almost all classic arcade games included a scoring

feature through which the player would accumulate points for accomplishing

different objectives in the game. For example, in Centipede, the player gets 1

point for destroying a mushroom, 10 points for a centipede segment, 100 points

for a centipede head, and 1000 points for a scorpion. Another classic arcade

game component with origins in the world of pinball, the score allows the

player to ascertain how well they did at the game, since winning the game is

impossible. The high-score table was introduced in order to allow players to

enter their initials next to their score, which would then be ranked in a table of

scores so players could see just how good they were. The game would

remember the table as long as it stayed plugged in, with some games, such as

Centipede, even remembering the high-score list or some portion of it once

unplugged. The high-score table enabled the classic arcade games to exploit

one of the key motivations for playing games—“bragging rights.” A player

could point out her name in the high-score table to her friends as a way of

proving her mettle. Friends could compete with each other (almost all of the

games included two-player modes, where players switch off playing) to see

who could get the higher score.

� Easy-to-Learn, Simple Gameplay: Classic arcade games were easy for players

to learn, impossible (or at least very difficult) to master. Someone could walk

up to a game of Centipede, plunk in his quarter, and by his third life have a

good idea of how the game functioned and how he might play better. Why the

player died was always completely apparent to the player. There were typically

no “special moves” involving large combinations of buttons which the player

had to learn through trial and error. There were few games with tricky concepts

such as “health” or “shields” or “power-ups.” Again, commercial

considerations were probably a factor in making these games simple to learn.

At the time of their initial introduction, there was no established market of

computer game players and there were few arcades. The games wound up in

pizza parlors and bars, where any person might walk up to one and try it out.

These novice players might be scared away if the game were too complex or

baffling. Of course, simple does not always mean “limited” or “bad” gameplay;

it can also mean “elegant” and “refined.”

� No Story: Classic arcade games almost universally eschewed the notion of

trying to “tell a story” of any sort, just as many modern arcade games continue

to do. The games always had a setting the player could easily recognize and

relate to, many of them revolving around science fiction themes, though others

dabbled in war, fantasy, and sports, among others. Many, such as Pac-Man and

Q*Bert, created their own, unique settings, keeping up with the rampant

creativity found in their gameplay. The classic arcade game designers did not

Chapter 4: Game Analysis: Centipede 63

feel required to flesh out their game-worlds, to concoct explanations for why

the player was shooting at a given target or eating a certain type of dot, and the

games did not suffer for it.

Of course, some games broke some of the above rules of the form, yet they can

still be considered classic arcade games. For example, Sinistar and Defender both

included scrolling game-worlds for the player to travel through, with the player

unable to see all aspects of the game-world at any one time. Indeed, on first inspec-

tion, Battlezone seems entirely the odd man out among early classic arcade games.

Yet, if one looks at the traits above, one will discover that it featured infinite play,

multiple lives, and scoring, was easy to learn, and had almost no story. All three of

these games included mechanics which, by and large, were adherent to the classic

arcade game form. Thus we can still group them with games like Space Invaders

and Asteroids, games which follow all the rules laid out above.

Being one of the defining games of the form, Centipede follows all of the

aspects of the classic arcade game form listed above. Though not a very complex

game by today’s standards, the marvel of Centipede is how all of the different

gameplay elements work together to create a uniquely challenging game. Nothing

in Centipede is out of place, nothing is inconsistent, nothing is unbalanced. To ana-

lyze Centipede is to attempt to understand how to design the perfect game.

64 Chapter 4: Game Analysis: Centipede

Even though the
action in Sinistar
did not take
place only on
one screen, it is
still considered
to be an
example of the
classic arcade
game form.

Input

One of the great advantages to working on a game for the arcades is that the

designer has complete control over the type of device the player will use to control

the game. On the PC, the designer can only count on the player having a keyboard

and a mouse, while on a console, the designer must work with the standard control-

ler that comes with that particular console. The arcade designer (budget constraints

notwithstanding) is able to pick the best type of control for the game, and provide

the player with that control system. The designer can then create the game around

those controls, precisely balancing the game to work perfectly with that input

method. Centipede does this expertly, providing the player with an extremely pre-

cise analog control device in the form of a trackball. This is ideally suited to moving

the player’s shooter ship around on the bottom of the screen. Players can move the

ship quickly or slowly, whatever the situation calls for. For many fans of Centipede,

the excellent controller is one of the first things they remember about the game.

The shooter is extremely responsive to the player’s manipulation of the

trackball, with the player being able to easily and intuitively understand the rela-

tionship between her manipulation of the trackball and the shooter’s movement.

Centipede was no doubt inspired by other classic arcade games, such as Space

Invaders, which feature the player’s game-world surrogate locked at the bottom of

the screen, allowed only to move left, move right, and shoot. Centipede takes that

idiom one step further: the player is still trapped at the bottom of the screen, but the

shooter can move within a six-row vertical space. This allows the player to avoid

Chapter 4: Game Analysis: Centipede 65

The player’s
shooter in
Centipede is
more mobile
than in Space
Invaders, since it
can move up and
down in addition
to moving
sideways.
Pictured here:
Centipede.

enemies that might be on the bottom row. At the same time, the shooter can still

only shoot forward, so enemies that get behind the ship cannot be destroyed. Aside

from the trackball, the only other control the player has is a button for firing the

shooter’s laser-type weapon. The game allows an infinitely fast rate of fire, but only

one shot can be on the screen at a time which means the player has to think beyond

just holding down the fire button constantly. If the player moves the shooter

directly below a mushroom she can hold down the fire button and quickly shoot the

mushroom four times, thus destroying it. But at the top of the screen, where the

player cannot maneuver the ship, destroying a mushroom takes much longer, since

the player must wait for each shot to hit the mushroom before another shot can be

fired. If the player’s shot is in the midst of traveling to a faraway target, she will be

unable to shoot again in order to take out a divebombing enemy. The player must

plan her shots carefully, a design element that adds more depth to the game’s

mechanics.

Interconnectedness

One of the great strengths of Centipede is how well all the different elements of the

gameplay fit together. Consider the different enemy insects that try to kill the player.

The centipede winds its way down the screen from the top of the screen to the

player’s area at the bottom, moving horizontally. The centipede appears as either a

lone twelve-segment centipede or as a shorter centipede accompanied by a number

of single heads. At the start of a wave, the number of centipede segments on the

screen always totals twelve. Next is the spider, which moves in a diagonal, bounc-

ing pattern across the bottom of the screen, passing in and out of the player’s area.

Then comes the flea, which plummets vertically, straight down toward the player.

There is nothing terribly sophisticated about any of the movement patterns of these

insects. Indeed, the flea and the centipede, once they have appeared in the

play-field, follow a completely predictable pattern as they approach the player’s

area. The spider has a more random nature to its zigzagging movement, but even it

does nothing to actually pursue the player. Therefore, once the player has played the

game just a few times, he has a completely reliable set of expectations about how

these enemies will attack him. Fighting any one of these creatures by itself would

provide very little challenge for the player. Yet, when they function together they

combine to create uniquely challenging situations for the player. With any one of

these adversaries missing, the game’s challenge would be significantly diminished,

if not removed altogether.

Each of the insects in the game also has a unique relationship to the mushrooms

which fill the game’s play-field. The primary reason for the existence of the mush-

rooms is to speed up the centipede’s progress to the bottom of the screen. Every

time a centipede bumps into a mushroom, it turns down to the next row below, as if

66 Chapter 4: Game Analysis: Centipede

it had run into the edge of the play-field. Thus, once the screen becomes packed

with mushrooms, the centipede will get to the bottom of the play-field extremely

quickly. Once at the bottom of the screen, the centipede moves back and forth

inside the player’s area, posing a great danger to the player. So, it behooves the

player to do everything he can to destroy the mushrooms on the play-field, even

though the mushrooms themselves do not pose a direct threat. Further complicating

matters, every time the player shoots a segment of the centipede it leaves a mush-

room where it died. Thus, wiping out a twelve-segment centipede leaves a big

cluster of mushrooms with which the player must contend.

As the flea falls to the bottom of the play-field, it leaves a trail of new mush-

rooms behind itself, and the only way for the player to stop it is to kill it. The flea

only comes on to the play-field if there are less than a certain number of mush-

rooms on the bottom half of the screen. This way, if the player destroys all the

mushrooms closest to him, the flea comes out immediately to lay down more. The

spider, the creature that poses the biggest threat to the player, has the side effect that

it eats mushrooms. This then presents the player with a quandary: shoot and kill the

spider or just try to avoid it so it can take out more mushrooms? Finally, the scor-

pion, a creature that travels horizontally across the top half of the screen and hence

can never collide with and kill the player, poisons the mushrooms it passes under.

These poisoned mushrooms affect the centipede differently when it bumps into

them. Instead of just turning down to the next row, the centipede will move verti-

cally straight down to the bottom of the screen. So when a centipede hits a poisoned

mushroom, the centipede becomes a much more grave threat than it was before.

Chapter 4: Game Analysis: Centipede 67

In Centipede,
fleas drop
toward the
bottom of the
screen, leaving
mushrooms
behind them,
while spiders
eat whatever
mushrooms
block their
movement.

Once a scorpion has passed by, the player must now expend effort trying to shoot

all the poisoned mushrooms at the top of the screen or be prepared to blast the cen-

tipedes as they plummet vertically straight toward the player.

So we can see that each of the creatures in the game has a special, unique rela-

tionship to the mushrooms. It is the interplay of these relationships that creates the

challenge for the player. The more mushrooms the flea drops, the more mushrooms

the scorpion has to poison. The spider may take out mushrooms along the bottom of

the screen, getting them out of the way of the player, but it may eat so many that the

flea starts coming out again. If the player kills the centipede too close to the top of

the screen, it will leave a clump of mushrooms which are difficult to destroy at such

a distance, and which will cause future centipedes to reach the bottom of the screen

at a greater speed. However, if the player waits until the centipede is at the bottom

of the screen, the centipede is more likely to kill the player. With the mushrooms

almost functioning as puzzle pieces, Centipede becomes something of a hybrid

between an arcade shooter and a real-time puzzle game. Indeed, some players were

able to develop special strategies that would work to stop the flea from ever coming

out, thus making the centipede get to the bottom of the screen less quickly and

allowing the player to survive for much longer. It is the interplay of each of the

player’s adversaries with these mushrooms and with each other that creates a

unique challenge for the player.

Escalating Tension

A big part of the success of Centipede is how it escalates tension over the length of

the game. The game actually has peaks and valleys it creates in which tension esca-

lates to an apex and, with the killing of the last centipede segment, relaxes for a

moment as the game switches over to the next wave. One small way in which the

game escalates tension over a few seconds is through the flea, which is the only

enemy in the game the player must shoot twice. When it is shot just once, its speed

increases dramatically and the player must quickly shoot it again lest the flea hit the

shooter. For that brief speed burst, the player’s tension escalates. In terms of the

centipede itself, the game escalates the tension by splitting the centipede each time

it is shot. If the player shoots the middle segment of an eleven-segment centipede, it

will split into two five-segment centipedes which head in opposite directions. Sure,

the player has decreased the total number of segments on the screen by one, but

now he has two adversaries to worry about at once. As a result, skilled players will

end up going for the head or tail of the centipede to avoid splitting it.

Most of the game’s escalating tension over the course of a wave is derived from

the centipede’s approach toward the bottom of the screen and the player’s often

frantic efforts to kill it before it gets there. Once a centipede head reaches the bot-

tom of the screen, a special centipede head generator is activated, which spits out

68 Chapter 4: Game Analysis: Centipede

TE
AM
FL
Y

Team-Fly®

additional centipede heads into the player’s area. If the player is unable to kill the

centipede before it reaches the bottom of the screen, which has already increased

tension by its very approach, that tension is further escalated by the arrival of these

extra heads. And those extra heads keep arriving until the player has managed to

kill all of the remaining centipede segments on the screen. The rate at which those

extra heads come out increases over time, such that if the player takes her time in

killing them, additional centipedes will arrive all the faster, making the player still

more frantic.

Once the player kills the last segment, the game goes to its next wave, and the

centipede is regenerated from the top of the screen. This provides a crucial, tempo-

rary reprieve for the player, a moment for her to catch her breath. The player will

feel a great rush at having finally defeated the centipede, especially if the extra cen-

tipede head generator had been activated. In addition, the newly generated

centipede at first appears easier to kill, since it is generated so far from the player’s

area.

Over the course of the player’s entire game, the mushrooms inevitably become

more and more packed on the play-field. Once there are more mushrooms toward

the bottom of the screen, the player feels lucky if he can just clear all of the mush-

rooms in the lower half of the play-field. He has no chance of destroying the

mushrooms toward the top, since the lower mushrooms block his shots. Similarly,

if the scorpion has left any poison mushrooms toward the top of the screen, the

player has no chance whatsoever of destroying them, and as a result the centipede

dive-bombs the bottom of the screen on every single wave. Far into a game, the top

Chapter 4: Game Analysis: Centipede 69

Over the course
of a game of
Centipede,
mushrooms
become more
and more tightly
packed on the
play-field.

of the play-field becomes a solid wall of mushrooms. As the mushrooms become

more and more dense, the centipede gets to the bottom of the screen faster. When

the centipede can get to the bottom of the screen extremely quickly, the player’s

game is that much faster paced, and he is that much more panicked about destroy-

ing the centipede before it reaches the bottom of the screen. This increased

mushroom density has the effect of escalating tension not just within a wave as the

extra centipede head generator did, but also from wave to wave, since the mush-

rooms never go away unless the player shoots them.

Centipede also balances its monsters to become harder and harder as the

player’s score increases. And since the player’s score can never decrease, the ten-

sion escalates over the course of the game. Most obvious is the spider, whose speed

approximately doubles once the player’s score reaches 5000 (1000 if the game’s

operator has set the game to “hard”). The spider also maneuvers in a smaller and

smaller area of the bottom of the screen as the player’s score gets really high, even-

tually moving only one row out of the player’s six-row area. With the spider thus

constrained, it is both more likely to hit the player and less likely for the player to

be able to shoot it. Recall that the flea drops from the top of the screen based on the

quantity of mushrooms in the bottom half of the screen. When the player starts the

game, if there are less than five mushrooms in that area the flea will come down,

dropping more as it does so. As the player’s score increases, however, so does the

quantity of mushrooms needed to prevent the flea’s appearance. Now the player

must leave more and more mushrooms in that space to prevent the flea from com-

ing out and cluttering the top of the screen with mushrooms.

At the start of each wave, the game always generates a total of twelve centipede

segments and heads at the top of the screen. This means that if a twelve-segment

centipede appears at the top of the screen, that will be the only centipede. If a

seven-segment centipede appears, then five other centipede heads will appear as

well, thus totaling the magic number of twelve. The more centipedes that appear,

the more challenging it is for the player to shoot them all, and the more likely one

will sneak to the bottom of the screen. The game starts by releasing a single

twelve-segment centipede. In the next wave, a slow eleven-segment centipede

appears along with one head. In the following wave, a fast eleven-segment and one

head combination arrive. Then a slow ten-segment and two heads appear. With each

wave there are a greater number of individual centipedes for the player to keep

track of and a greater escalation of tension. The game wraps around once twelve

individual heads are spawned, but then the game becomes harder by only spawning

fast centipedes.

The player’s death also provides a brief respite from the tension. When the

player’s ship is destroyed, the wave starts over and hence the centipede returns to

the top of the screen. Before this, however, all of the mushrooms on the screen are

reset. This means that all the partially destroyed mushrooms are returned to their

70 Chapter 4: Game Analysis: Centipede

undamaged state. But also all of the mushrooms poisoned by the scorpion are

returned to their unpoisoned state. Many waves into the game, the increased mush-

room density makes shooting poisoned mushrooms all but impossible, and with

those poisoned mushrooms in place, the player is bombarded by centipedes hurtling

toward him in every single wave. Thus, a player is almost relieved when his shooter

is destroyed and all those poisoned mushrooms are removed from the top of the

screen. This causes the player’s game to be much more relaxed, at least for the time

being.

Centipede is marvelous at creating and maintaining a tense situation for the

player, while still providing brief “breathing periods” within the action. Designers

of modern games, who are always concerned with ramping up difficulty for the

player, could learn much by analyzing how Centipede keeps the player constantly

on his toes without ever unfairly overwhelming him.

One Person, One Game

Many may scoff at Centipede twenty years after its creation. There is no question

that it is a less technically astounding accomplishment than more modern works,

and those who do not examine it closely are likely to dismiss it as more of a light

diversion instead of a serious game. But what Centipede does, it does with such

facility, featuring game mechanics so precisely and perfectly balanced and

gameplay so uniquely compelling, that it truly is a marvel of computer game

design. One must remember that Centipede was created in the days of the

Chapter 4: Game Analysis: Centipede 71

Centipede’s
frantic gameplay
keeps the player
tense most of
the time, though
it provides some
breaks in the
action during
which the player
can relax.

one-person-one-game system, when the development team for a game consisted pri-

marily of one person, in this case Ed Logg. By having one person in total control of

a project, where a single talented individual fully understands every last nuance of

the game, the final product is much more likely to come out with a clearness of

vision and brilliance of execution. Of course, one person can create a terrible game

just as easily as a large team, but one must wonder if the lone wolf developer does

not have a better chance at creating the perfect game.

72 Chapter 4: Game Analysis: Centipede

Chapter 5

Focus

“Feel the flow. . . To become one with the flow is to realize

purpose.”

— Warrel Dane

D
eveloping a game for two years with a team of twenty people can some-

times more resemble a war than the creation of art. Many would say that a

decent amount of conflict can lead to great art, especially in collaborative

forms such as modern commercial computer games. A stronger game may arise

from the ashes of team members arguing over the best way to implement some

aspect of gameplay. If the game merely becomes unfocused as a result of these

squabbles, then a good game is not likely to emerge. Over the course of the many

battles you must fight, skirmishes you must endure, and defeats you must overcome

73

in the course of a game’s development, with conflicts potentially arising with other

team members or from within yourself, it is far too easy to lose track of just why

you were creating the game in the first place. Is it possible that at one point the

game you are working on captivated your imagination? Was there some vision you

had for why this game would be fun, compelling, and unique? Is it possible that at

one point you actually liked computer games at all?

Sometimes in the middle of a project it is easy to get sidetracked—sidetracked

by technological obstacles that are thrown in your path, sidetracked by altercations

between team members, or sidetracked when your publisher tells you features A, B,

and C simply have to be changed. It is at these junctures where you come to doubt

that your game will ever be fun, or whether it will even be completed. These peri-

ods of doubt are the ones that separate the good game designers from the merely

passable ones. Good game designers will be able to overcome these difficulties and

stay on track by remembering their focus.

The technique I will be exploring in this chapter is certainly not one that all

game designers use, but I think it is one that all game designers could benefit from.

Many designers may use the technique but not realize it. Others may have entirely

different methods for assuring their game comes together as a fun, consistent

whole. You cannot expect to go up to any game designer and say, “What’s your

focus for your current project?” and expect them to produce an answer in line with

the method I explore in this chapter. But if you start being rigorous in maintaining

focus in your projects, I think you will see very positive results in the final quality

of your games.

Establishing Focus

A game’s focus is the designer’s idea of what is most important about a game. In

this chapter I encourage designers to write their focus down in a short paragraph,

since putting it down in writing can often clarify and solidify a designer’s thoughts.

However, it is the idea of the focus which is of paramount importance. In a way, a

game’s focus is similar to a corporation’s “mission statement,” assuming such mis-

sion statements are actually meaningful and used to guide all of a corporation’s

decisions.

As a game designer you should start concerning yourself with your game’s

focus from the very beginning of the project. When the project is in its infancy,

before work has started on the design document and the project exists primarily as

an idea in your head, you should ask yourself a series of questions about the game

you are envisioning:

� What is it about this game that is most compelling?

� What is this game trying to accomplish?

74 Chapter 5: Focus

� What sort of emotions is the game trying to evoke in the player?

� What should the player take away from the game?

� How is this game unique? What differentiates it from other games?

� What sort of control will the player have over the game-world?

By going over these questions, you should be able to determine the core nature of

the game you are planning to create. If you have trouble answering these questions,

now is the time to think about the game until the answers to these questions become

obvious. Now—before there is anyone else working on the project, before “burn

rate” is being spent and driving up the game’s budget, before the marketing depart-

ment starts trying to influence the game’s content and directions—now is the time to

focus. Only by firmly establishing the vision of the game early on will you have any

chance of seeing it carried out.

If you do not have too much trouble divining answers to these questions, you

may have written an entire page or more delineating the game’s points of differenti-

ation. But a page is too much. The focus that we are striving for needs to be

succinct—a few sentences, a short paragraph at the most. It should be something

you can quickly read to your colleagues without their eyes glazing over. You should

take whatever notes you have in answer to these questions and whittle them down

until they are short enough to fill only a few sentences, a mid-sized paragraph.

Keep only your most compelling ideas. You do not need to list every single feature

of the game, or even everything it does differently from other games. Keep only

what is most important to your vision of the game, only those points which, if you

took them away, would irreparably weaken the game.

You do not need to include the setting of your game if that is not inherent to the

actual focus of the game. It may not matter if your game has a fantasy, science fic-

tion, or 1920s crime fiction setting, if what is really at the heart of your game is

exploring the relationships between characters in a stressful situation, or the subtle-

ties of siege warfare. If the setting is not vital to what you want to do with the

game, leave it out. Of course, your primary motivation for working on a project

may be hopelessly intertwined with the setting. If you actually started with a setting

you wanted to explore in a game, such as costumed superheroes in small-town

America, and your vision of the gameplay formed around the idea of these charac-

ters in a certain environment, then you will want to include it in your focus. The

focus is exclusively for the concepts that are most central to the game you are hop-

ing to develop. All that should remain in your focus are the elements without which

the game would no longer exist.

Your focus should be something that grabs you viscerally, stirs your creative

juices, and makes you feel absolutely exhilarated. If it is not something that thrills

you, even at this early stage, it is going to be hard for you to muster enthusiasm

Chapter 5: Focus 75

when your deadlines are slipping, your budget is skyrocketing, you still have three

levels to create, and your lead artist just left for another company. Chris Crawford

touched on the idea of a game’s focus in his book, The Art of Computer Game

Design, as he was discussing what he called a game’s goal: “This is your opportu-

nity to express yourself; choose a goal in which you believe, a goal that expresses

your sense of aesthetic, your world view. . . It matters not what your goal is, so long

as it is congruent with your own interests, beliefs, and passions.” If you do

not believe in your game, it is not going to be the best game you can make.

Even if you are working under the constraints of a license, a domineering pub-

lisher, or a prima donna lead programmer, make your own goals for the project. If

the game you have been assigned to work on is not one in which you are interested,

figure out some way to transform it into something you can get excited about. No

situation is so bad that, given enough time, you cannot make something out of it

that you find personally compelling. You want your focus to be something you will

fight intensely for until the game finally ships.

Much of this chapter is written in a fashion that implies that you are in charge

of your project, at least from a game design standpoint. Of course, this may not be

the case. You may be one of several designers on the project. You may even be one

of seven and you were just hired last week, so you are at the bottom of the seniority

ladder. This does not excuse you from determining what your game’s focus is and

doing everything you can to keep the game on track. Hopefully the lead designer

has already determined what the project’s goals are and should have included this

information in the introduction to the design document. If you cannot find it there,

you may wish to go talk to your lead. Ask her what the project is really trying to do,

not necessarily in a confrontational way, but just so you get a good idea of where

the project is going, and how your contribution to the game can be properly aligned

with that direction.

If it turns out the design lead does not really have a focus in mind, it may be

held by another member of the team, say a lead programmer or lead artist. How-

ever, if despite your best research efforts, the project seems to be goal-less, you

may need to take matters into your own hands. Try to figure out where the project

seems to be heading, and start talking with people about it. Chat with the other

designers, artists, programmers, and producers. Try to talk to them about what the

game is all about, and try to get everyone to agree. Meetings may be a good place

to do this; when everyone is present any conflicts between different perspectives or

personalities on the team can be weeded out. You do not need to be in a lead posi-

tion in order to keep your project on track. As a designer in any capacity on a

project, it is ultimately your responsibility that the game always has a clear direc-

tion and that a fun game emerges at the end of the tunnel.

76 Chapter 5: Focus

An Example: Snow Carnage Derby

Let us suppose you have a vision for a game involving snowmobiles and combat.

What is it about snowmobile riding that excites you? Is it adventuring across Can-

ada’s Northwest Territories, trying to realistically simulate a great snowmobile trek?

No? Perhaps what gets you going is that a snowmobile looks like a fun vehicle to

drive, and you enjoy the idea of handling one in a safe game-world, where you can

make jumps and spin donuts in the snow without actually injuring yourself. In this

case, reality is not so much the issue as having fun with driving a snowmobile, in an

environment that allows for plenty of cool maneuvers. Since the snowmobile com-

ponent seems fairly central to your idea, you will need to include it in the focus. So

your focus can start with a sentence that explains this: “The player’s experience will

revolve around the seemingly realistic physics of controlling snowmobiles, with the

player being able to do fun and challenging moves and jumps in a snowy environ-

ment; the game will be balanced not for realism but for fun.”

Now, what is it about this combat element that grabs you? You see visions of

blood soaking into snow, snowmobiles ramming into other snowmobiles, riders

hanging on to their snowmobiles for dear life, desperately clutching the handlebars

to avoid being thrown. Why are these snowmobiles battling? That is not as impor-

tant, you decide, as the excitement of the combat. Why it is happening is irrelevant.

The vision of snowmobiles smashing into each other turns you on, with the vio-

lence cranked up to absurd levels. You may have trouble getting your game into

censorship-minded retailers, but this is your vision. So include a sentence about the

nature of the combat: “The game will provide a visceral thrill by allowing for the

decapitation and otherwise crippling of enemy snowmobile riders, and said vio-

lence will be played out to maximum comedic effect.”

What else about your snowmobile battle game is a central part of your vision?

Do you want to realistically simulate fuel and snowmobiles breaking down? Is fix-

ing your snowmobile an intrinsic part of your game? Not really; it seems that

though that could be added to the game, it is not absolutely essential to your vision.

Will the game be in 3D or in 2D? Well, actually, the game could work in either. To

be commercially viable in today’s marketplace it will probably need to be 3D but

that is not central to your vision. In your focus, do not include aspects of your game

that are more about getting the project funded and published than making the game

you want to make. You can worry about commercial considerations later. Right

now you are concerned with your vision, and if you start compromising your vision

before absolutely necessary you are going to be blind at the end of the day. So you

do not need to specify 2D or 3D. Indeed, maybe you have everything you need for

the focus. Remember, the focus should not be very long.

Now is the time to put your two sentences together in a paragraph and name the

game. Though it may seem premature, naming the game is actually a good idea at

Chapter 5: Focus 77

this point. You want other members of your team, the marketing department, and

the business people to start liking your game as soon as possible, and having a

name they can refer to it by is fairly important to that process. Can they really dis-

cuss it seriously as “this game idea Richard had”? Giving your game a name makes

it real instead of just an idea, as ridiculous as that may seem.

Try your very best to come up with a name that you like and that could end up

going on the final product. Often whatever name is given to a game early on will

end up sticking with the game forever. It is especially important not to pick a pur-

posefully idiotic name, since those are the kind most likely to stick. For instance, let

us say you name it Egyptian Rumba. As your team keeps referring to the game as

Egyptian Rumba, they will start to associate your cool game with this idiotic title,

and your idiotic title will start to sound pretty good through association. Someone

working on the art team may start giving the characters an Egyptian color scheme.

Team members who are working on the story might spend a lot of time trying to

figure out why the game should be named Egyptian Rumba, and will develop an

especially clever story line around the name. If you later try to change the name

they will be sad and possibly angry that their story no longer makes any sense.

Even the “suits” will start to like your Egyptian Rumba title. They will think of how

they can capture both the adventuring archeologist market and the Cuban dance

market. And soon, if you even remember, you will say it is time to change the

game’s title, and everyone will say, “Why? We like Egyptian Rumba! It’s a great

name!” And you will be stuck. Then the public will see it on the shelves and will

think, “What the heck is that? It sounds stupid,” and quickly pass on to games with

more reasonable titles.

So you finally choose Snow Carnage Derby. Perhaps a more exciting name

will come up later, but you can live with this one. Now, assemble the pieces of

your focus into one paragraph, and try to write it cleanly and succinctly. Refer to

your game in the present tense, as though your game already exists. “Snow Car-

nage Derby is an exhilarating . . . ” instead of “Snow Carnage Derby will be an

exhilarating . . . ” This lends your game a more concrete existence in the minds of

those who read your focus. It is not just a game that may come about at some point

in the future; it already is a game, if only in your head. Something else to avoid is

using generic descriptions that do not actually provide the reader with any useful

information. For instance, “Snow Carnage Derby is a high-quality, fun game

that . . .” Of course it is supposed to be fun. Does anyone set out to make a boring

game? Or a low-quality one? Edit out any sections of your focus that do not com-

municate important information about your game.

Putting together the parts of your focus, you will end up with the following:

Snow Carnage Derby is an exhilarating, fast-action snowmobile demoli-

tion game. The player’s experience revolves around the seemingly realistic

78 Chapter 5: Focus

TE
AM
FL
Y

Team-Fly®

physics of controlling snowmobiles, with the player being able to do fun

and challenging moves and jumps in a snowy environment; the game is

balanced not for realism but for fun. The game provides a visceral thrill

by allowing for the decapitation and otherwise crippling of enemy snow-

mobile riders, and said violence is played out to maximum comedic effect.

Snow Carnage Derby provides fast-action thrills as the player tries to run

down the competition while avoiding destruction.

The Function of the Focus

Try to keep your focus from referring to other games. You want the focus to

describe the essence of your game, and if your focus is, “Voltarr is like Tomb

Raider, but set on the whimsical planet Dongo and featuring many intense laser

gunfights,” it is hard for someone looking at your focus to understand immediately

what parts of Tomb Raider you are hoping to emulate. Take a look at Tomb Raider

itself and determine what you think its focus may have been. Then take that focus,

remove whatever parts are not necessary for your game, and add in whatever new

ideas your game will incorporate. Chances are your idea of what was compelling

about Tomb Raider will be different from someone else’s understanding. When a

member of your team reads, “It’s like Tomb Raider,” she is probably reminded of

some different aspect of that game’s gameplay than you are. That’s assuming that

she has played Tomb Raider at all. Since the focus is designed to guide your team

members as well as yourself, it needs to communicate the same ideas to everyone

who reads it. Even if the focus is primarily for your own use, the process of

Chapter 5: Focus 79

Your game may
be similar to
another game
such as Tomb
Raider, but in
your focus you
want to describe
the game on its
own terms and
avoid making
comparisons to
other games.

analyzing Tomb Raider to determine what about it you want to replicate will help

you to better understand your own game. You need to have a properly streamlined

focus that can stand on its own, without demanding that the person who is reading

the focus understand any other particular games. All the relevant information that is

important to your focus must be contained within the focus itself, without outside

references. Often when designers set out to create “It’s like Game X but with . . . ”

games, they tend to lose sight of what made the game they are imitating so compel-

ling in the first place. Then they proceed to make their own game top-heavy with

tacked-on features that exist only to hide the fact their game is just like Game X.

Removing references to other games from your focus will help expose the true

nature of the project you are undertaking.

Establishing a focus for your project does not need to limit the scope of your

game, and is not intended to do so. Your game can still be a massively complex

game with an epic sweep. In fact, if appropriate, this complexity and depth should

probably be mentioned in your focus, but you should still be able to describe the

game in a few sentences in order to succinctly communicate what is most important

about your undertaking. Your game can even include multiple styles of gameplay

within the same game. Suppose your goal is to simulate the life of a pirate. You

might want to include an exploration mode for navigating the seas, a tactical mode

for engaging another ship in battle, a sword-fighting mode for fighting an enemy

captain one on one, and even a trading mode for selling off booty. (Indeed, Sid

Meier already made this game; it is called Pirates!) But having this multiple game

structure does not mean that the focus could not still be, “This game re-creates the

many different facets of a pirate’s life through numerous different campaign modes,

all designed to evoke the spirit of being a cutthroat. The player is able to explore

the nature of being an outlaw, including the economic and physical risks involved.”

If your game is to have multiple separate modes, your focus should apply to all of

the different sub-games within your project.

If you are working on a project solo or with a small team, you may think it

unnecessary to actually write down your focus. After all, if you can just explain it

to everyone who needs to know, what’s the sense in writing it down? I would argue

that writing it down is key to truly coming to grips with the nature of the game you

are planning to develop. There is a world of difference between an idea that is kick-

ing around in your head and one that is written down on paper in front of you.

When it is on paper you can look at it and make sure that what is typed is really the

core of your idea, that those sentences represent everything that is most important

to you about the project. Unlike when you describe the project to someone, on

paper you cannot say, “Oh, yeah, and there’s this part, and this other aspect over

here, and I really mean this when I say that.” If it is not down on the paper, it is not

part of the game’s focus. Someone who reads the focus on paper should be able to

understand your vision without you needing to explain it. I find that writing the

80 Chapter 5: Focus

focus down really helps to clarify and solidify what the game is attempting to

achieve.

When I worked on my first game, Odyssey, I had no grand plan to have a focus.

Nor did I sit down and purposefully think it out. On the other hand, I seem to

remember the primary goal revolving around a story. It was the story of a mad sci-

entist-type character, a powerful sorcerer who performed experiments on hapless

humanoid creatures. These were not biological experiments, but rather social

ones—experiments where he would see how these humans would treat each other

when under certain circumstances. Really, he was exploring the evil side of all sen-

tient creatures. So Odyssey’s focus was to explore the mean and vicious ways

different groups of people can treat each other in certain situations and to set up

scenarios where the players witnessed this first-hand and would have a chance to

make a real change in their lives. Non-linearity and multiple solutions were also at

the forefront of my mind, so I set out to make sure players would be able to pursue

different tactics to solve the problems they were presented with, with no solution

being designated as the “right” one. And so I had my focus. Without really thinking

of it in terms of a focus or vision, I had determined what I wanted to do with the

game, and I was able to stick with that for the duration of the project. Since I was

basically developing the project solo, I did not have to communicate this focus to

anyone else, and if I had needed to I doubt that I would or could have. Though I

knew in my head what I wanted in the game, at the time I could not define my goals

in terms someone else could understand. Now, looking back, I can come up with

the following:

Chapter 5: Focus 81

Though I did
not know it at
the time of the
game’s
development,
Odyssey’s focus
was centered on
telling a specific
story.

In Odyssey, the player explores a rich story line about the evil nature

of mankind, and sees under what circumstances groups will treat each

other in morally reprehensible ways. This is a simple RPG/adventure

game. Though sword-and-sorcery combat will be involved, it never over-

takes the story line. The story line allows for multiple solutions and

non-linearity whenever possible, with the player able to effect real change

among the NPCs he encounters in the game.

Maintaining Focus

Once you have your focus down on paper and you are satisfied with it, when you

can read it over and say, “Yes, certainly, that’s what I’m going for,” it is time to

share it with the other members of your team. It is important that you get everyone

on your team to sign on to your focus. You want them to acknowledge that, yes, this

is the direction the team is taking, and to agree that they see a compelling game

coming out of it in the end. If no one on your team thinks your focus is very capti-

vating, and despite your best efforts to campaign for it no one can get excited over

it, you can come to one of two conclusions. First, perhaps your game idea is not all

that good. Hard as this may be to admit, it could be that your focus statement and

possibly the game it describes are simply not original or enticing. If the idea in your

head is still exciting to you, maybe you did not capture its focus properly on the

paper. You should go back and try to figure out what about the game excites you but

which did not come across in your focus. If you persist in thinking your game is

compelling and that your focus properly reflects why, the second conclusion you

can come to is that the team assembled is simply the wrong one to develop this

game. Not every team can develop every type of game. A team that has been mak-

ing sports games for years, likes working on sports games, and knows how to make

a sports game fun is probably not the best team to enlist to create your nineteenth

century economics simulation. If you have the option of finding a new team for

your game, that is great. If not, you may need to come up with an idea that everyone

on your team is going to like. It is important that everyone on your team like your

focus idea. Because of the collaborative nature of modern, well-budgeted computer

games, it is virtually impossible to create a good game if you do not have the major-

ity of your team excited to be working on it.

If you are working on a project largely by yourself with others contributing sig-

nificantly less to the game than you, you may not need to sell your focus at all.

Indeed, games created by lone wolf designer/programmer/artists can be among the

most focused of computer games. Since one person is creating the vast majority of

the game’s content, she is able to exert absolute control over every nuance. Solo

game development is typically not something at which one can earn a living any

more, but I know of a few who do. Of course, the fact that a game was created

82 Chapter 5: Focus

largely by one individual does not assure that the game is going to be focused. If

that individual is scatterbrained and unfocused herself, chances are good the game

will not be very focused either. Even if she is a more sane, organized person, if she

does not keep track of her game’s focus over the course of the project, her game

may end up being just as unfocused as the most uncoordinated, over-budgeted,

fifty-developer game.

If you are working as a designer on a game with a team, it is essential to make

sure the other people on your project, whether artists, programmers, or producers,

understand the nature of the game’s focus. Without a strong focus to guide their

actions, programmers and artists may have a misunderstanding of what the game is

supposed to accomplish, and may be thinking of some other type of game as they

work on yours. Through no fault of their own, their work may deviate from what

needs to happen for your game to become a reality, and you will be forced to say,

“No, that doesn’t fit, redo it.” If the team has a focus to follow, a focus they have

signed on to, then they are far less likely to create work that is inappropriate for

your game. Having a strong focus does not get you out of keeping a watchful eye

on the artists’ and programmers’ work, of course, but it will save you the trouble of

having to redirect them too frequently.

Fleshing Out the Focus

Once the team is enthusiastic about the project, has signed on to the focus, and has a

clear understanding of what the game is supposed to be, you can proceed to more

fully flesh out your idea through a complete design document. You may even want

to make your focus the beginning of your document, as a sort of summary of the

nature of the game that people can read quickly. (The nature and creation of design

documents is more fully explored in Chapter 17, “The Design Document.”) The

design document should take the game suggested by your focus and expand on it,

detailing how the goals in your focus will be accomplished by gameplay and how

precisely that gameplay will function. You will also be sketching out the flow of the

game, what the game-world will be like, and what sort of entities the player will

encounter. Of course, while you are working on the design document, there will be

countless points at which you have to struggle to come up with the correct solution

to a given problem. Should the control system use method A or method B? What

sort of environments will the player be interacting in? What sort of challenges do

the enemies present? A properly designed focus will allow you to refer back to it to

answer many of the questions you encounter during the design process. As these

elements of the game are fleshed out, you should continually refer back to your

focus to see if the additions you are making match with that focus. Through the

focus, you can carefully consider if you are adding gameplay that takes the game in

a new direction. It is important to identify which additions to your game cause it to

Chapter 5: Focus 83

deviate from the focus, and then to change or eliminate those erroneous additions.

You want to avoid having your game become too bloated with features, ele-

ments which may be “cool” in some way but that do not support the game’s main

focus or that distract the player’s attentions. Using your focus as a tool, you can

prevent this overexpansion by cutting away the chaff in your game design to leave

only the core gameplay for which you were striving. Many of the ideas you or

members of your team have may be fine concepts, but if they do not fit in with the

game you are currently working on, they are not worth exploring or implementing.

But do not throw these incompatible ideas away. Write them down in your note-

book for the next time you are working on a game design. If they are good ideas,

there is probably some game with which they will work well. If they are very good

ideas, you may even want to design an entire game around them. But for the current

project, by referring back to your focus you should be able to determine whether

these extra, cool features are helping or hurting your game as a whole.

Once the design document is finished and other elements of preproduction are

completed, full production can start on your game. Your team of programmers, art-

ists, and other personnel will begin attempting to implement what you have set out

to accomplish in your design document. As the project proceeds, there will be

countless times where questions arise. Your design document will not cover every-

thing needed to actually make the game playable; it cannot possibly. Questions will

come up about how to implement a feature, in addition to new ideas about how to

improve the game. For each of these, again, you should refer back to your focus to

clarify your team’s direction. Is the implementation that is being suggested going to

keep the game on track with the focus? Or will it distract from the main thrust of a

game? Is the distraction going to be too much of a diversion? Using your focus

statement wisely throughout the course of the project will keep the game on the

right course, and will result in an end product that is better because of it. Players

will know the difference between a game that is properly focused and one that is

not, even if they do not communicate their feelings in so many words. They will

play and enjoy a focused game and will quickly cast aside one that is unfocused.

Changing Focus

Of course, either while working on your design document or when the game is in

full production, it may become apparent that the goals of your game need to change.

This can happen for a variety of reasons. You may come to see shortcomings or fail-

ings in your original focus. Through the act of creating your game, you may come

to recognize a more compelling experience that the game can provide that is outside

the scope of your original focus. Depending on where you are in the project’s devel-

opment, you may want to change your focus. This is particularly painless to do

when you are still in the design document phase. In fact, you should expect your

84 Chapter 5: Focus

focus to change several times, if not on a daily basis, while you are working on the

design document. There is nothing like trying to write down all the important infor-

mation about your game to expose holes and failings in your original concept.

Even beyond the design document, when you are working on your game’s first

level you may begin to see weaknesses in your design, holes you had not antici-

pated when you were just working with an idea of the gameplay in your head

instead of a playable game on the screen in front of you. At this point making

changes to the focus is still not catastrophically damaging to your schedule and will

not involve redoing much work. Better to fix problems in the game and your focus

now than to be stuck with them for the rest of the project and end up with an infe-

rior game.

When changing the focus, you should take the same care as you did when you

initially came up with it. Make sure the focus fully represents your new vision for

the project. Of course, if your focus changes radically, you will need to tell the team

about the change and make sure they all agree with it. Remember, the team needs to

be behind the project in order for it to succeed, and if you change the focus in such

a way that the team is no longer interested in working on the project, you need to

rethink that change.

For whatever reason or in whatever way you may change your focus, it is

important to examine what parts of the game may already exist and see how far

they diverge from your new focus. Look over the design document and realign it to

your new goals. Consider whatever game mechanics may be in place and see if they

are sufficient to carry the new focus. Look over whatever levels may exist (hope-

fully not too many have been created at this point) and see if they fit with the new

focus. Whether it is in documentation, code, level design, or art, anything that does

not fit will need to be reworked so that the new focus is properly supported.

If too many assets (levels, dialog, or art) need to be reworked, or if it is too

close to the ship date to change them, or if there is not enough funding available to

get them changed, you may need to rethink changing your direction. Is it really nec-

essary? Will the old focus still result in an entertaining game, or is it inherently and

thoroughly flawed? Can you make the change in direction less drastic, so that the

old assets can still be used? The worst decision you can make is to create whatever

new assets the game needs following a new focus, while the old assets still follow

the inferior focus you had embraced previously. This will be apparent to the player,

and instead of focusing the game, your two focuses will end up creating a game

with a split personality, one that is entirely unfocused. Try your very hardest to

come up with a refocusing plan for your project that will not put you over budget or

schedule, if these are pressing concerns. Realizing your project is not as good as it

could be, but lacking the time or money to fix it properly is a tough position to be

in. Finding the best solution in such difficult situations can be extremely challeng-

ing and frustrating.

Chapter 5: Focus 85

When I worked on Centipede 3D, we ended up changing our focus near the

beginning of the project. This resulted in some amount of work needing to be

redone, but it also led to a significantly stronger game in the end. Centipede 3D was

something of a special case since it was a remake of a classic and much-loved

game, the original Atari Centipede, created by Ed Logg. When doing a remake or a

sequel, it makes sense to take a look at the original game you are working from,

and get a clear understanding, for yourself, of what its focus was. This is necessary

so you will have a good idea of what exactly you are remaking. Of course I was not

present when Logg was making the original Centipede in 1979 and 1980, but I can

try to figure out what his focus might have been:

Centipede is a fast-action shooting game involving a variety of adversar-

ies that the player must kill in order to avoid being killed by them. The

enemies move in completely predictable, predetermined patterns, but the

combination of the movement of these creatures and other objects in the

game-world creates a challenging experience for the player. The player

can attempt to change the game-world to make the adversaries’ move-

ments more predictable, and the player can see the entire game-world at

once. The game continues until the player dies a specific number of times,

with points accumulating to represent how well the player did in that par-

ticular game; there is no winning or finishing Centipede.

That focus is probably too long and too detailed to be a proper game focus, but

it is hard for me to read Ed Logg’s mind to know what his core concerns were when

making Centipede. So I have included all of the crucial parts of the game I can find.

Of course, the focus he used may bear no relationship at all to the one above.

86 Chapter 5: Focus

The focus of the
3D version of
Centipede was
to create a
game which
captured the
arcade game-
play of the
original
Centipede in a
three-
dimensional,
level-based
environment.

When development of Centipede 3D initially got under way, the idea was to

take only the most basic characters of Centipede—the player’s shooter ship, the

centipedes, spiders, fleas, and mushrooms—and have them interact in a 3D world.

Not much attention was paid to how the game mechanics or AI associated with any

of these characters functioned in the original. The elements from the original Centi-

pede were being used more for aesthetics than anything else. When our initial game

prototype turned out not to be much fun to play, we decided to try to emulate more

of the original game’s gameplay in the new 3D version, wherever possible imitating

and updating whatever the 1981 Centipede did in a 3D, level-based world. As we

started pursuing our new focus, we found that the more we emulated the classic, the

more fun the new game became. Though it was not written down at the time, you

could say our focus was along the lines of the following:

Centipede 3D is a remake of the arcade game Centipede, and attempts to

take what that original game did well and transplant it to a 3D environ-

ment. The original Centipede featured fast-action shooting combat in

waves, with the player’s deft maneuvering of the ship being the key to suc-

cess, and with enemies that moved in completely predictable patterns.

Instead of being on one level for the entire game as Centipede was, Centi-

pede 3D takes the player through a progression of levels. The new game

also embraces certain gameplay norms of modern console games, such as

replayable levels, bonus objectives, and obstacle navigation. The action

and combat portions of Centipede 3D, however, will be extremely reminis-

cent of the original game, employing identical AI wherever possible, and

thus retaining the gameplay feel of the original.

With our new focus, the game assets we had developed thus far were read-

dressed, and a number of levels had to be discarded, while others were significantly

reworked. A small amount of coding that had been done had to be modified, but

fortunately no change in the artwork was necessary. All told, our refocus resulted in

some loss of work. However, in the end this lost work was worth it because the

final Centipede 3D had a consistent, focused style of gameplay. And as a direct

result, it was fun to play.

It is important to note that our focus for Centipede 3D was not a standalone

focus as I advocated earlier in this chapter. The focus for Centipede 3D refers to

another game, the original Centipede, and thereby does not stand completely on its

own. Of course, Centipede 3D is a remake, and as such it makes sense to make ref-

erence to the game the project follows. The same would hold true when working on

a sequel. For either a remake or a sequel, the game you are making has a direct rela-

tion to the other game you refer to in the focus, and a large part of whether the

game is deemed a success or not will rest on how well it follows up its predecessor.

As such, throughout the game’s development, the team members should be asking

Chapter 5: Focus 87

themselves how their work relates to the original game, and whether what they are

trying to accomplish in terms of gameplay is a logical and worthy successor. Since

this is such a central concern, it belongs in the focus. In working on a sequel or a

remake, your entire team should have played the original game through, and hence

can be expected to understand it reasonably well. Note, however, that the focus for

Centipede 3D includes a brief description of the primary appeal of the original Cen-

tipede, so that the focus can stand by itself better than if the central concerns of the

classic game were assumed. If the focus must refer to another game, it is important

to make sure everyone involved with the project understands the focus of that other

game as well.

Sub-Focuses

It may be advantageous to take the focus technique to another level by including

sub-focuses. This will allow you to start to flesh out your game idea while keeping

track of your overall focus. A sub-focus is distinct from the main focus, and should

be designated as such when presented alongside the main focus. You can see a

sub-focus as a concept that supports your main focus, and which will help your

game attain that central focus. A sub-focus alone is generally not enough to design

an entire game around. It serves mainly to support your main goal, to break apart

other objectives your game will strive for in an attempt to accomplish the central

focus.

For an example of using sub-focuses, I will return to the Snow Carnage Derby

example. As you may remember, you had come up with a focus for a game which

allows the player to maneuver snowmobiles in a combat situation. Now that you

have the central focus for Snow Carnage Derby squared away, you can consider

what other goals the game may have. What other aspects of the game should the

development team focus on to assure that our gameplay vision is implemented in

the best way possible?

Now might be a time to explore what type of player you are thinking will want

to play your game. Are you appealing more to the hard-core gaming crowd, or to

people who maybe do not play computer games quite so often? This will have a

direct effect on many aspects of the game, including what level of simulation will

need to be created (the hard-core gamers will demand a more involved and complex

gameplay experience), as well as the control system the game will use (hard-core

gamers can put up with a more obtuse and convoluted control scheme, while more

casual gamers will need something they can pick up quickly).

Arbitrarily, suppose you want to go for the more casual gaming crowd. This

means you can create a sub-focus explaining what you will do to skew the game

towards this audience: “Snow Carnage Derby appeals easily to more casual

gamers.” It makes sense to explain just what you mean by making the game appeal

88 Chapter 5: Focus

TE
AM
FL
Y

Team-Fly®

to casual gamers. Probably the biggest issue is control; you want Snow Carnage

Derby to allow people to get in and play the game quickly, without confusing them

with a lot of keys to remember to control their snowmobile. Your focus could read:

“The game provides the simplest control scheme possible, with a player needing to

use a small number of easily remembered keys to successfully play the game. Nov-

ice players can figure out how to play the game without reading the manual or

using a training track, though an instructional level will be included.” Note that you

do not actually want to go into what the controls are here. Save that for the design

document. Here you are just working on your goals for the game, not so much the

specifics of how they will be implemented. You may also want to say something

about the game’s difficulty level. If you are aiming at casual gamers, you are proba-

bly going to want to make the game easier than it would be if it were aimed more at

the hard-core market. You may want to specify that the game will play at various

difficulty levels: “Snow Carnage Derby is of a relatively low overall difficulty, with

the player able to specify difficulty levels in the game. Even marginally skilled,

poor players will be able to play the game to completion on the easiest difficulty

level, given enough attempts.”

It might make sense to talk about what type of engine and graphics your game

will have in one of the sub-focuses. We discussed previously whether the game

should be 2D or 3D, but decided that aspect was not central to our vision of the

game. Therefore it was left out of the primary focus. It may, however, fit well as a

sub-focus, something that will help further define how the game’s development will

carry out the initial vision. Now might be a good time to explain the visual style of

the game as best you can, to give your art team an idea of what direction they

should pursue, as well as your programming team what sort of technology your

game will need to support. You can start with some summary of the overall look of

the game: “Snow Carnage Derby includes a visually lush, high-contrast environ-

ment, with the bright colors on the snowmobiles and their riders contrasting with

the snow and ice they are riding on.” You may decide you want to pursue a 3D

engine technology that handles physics well, since that can best help us to capture

the excitement of maneuvering the snowmobile, and since the nature of the market-

place demands a 3D game. Within the 3D engine, perhaps a third-person view is the

one that will work best to allow the player to control their own snowmobile and

rider, along with keeping track of the competitors. Your focus statement could

include: “The game uses a 3D engine that allows for a number of snowmobiles and

riders on the screen at once. The player has a third-person view of his character and

snowmobile to allow him the optimal control of his vehicle while watching out for

the other snowmobile riders.” It makes sense also to say something about the areas

in which the player will be driving their snowmobile. Is it easy to see where to go

and simple to navigate? Or is finding where the player is capable of going part of

the challenge? You may want to consider our previous sub-focus here. It states that

Chapter 5: Focus 89

this game is supposed to appeal to the casual gaming audience, and that the game is

supposed to be fairly easy to play. So, hard-to-understand courses and combat areas

are probably out: “The design of the game-world is such that the player always

understands where he is supposed to go and has no trouble understanding which

areas can be navigated and which cannot.”

Of course, there could be numerous other sub-focuses for Snow Carnage

Derby, covering everything from gameplay mechanics to what sort of story line

the game will have, to how long an average game should last. Always try to avoid

putting in too much detail, however. That is for the design document. Here you are

merely setting the project’s direction, not actually implementing it. But for the pur-

poses of our example, we have enough sub-focuses now, leaving us with a focus

and sub-focuses that look like this:

Snow Carnage Derby is an exhilarating, fast-action snowmobile demoli-

tion game. The player’s experience revolves around the seemingly realistic

physics of controlling snowmobiles, with the player being able to do fun

and challenging moves and jumps in a snowy environment; the game is

balanced not for realism but for fun. The game provides a visceral thrill

by allowing for the decapitation and otherwise crippling of enemy snow-

mobile riders, and said violence is played out to maximum comedic effect.

The game provides fast-action thrills as the player tries to run down the

competition while avoiding destruction.

Audience

Snow Carnage Derby appeals easily to more casual gamers. The game

provides the simplest control scheme possible, with a player needing to

use a small number of easily remembered keys to successfully play the

game. Novice players can figure out how to play the game without reading

the manual or using a training track, though an instructional level will be

included. Snow Carnage Derby is of a relatively low overall difficulty,

with the player able to specify difficulty levels in the game. Even margin-

ally skilled, poor players are able to play the game to completion on the

easiest difficulty level, given enough attempts.

Visuals

Snow Carnage Derby includes a visually lush, high-contrast environment,

with the bright colors on the snowmobiles and their riders contrasting

with the snow and ice they are riding on. The game uses a 3D engine that

allows for a number of snowmobiles and riders on the screen at once. The

player has a third-person view of his character and snowmobile to allow

him the optimal control of his vehicle while watching out for the other

snowmobile riders. The design of the game-world is such that the player

90 Chapter 5: Focus

always understands where he is supposed to go and has no trouble under-

standing which areas can be navigated and which cannot.

Notice how the sub-focuses are set off by separate headings from the primary

focus. This way readers of the focus can easily see what the primary, most impor-

tant focus is and how the sub-focuses go into detail about specific parts of the

game.

As you are working on your sub-focuses, it is important to always make sure

that they jibe with your primary focus, as well as any other sub-focuses you may

have. For instance, it makes sense that the Visuals sub-focus talks about the game

providing a game-world that is easy to understand visually, since the Audience

sub-focus talks about making the game easy to pick up and get into. If you are

already contradicting yourself in the writing of your focus you are going to have a

very hard time writing a whole design document that makes any sense at all. As the

development documentation for your project gets larger and larger in scale, it also

gets harder and harder to maintain consistency. Keeping your focuses supporting

each other should not be a problem, however, since properly written focuses should

be short, concise, and easy to understand.

Using Focus

The focus statement for your game may be quite handy in dealing with whatever

marketing department you may be working with to sell your game. Often the mar-

keting department wants to learn about the nature of the game long before the game

is actually playable. Besides, many (though certainly not all) marketing people are

not terribly interested in playing your game, and will be quite happy that you have a

few sentences written for them which succinctly describe what makes the game so

appealing. If generating a significant number of sales is one of the items on your

agenda (let us presume it is not your primary motivation for working in games, for

surely there are more profitable careers to pursue), then having the marketing peo-

ple get excited about your game when they try to sell it is as important as having the

programmers excited during the game’s development. Marketing people will try to

sell games they believe in and that they think are cool concepts, and your focus

statement can serve to quickly explain to them what is so thrilling about your idea.

Of course, marketing people also love comparative descriptions, such as, “The

game’s basically Tetris meets Quake.” So, if possible, you may want to come up

with some sort of comparisons that place your game within the context of already

existing hit games, games the marketing specialists already know how to sell. But

keep your focus devoid of unnecessary references to other games, in order to keep it

as standalone as possible. Once the marketers think that Tetris meets Quake is a

Chapter 5: Focus 91

pretty hot idea, they will want more information about your game, and your focus

perfectly provides that.

Using your focus for your game’s development is the primary reason you wrote

it down in the first place. Many game designers do not have a focus when they are

working on a game, and it shows. Of course, it is possible to make a good game

without really having any idea of what your game is all about. It is also possible to

win the lottery. When your livelihood, reputation, and the quality of your final

game are on the line, however, you want something more than a random number

generator to determine if your game works or not. Using a focus is one tool that

will help you to create a solid, entertaining, and compelling game.

92 Chapter 5: Focus

Chapter 6

Interview: Ed Logg

Asteroids, Centipede, and Gauntlet. If there was ever an impressive track

record for a game designer, that is it. Throw in some lesser-known classics

such as Super Breakout, Millipede, Gauntlet II, and Xybots and you have a

truly unequaled career. Ed Logg designed and developed all of those titles

at Atari back in the heyday of the arcades. These days, designing games

for the coin-op market seems to be a dying art form, with so much of the

industry’s attention shifted to the home market. Today Logg continues to

work in game development, adapting popular Atari arcade games such

as the San Francisco Rush series to consoles, including the Nintendo 64

and the Sega Dreamcast. To look at them, the classic arcade games seem

quite simple, but it is that simplicity which forced their designers to refine

them to the point of perfection. Logg’s classic coin-op games remain

some of the best computer games ever made, and the insight designers

can gain from studying them is enormous.

93

What was it like working at Atari in the late ’70s and early ’80s?

We were young and energetic. I imagine it is very similar to the atmosphere at

most Internet startups these days. We were a relatively small group in the Coin

Operated Games Division. This allowed everyone to know everyone else. Ideas and

pranks flowed freely. Since we were working on a new medium we could do any-

thing and it would be “new.” Even games like Lunar Lander, done by Rich Moore,

which had been done originally years before, were new to our audience.

Where did most of the ideas for the games come from?

The ideas came

from many sources.

For example, Owen

Rubin, another engi-

neer at Atari, told me

Nolan Bushnell had

suggested to him an

extension of Break-

out. I took his idea

and added many of

my own to create

Super Breakout, my

first commercial suc-

cess. The idea for

Asteroids came from

Lyle Rains, who was

in charge of engineer-

ing at the time. He got the idea from a previous coin-op game. Xybots came from a

challenge by Doug Snyder, a hardware engineer at Atari. We wanted to do a

multi-player Castle Wolfenstein-like game but we had no “bit-map” hardware. So I

created an algorithm based on 8x8 stamps and he did the hardware. Centipede came

from a list of brainstorming ideas. Atari would go off-site each year to think up new

ideas. One of those ideas was “Bug Shooter” which was used as a starting point for

Centipede.

Management had reviews where they would come in and play the game and

give feedback. Sometimes the consensus was negative and a game could be killed.

Most often it would continue until it could be “field tested.” This meant it was left

to the players to determine how much and for how long the game earned. However,

sometimes good suggestions came from these reviews. The most important one of

all was a suggestion made by Dan Van Elderen, who was in charge of engineering.

He asked me why we could not shoot the mushrooms in Centipede. Yes, the

94 Chapter 6: Interview: Ed Logg

Asteroids

mushrooms were originally static. It was his suggestion that led to the breakthrough

that made this game fun.

Were you excited to get into game development at Atari?

Actually, I had been doing games for many years on the side, while in high

school, at Berkeley in the ’60s and also at my first job at Control Data Corp. I

ported Star Trek and the original Dungeon game between Stanford’s and CDC’s

computers.

I had built a home computer a year or two before joining Atari, just to create

and play games. I had been to a Pizza Time Theater and played Pong and Breakout,

so I was well aware of the coin-op business. I had also played games and was very

inspired by a prototype of the Atari VCS (2600) at a Christmas party in 1977. So the

change in employment seemed natural for me. At the time I thought it was great for

them to pay me to create and play games.

Dirt Bike was your first game for Atari, but I understand it didn’t make it into

production. What sort of game was it?

This game was started by Dennis Koble who went on to do many consumer

titles. It was a game similar to Sprint except you drove a dirt bike and the control

was a set of handlebars that could be used to steer the bike instead of a steering

wheel.

We field tested the game and it earned enough money to make it good enough

not to kill outright but not good enough to make it into production. However, I had

made Super Breakout at the same time I was working on Dirt Bike. No one at Atari

had ever worked on two games at once before. Super Breakout had earned a large

amount of money, and this probably led to the decision not to build Dirt Bike. I was

not disappointed considering the success of Super Breakout.

What was the genesis of Super Breakout?

The original idea included six variations on Breakout. I envisioned three

released games with two variations in each game. However, in actual play there was

one overall favorite, Progressive Breakout. In the end we put three variations in one

game: Progressive, Double, and Cavity Breakout. The variations that did not make

it were more vertically oriented and I had to agree they were not as fun.

Were you given a lot of creative freedom on Super Breakout, or were you con-

strained since it was a sequel to a previous hit?

To me, Super Breakout was not a sequel. Remember the original game was not

done in software. The code had to be created from scratch and the gameplay was

completely different from the original even though we used the same controls.

Chapter 6: Interview: Ed Logg 95

I was given freedom because I was

doing the title without any official sanc-

tion. It was not the last time I would do

that, either. Games could be done in a

short time in those days, which meant you

could make something fun before anyone

even noticed you were doing anything

different.

Maybe I should explain how we were

developing games in those days. We had

one main Digital computer which had the

cross assembler for our 6502 based games.

We had several gals who would enter our

handwritten pages into our programs and

give us back a computer printout and a

paper tape. Yes, you heard that right. We

would then feed the paper tape through our

development system into the RAM replacing the game ROM on the PCB. We would

debug this using primitive tools and a hardware analyzer and write our changes on

the paper printout. Since this process left time between the debug session and the

next version, I used this time to develop a second game. I would just swap the

graphics PROM (yes, we created the graphics by hand ourselves), and load the new

paper tape.

That’s really astonishing that you ever developed a game using such primitive

methods. How did you manage to fine-tune your game with such a long time

between versions?

Well, actually, I was very good at just patching RAM with new instructions, so

it was easy to see what small changes did to the game. We also had an HP analyzer

that we could use to trap on many conditions, which allowed us to find many bugs

that many development systems cannot even do today. Actually it was possible to

do some new coding while you were waiting for your last changes to be made, so

less time was lost than you think.

But you would certainly agree that modern development tools have made game

development easier?

There are several issues here. First, back then we often knew everything about

the target hardware, which made it easier to see what was going wrong. Today, the

target hardware is often hidden from us and there are several layers of software

which can make debugging or doing what we really want to do difficult. So in this

sense it is much harder now. Also these modern software or hardware layers are

96 Chapter 6: Interview: Ed Logg

Super Breakout

often not documented, documented incorrectly, or just getting in our way. Second,

the hardware has gotten very complex with interactions between the many bytes

causing all sorts of problems. Third, the processors have become very complex,

causing all sorts of debugging nightmares, especially in dealing with the caches.

Fourth, today there are many programmers working on a game and it is easy to

mess up one of your coworkers.

Surprisingly, the development environment has not gotten any faster over the

past few years despite the great increases in the computing power and RAM. As an

example, some of my files on my 25 MHz Mac IIci with 6 MB of RAM compile

and link in the same time or faster than files on a 550 MHz PC under NT with 512

MB of RAM. Even the same project on my 150 MHz Indy builds faster than my

550 MHz PC. I firmly believe that every tool developer should be given the slowest

possible system to use to develop their software! Otherwise, we are doomed to con-

tinue to run no faster with each new upgrade.

The modern tools are so much better than the old method, it is hard to imagine

how I could have done so well, but you mustn’t forget how much time is spent

learning each new software tool, processor, and operating system these days. In

addition, the amount of time wasted chasing after bugs on new systems because I

did not understand some other hardware or software is quite large. But I would not

want to go back to the old tools unless the processors, hardware, software, game

concepts, and team sizes were much simpler.

I’ve never seen your next game, Video Pinball. How did it play?

It simulated pinball by using a half-silvered mirror with a monitor below the

mirror and the graphics for the play-field above the mirror. The monitor would

show the flippers and ball, which gave the impression the white ball was on the

play-field. The play-field actually had LEDs controlled by the program which simu-

lated lit targets. In addition, the control panel was hinged, which allowed the player

to “nudge” the cabinet to give the ball some English. I did not think this game up. I

believe it was Dave Stubben’s idea.

How did you hope to convince players to play Video Pinball instead of the real

thing?

I did not believe Video Pinball would be successful and I was asking that exact

question. However, there were places video games could go that a large pinball

game could not. In the end, the game earned more than I had expected and it was a

commercial success. I must say I was wrong on my first impressions, and that does

not happen often.

Chapter 6: Interview: Ed Logg 97

Was it hard to work on a project that you did not think would be any fun? Did

the final game turn out to be entertaining?

The gameplay was fun but no comparison to a real pinball game. I was sur-

prised that it sold as well as it did. Yes, it was hard to work on an idea that I did not

think would work well. But I was young and motivated . . . What else can I say?

Where did the idea for Asteroids come from?

Lyle Rains had

suggested to me the

idea of a game where

the player could

shoot asteroids

because there had

been an earlier

coin-op game with an

indestructible aster-

oid that the players

kept shooting instead

of pursuing the

intended goal. I told

Lyle we would need

a saucer to force the

player to shoot the

asteroids instead of

wasting time. I also suggested breaking the rocks up into pieces to give the players

some strategy instead of just shooting the larger rocks first.

Lyle gave me the idea. People often attribute the success to one or the other of

us. I would probably not have come up with the idea on my own and if someone

else had done the game it would most likely have been totally different. So in truth,

we should both be given credit for this idea. Come to think of it, without the vector

hardware, Asteroids would not have been a success either. So there are many people

and events that led to its success. I am very glad to have been there at that time

and place.

The game changed very little in development from the original idea. I did make

two saucers, one dumb and one smart. I made one fundamental change near the end

of the project that had far-reaching implications. Originally, the saucer would shoot

as soon as the player entered the screen. Players complained, and I agreed, this

seemed unfair. Often the saucer was not visible just off the edge and if it started

next to your ship you had no defense. So I added a delay before his first shot. This,

of course, led to the “lurking” strategy. While testing, I had actually tried to lurk at

one point and decided it was not going to work, which shows you how well the

98 Chapter 6: Interview: Ed Logg

Asteroids

TE
AM
FL
Y

Team-Fly®

game designer can play his own game.

Were you surprised by Asteroids’ success?

I was not surprised by its success. It sounded like a fun game when I played it in

my mind. Even after the first few weeks, people would come by and ask when they

could play. That was a sign your game was fun!

Even when we field tested the game for the very first time, I saw a player start a

game and die three times within 20 seconds. He proceeded to put another quarter in.

This tells me the player felt it was his fault he died and he was convinced he could

do better. This is one of the primary goals a game designer tries to achieve and it

was clear to me Asteroids had “it.”

Back there you mentioned that you played the game out “in your mind.” Do you

find that to be an effective technique for predicting whether a game will be fun or

not?

It is a skill which I find works well for me. I also play devil’s advocate with my

ideas: I ask myself “what can go wrong?” or “will players be confused by what I am

presenting?” I find that some designers often are so married to their ideas that they

will not accept the concept that maybe it just won’t work. I cannot tell you the num-

ber of great ideas I have had that I “played out” in my mind that turned out to be

bad ideas.

I am one of the few designers I have ever met that has actually killed many of

his own games. I think this is a good trait. Why waste another year to two if the

gameplay does not play like you expected?

Did you work on the sequel, Asteroids Deluxe?

I did not do Asteroids Deluxe. It was done by Dave Shepperd. I was promoted

around that time into a supervisor role. I believe I was also leading the four-player

Football project. So I was busy. I have no problems doing sequels if that is the best

course of action. I had some new ideas, so I wanted to do Millipede. Gauntlet II was

a logical choice since Bob Flanagan, my co-programmer, and I knew the code and

this was the best game concept we came up with.

After Asteroids you didn’t make another vector-based game. Did you not like

working with the hardware?

Actually, I loved vector hardware for the reason it allowed me to put up high-

resolution 768 by 1024 pictures. However, the industry was just moving over to

color monitors at the time. Dave Theurer did do Tempest as a color vector game, but

the color mask on color monitors did not permit high resolution. Besides, you could

not fill the screen with color on vector-based games, so that medium died with the

advance of color games.

Chapter 6: Interview: Ed Logg 99

Wasn’t Asteroids the first Atari game to have a high-score table?

Actually, Aster-

oids was not the first

game; there was

another game that

used it just prior. I

thought the idea was

a great way to pre-

serve your score and

identity for the world

to see. So I added it

to Asteroids. I see it

as filling the role of

graffiti. Now it is

standard, of course,

and the industry has

added battery-backed

RAM or EEROM to

save it permanently.

Around this time you created the Othello cartridge for the Atari 2600. I under-

stand you studied AI while at Stanford. Did the Othello project grow out of your

interest in AI?

No, actually Asteroids showed more influence from my Stanford experience.

While I was at the Stanford AI Lab, I had played Space War on their PDP machines.

I had also played a coin-op version of this in the Student Forum coffee shop. In my

mind, this was the first video game. Pong certainly was the first commercial video

game. Anyway, the spaceship design in Asteroids was a copy of the original Space

War ship.

I had played Othello as a board game and I was intrigued by possible strategies.

So I worked on this game at home and developed an idea that the game could be

played by pattern matching without any AI. In other words, the computer does not

look ahead at your replies to any of its moves, which was the standard AI approach

at the time. So really the Othello game I did had no AI. It was good enough for the

beginner and average player. It was not an advanced game by any means. Besides,

the 2600 had only 128 bytes of RAM so there was not much space to look ahead.

In fact, Carol Shaw had done the hard part by providing me the kernel which

drew the pieces on a checkerboard. The 2600 was extremely difficult to do anything

complex on. It was intended to do Pong-style games. You spent all of active video

counting cycles to draw the screen. This left Vblank to do any thinking or other

work. There was limited RAM so nothing complex could be saved in RAM. Othello

100 Chapter 6: Interview: Ed Logg

Asteroids

was 2,048 bytes. Most of this was the kernel. So I often spent time trying to elimi-

nate a few bytes to add something new.

Was Centipede your next game?

No, as I mentioned I was a

supervisor at the time. I was pro-

ject leader on four-player Football

and a kit to upgrade the plays on

the original Football game.

On Centipede, I thought up the

idea of the centipede segments and

the way the legs moved. I do not

believe it was mentioned in the

original “Bug Shooter” brain-

storming idea. In fact, no one has

ever stepped forward to claim

“Bug Shooter” as their idea.

Maybe it was due to the finished

product being so much different

from the original idea. I had

assigned a new programmer,

Donna Bailey, to do the programming on Centipede. Partway through the project, I

quit being a supervisor (I didn’t like the job and it took me away from doing games)

and spent time working on Centipede.

So Bailey was pretty important to the game’s development?

I would guess she did about half the programming. The game design was left to

me because she was working on her first project.

It seems that Centipede appeals to women more than most arcade games. Do you

think Bailey had something to do with that?

I wish I knew the answer to that question. Someone could point out that no

other game I have done appeals to women as much as Centipede.

Many theories have been suggested. One is that is was created by a woman.

Another is that destroying insects fits well with a woman’s psyche. I believe this

game appeals to women because it is not gender biased like fighting games or RPGs

or sports games. Other examples like Pac-Man and Tetris are notable.

I do know Centipede fits the basic criterion for a game that appeals to a wide

audience. It has a new, appealing look (to get players to try it), an obvious goal

(shoot anything), clear rules, an easy set of controls, a sense of accomplishment

(kill the entire centipede before he gets you), dynamic strategies abound (trap the

Chapter 6: Interview: Ed Logg 101

Centipede

centipede and kill spiders or the blob strategy or channel the centipede or just plain

straight-up play), enough randomness to make the game different each time, a goal

to keep you going (a new life every 12,000 points), a clear sense of getting better

with more play, and a sense that any death was the player’s fault.

So you mentioned that Centipede grew out of a brainstorming idea. How did the

brainstorming process work at Atari?

The brainstorming ideas came from anyone in the company. They were usually

gathered weeks before the actual meeting which was held off-site, away from Atari.

Often the ideas were just a theme. Most submittals had sort of a sketch or art to give

the reader a little more info. Occasionally a full game description was submitted

which explained the hardware, controls, art, and gameplay.

During the brainstorming session, each idea would be presented and then sug-

gestions would be made for improving it. In addition, marketing would give a

rundown of what was selling and the state of the industry. We would also break into

smaller groups to discuss a specific type of game or talk about specific games them-

selves. In the end we would meet again to present any additional ideas from these

smaller meetings and vote for the popular ideas. I would say we would get a major-

ity from programmers and designers, but there were a significant number of ideas

from artists and others in the company. I found many of the ideas needed a lot of

work so it was not uncommon for the original brainstorming idea to get a major

overhaul.

Atari Games Corp., now Midway Games West, still uses this process each year.

But quite honestly, many of the recent coin-op games are just remakes of older

games. For example, more ver-

sions of Rush or Cruisin’. The

reason is often market driven:

these are the games that have done

well in the past and the company

does not often want to risk taking

a chance on a new theme.

How did Centipede change over the

course of the game’s development?

I mentioned that Dan Van

Elderen asked why the player

could not shoot mushrooms. I

realized early I would need some

means to create new mushrooms.

This led to one being left when a

centipede segment was shot. I also

102 Chapter 6: Interview: Ed Logg

Centipede

created the flea which left a trail of them when he dropped to create more random-

ness in the pattern. In other words, I did not want the player to create the only

pattern of mushrooms. The spider was always planned to be my “Asteroids saucer”

which kept the player moving; the spider also had to eat mushrooms to keep the

player area somewhat free of mushrooms. The scorpion was added to add a random-

ness to the centipede pattern and create a sense of panic when the segments would

come rushing to the bottom of the screen.

Do you try to create games which allow different players to use different strate-

gies to succeed?

I do strive to give the players as much freedom to create as many strategies as

possible. So in a sense, yes, I guess I do encourage players to experiment and try

different strategies. I do try to make sure that none of them work all the time or

make the game too easy. But I want to leave the player with the impression that if

he was only a little bit better he could pull it off.

Why did you choose to use the trackball for Centipede?

I believe we used the trackball from the start. I had experience with the

trackball on Football but I wanted something that was not as heavy and physical to

move around. That is how the Centipede trackball came about. The trackball, just

like the computer mouse, provides a means for inputting arbitrary direction as well

as speed. No other controller comes close. It was the clear winner for player

controllability.

In my opinion, Centipede is one of the best balanced games ever. Was there a lot of

experimentation to achieve such a balance?

I would not use the term experimentation in this case because nothing was tried

and discarded. There was a grasshopper that we intended to add to hop onto the

player, but the spider was sufficient in forcing the player to move so the grasshopper

was never even tried. Of course, you can still see the graphics for the grasshopper if

you look at the self-test graphics.

There certainly was a lot of tuning. The timing and speed of when things hap-

pened certainly was changed over the course of the project. The balance comes

from the inherent rules of the game and the art of knowing when to leave the play

alone and when to change something. This art is something that some people have

and others just don’t. I cannot define it other than to use the term “game sense.”

Were you given freedom to do whatever you wanted for Millipede?

With my past record I was given more freedom than anyone else. Something

most people do not understand is that half of the games I started did not make it into

production. No one ever hears about the failures. Some of the games I actually

Chapter 6: Interview: Ed Logg 103

killed myself. That’s something I

believe no one else at Atari did. Of

course, there are a few I tried to

kill but was not allowed to that

eventually died. These days you

would probably see them come out

in the consumer market anyway

just to get back some of the devel-

opment cost. But in the coin-op

market there is no chance to sell

anything that isn’t a clear winner.

Millipede allowed players to start farther into the game, at 45,000 points, for

example. Was this an effort to shorten the games of the expert players?

It was a way to increase the cash box. It allowed the good players to start at a

higher score where the gameplay was on a difficulty level that was probably just

above his level of skill. This often meant shorter game times but would allow higher

scores. In a sense I was doing this for marketing reasons. This was not a first for

Millipede. Tempest had this feature back in 1981.

I particularly like the “growth” of the extra mushrooms in Millipede. Was this

done using a “life” algorithm?

Yes, it is based on the game of life where two or three neighbors would create a

new mushroom and anything more or less would kill the mushroom. This has an

interesting history. Mark Cerny asked why I didn’t do a life algorithm on the mush-

rooms. I told him I was busy but if he wanted to add it to the game he could. Of

course, Mark, being the sharp guy he is, looked at my code and quickly created this

feature. He also added the attract mode to demonstrate all the creatures.

During the Asteroids to Millipede period, almost all your games were being ported

to a wide variety of systems: the 2600, the Apple II, and so forth. How did you feel

about these conversions?

It was good business for the company so it made business sense. Of course it

always made me proud to see my game in many new places. I did have some con-

cerns about several of the ports. I understand the limitations of some of the systems

but I wanted to make sure the company released the best possible conversion. In

104 Chapter 6: Interview: Ed Logg

Millipede

many cases I was involved in mak-

ing sure it had all the features but

unfortunately not often enough.

Some of the conversions made

improvements that were not possi-

ble in the coin-op market. For

example, in Gauntlet they made a

quest mode with a limited amount

of health. This would not be possi-

ble in coin-op where the object is

to get more money added on a reg-

ular basis. Another example would

be to look at the number of varia-

tions of Pong included on the Atari

2600 cartridge. It just makes good

sense to add value for a consumer

title.

Was Maze Invaders the next game you worked on after Millipede? I know it never

went into production.

It was a cute puzzle-like game. I was not sad it didn’t make it; it did not earn

enough on field test. My son loved the game though and I still have one of the two

prototypes in my garage. The other was purchased by an operator in Texas, I

believe. He loved the game so much he talked Atari into selling it to him.

I believe I mentioned earlier that nearly half of my games did not make it into

production. There were engineers that had a higher percentage, Dave Theurer in

particular. But there were others who never had a game in production.

The name Maze Invaders suggests perhaps something inspired by Pac-Man.

Was it?

Yes, in a way. It was a maze-like game but the maze changed dynamically. The

main character was very Pac-Man like; he was cute. There were some parts that I

found frustrating, such as when the maze would temporarily block me off. I could

not resolve this frustrating aspect, which is probably why it failed.

I understand in 1983 you also worked on a Road Runner laser disk game. Was it

based on the Warner Bros. cartoon character?

Yes, it was based on Road Runner created by Chuck Jones. The player played

the part of the Road Runner who would try to have Wile E. Coyote fall prey to some

trap. I had Time Warner send me all of the Road Runner cartoons. I watched every

one and selected the best shorts to be included on a laser disk. So when you

Chapter 6: Interview: Ed Logg 105

Millipede

succeeded in getting Wile E. destroyed, the game would cut from the action to a

similar scene from a cartoon where Wile E. met his usual fate.

I always loved the Road Runner and I thought I could bring him to a video

game. When I started I had a vision of something unique. The game certainly met

that criterion but it was not as fun as I had hoped. I certainly enjoying seeing all the

old cartoons and meeting Chuck Jones but . . .

So the game was killed?

Laser disk games were failing in the coin-op world because of reliability prob-

lems. The game actually earned enough to warrant interest but not as a laser disk

game. So when they asked me to port it to their new “System I” hardware, I

declined, saying I had another idea I wanted to pursue. I am glad they let me pursue

this new idea because this idea became Gauntlet. Road Runner was converted over

to System I and actually was released.

Did Gauntlet follow your initial vision fairly closely, or did it change a lot in

development?

I went back

recently and looked

at the original game

design document

and I was surprised

how closely the

graphics and

gameplay matched

the finished product.

Of course, what did

change during

development was

the hardware. I cre-

ated an algorithm

which would allow

me to deal with

1,000 objects with-

out burdening the processor or slowing down the frame rate. I asked Pat McCarthy,

the electrical engineer, if he could extend the existing hardware and he found a way

to do this which would allow me to display all the objects I needed. In the end there

were five patents issued for Gauntlet.

Because of the size of the PCB and the restrictions on PCB size for Japanese

kits, we decided to use a four-layer PCB for Gauntlet. Atari had never laid out such

a board nor had they ever used traces as small as we required. But in the end we

106 Chapter 6: Interview: Ed Logg

Gauntlet

paved the way for all future PCBs at Atari. So besides the success of the game in

the industry, Gauntlet also made a giant leap in the way we did engineering and

manufacturing at Atari.

To my memory of arcades in 1985, Gauntlet seemed to be one of the first action

games to allow four players to play at once.

This was the first multi-player game which allowed players to end or leave at

any time and the screen scrolling was controlled by their actions. This was not the

first game to have multi-players. Tank 8 allowed eight players on one monitor. But

all the players had to start at the same time. The idea of using four players was

designed into Gauntlet from the start. I suspect it was due to the fact that I could

only put four players around an upright monitor.

I believe Gauntlet was the first game that allowed the player to buy in any time

he wanted. I did not want the players to wait, like in Tank 8, for everyone to coin-up

at the same time. The only solution was to have players come and go at will. Health

was always planned from the start. I believe this idea came from Dungeons &

Dragons, which was very popular at the time. So it was logical that money just

bought more health. Since it is every coin-op designer’s wish to have the players put

as much money as they can into their game, I saw no reason why I would not have

the players just increase their health with each coin. In hindsight, this is a wonderful

idea because losing 2000 health was not as painful psychologically as inserting

another quarter. Besides, the players would not need to reach into their pocket to

find another quarter to insert before their character was lost.

Where did the idea to have the game say things like “Red Warrior needs food,

badly” come from?

I do not remember. I suspect it was not my idea. It may have come from my

co-programmer Bob Flanagan or from someone else at Atari. In any case we had a

large list of phrases we wanted the “Dungeon Master” to say to taunt the player.

There are several phrases that seem to stick in everyone’s mind. My favorite is “the

Wizard (me) seems to be eating all the food lately.”

Many think the Valkyrie was the most powerful of the four characters.

Actually, the Hulk or the Wizard could be used to play forever. This was dem-

onstrated first by players in Japan playing a one-player game. This was fixed later

by reducing the amount of food on subsequent levels if the player had not lost

enough health during the last level. The Valkyrie was designed to be the most bal-

anced of the characters but shot power, shot speed, and strength proved to be more

important than other attributes. This is why the Hulk and Wizard seemed to be the

most powerful. Of course, the Elf was fun to play with for many players because

you could always get more food or treasure than the other players.

Chapter 6: Interview: Ed Logg 107

Gauntlet II allowed four players to all be playing Valkyries, or Elves, or whatever

combination they wanted. Did this mean the character classes had to be more

equal than in the first game?

No, we actually

did very little that I

can recall to equal-

ize the characters.

This feature was

added because some

players wanted to

play a particular

character and I did

not want them to

wait until the

desired position was

open. So in essence

I eliminated another

reason for not enter-

ing the game right

away.

Was Xybots your next project after Gauntlet II?

Bob Flanagan and I actually started another game which I quickly killed after

the initial gameplay turned out to be less fun than I had expected.

Xybots, as I mentioned earlier, started out as an idea to do Castle Wolfenstein. I

started the game as a two-player split-screen Gauntlet III. Partway through market-

ing said they wanted something other than Gauntlet. So I changed the characters

and enemies to be more like Major Havoc. I still regret changing the theme and

wish I had kept my original game concept.

Was it a great engineering challenge to create the game’s 3D look?

I developed a very interesting algorithm for doing the 3D rotation using just 8x8

pixel stamps, as we call them. I don’t know how to explain how this worked without

getting my original sketches to visually demonstrate it. I could have had the player

rotate other than in 90-degree increments, but it made the gameplay simpler to just

allow only 90-degree rotations.

If I recall, the game had interesting and unique controls.

The controller was very unique because it provided the standard eight-way joy-

stick as well as a knob on top which could turn left or right to indicate a rotation.

This control made the game more difficult, which is often the kiss of death in the

108 Chapter 6: Interview: Ed Logg

Gauntlet IITE
AM
FL
Y

Team-Fly®

coin-op market. As

with any 3D game,

players could not

easily visualize

where they were

despite the map

available to them. In

addition, it was pos-

sible to get shot in

the back, which

added to the frustra-

tion factor.

How did you get involved working on the Atari Tetris?

I played a version of Tetris and was quickly addicted. I asked our legal counsel,

Dennis Wood, to get the rights. Since I had just worked on reverse engineering the

Nintendo Family Computer, which soon became the Nintendo Entertainment Sys-

tem in the U.S., I decided to create a version on the FC and NES and sell it through

Tengen, which was Atari’s consumer publisher. Dennis Wood got the rights and we

showed Tetris first at the June Consumer Electronics Show. It was decided to

improve the game so I redid the visuals and we released it at the following CES in

January.

I should point out that I was working on another game at the time I was doing

this, so I could not devote all my time to the Tetris project. It was this fact that made

me need to turn over Tetris to Greg Rivera and Norm Avellar for the coin-op mar-

ket. I did get my original code to run on the coin-op hardware before going back to

my project. This is why my name appears on the credits of the coin-op version.

What did you like so much about Tetris?

It was just so addicting I knew we had to have it. In hindsight, I could explain

why this game worked so well but I am not sure that would prove anything.

Besides, the real question is “Why didn’t I think of this idea?”

Was Tengen Tetris your only NES project?

I had Centipede and Millipede running on the FC before the lawsuit with Atari

Corp. resulted in the ruling that they owned the rights to all our games prior to the

sale of Atari to Tramiel by Time Warner. So we had to drop the work I did. So my

previous work made Tetris very easy to do on the NES. I also added the two-player

Chapter 6: Interview: Ed Logg 109

Xybots

simultaneous feature which made this game better than all the other versions. Later

you would see Tengen versions selling for $150 or more.

Why was Tengen Tetris eventually withdrawn from circulation?

You can read several versions of the story but I suspect the bottom line is the

Hungarian who had the rights did a poor job of covering all the bases. The Russians

accepted money from Nintendo when Nintendo created a new category of rights.

Despite the fact we had the rights to computer systems, Nintendo claimed their

Family Computer was not a computer even though they sold Basic and a keyboard

and other services in Japan just like any other computer. I was certainly disap-

pointed to see my work lost.

Why did you want to work on conversions of someone else’s game?

As with many of my games, this was the best idea I could think of at the time.

However, in this case, because I enjoyed it so much, it was an easy decision. What

better way to play the game you like so much and make sure it comes out the way

you like?

What did you work on next?

I eventually killed the game I was working on during the “Tetris Affair.” I

believe Steel Talons was my next project. I wanted to do a 3D Red Baron fly-

ing/shooting game but marketing thought World War I planes were not cool enough

for teens, who were the prime coin-op target audience. Marketing wanted jets and I

thought that was a dumb idea because who wants to see dots at a distance shooting

at each other. I wanted something close where you can see the detail of the enemy

you are shooting at. Helicopters were the logical choice.

Wasn’t Steel Talons a fairly authentic helicopter simulator?

Steel Talons had all the regular helicopter controls: a rudder, a collective for

controlling height, and a stick for turning. Of course flying a helicopter is difficult

without some assistance, so I had computer assist just like real military helicopters.

I added automatic collective control so the player would maintain level flight and

any landing would be smooth. It would also increase height if the ground was slop-

ing in front of the height. The “real” mode just disabled this helping code and

increased the player’s acceleration to compensate. This was a unique feature and

Atari was issued a patent on this idea.

The game had another interesting feature that had never been used on a video

game before. We installed a pinball thumper, often used to indicate a free game,

under the seat. This was used whenever the player’s helicopter was hit by enemy

fire. During the first field test, the voltage for this thumper was higher than it should

have been and the first players to use it nearly jumped out of their seats when it

110 Chapter 6: Interview: Ed Logg

fired. The noise could be heard over the entire arcade.

The first field test also introduced a new problem that we never had before. I

went out to check on collections and I tried to remove the coin box. If you have ever

seen Steel Talons, you will see that the coin box is located at a strange angle requir-

ing the operator to lift the box with his arms fully extended. Not the easiest position

to lift any weight. Well back to the story. I tried to lift the box out but could not

budge it. I thought it was jammed. I soon discovered that the box was so full and

was so heavy it was nearly impossible to remove. This led to the strange instruc-

tions in the manual asking the operators to empty the coin box every couple of days.

On Steel Talons, didn’t you work with Battlezone creator Ed Rotberg?

Yes I did. He was at Atari during the golden days of Battlezone, Asteroids,

et cetera. He left Atari to do a start-up called Sente, before returning to Atari a few

years later. He had just finished working on a Tube Chase-like game using the same

3D hardware that Steel Talons used. This hardware was a cost reduced version of

the Hard Drivin’ PCBs. So it was natural for Ed to work with me on this project.

Another interesting feature of this game was fog. The original Hard Drivin’ team

did not believe me when I told them I could add fog to the world. I am still proud

of this effect and they were surprised that it worked.

How did the Space Lords project come about?

I wanted to continue my ideas of multi-player play that I started on Gauntlet,

and then continued on Xybots and Steel Talons. So I chose a 3D space environment

with up to four cabinets linked together. Each cabinet had two monitors similar to

Cyberball. I tried to keep the cost down by using Atari’s “growth motion object”

hardware which was cheaper by far than the 3D hardware used on Steel Talons. It

could not draw 3D polygons, but it could grow or shrink flat textures.

I understand Space Lords did not do too well financially.

Space Lords had some strange earning patterns. At some arcades it earned more

than $1,000 per week for two double cabinets. But at some small arcades it earned

only $75 as a single cabinet. The bottom line is we had a difficult time selling it

because of its cost and the limited number of locations it could be sold into. It was

definitely hard to make a coin-op game using the concept of one player per monitor.

Even though I added a second player as a gunner at half price, it was felt by many to

be not as fun as being the pilot.

And Space Lords came out right around the time the fighting games were

taking off.

The fighting games made Space Lords difficult to sell because they were often

“kits,” which sold much cheaper than a large dedicated upright. Street Fighter II had

Chapter 6: Interview: Ed Logg 111

great earnings and continued to earn good money for a long time.

In fact, since the early ’90s most arcade games have been in one of a very few,

limited genres. What do you think of many of the arcade games that come out

these days?

You are right, the coin-op market seems to be all driving, fighting, and shooting

with an occasional sports title, like golf. There are reasons for this. Driving has uni-

versal appeal and usually earns for long periods. So it is often the most accepted

game theme. Besides, most home units do not have steering wheels and gas pedals

or give you the feel of being inside a car. So you cannot get this experience in the

home. Fighting games are now difficult to sell in the arcades and I believe this is

because you can get the same experience on most advanced consoles. At the time

they were cheap and earned big bucks. Shooting games are still viable because guns

are not the standard controller on consoles or PCs. So the only way a game player

can get this experience is in the arcade.

So the bottom line is, most arcade games these days are not unique and fit very

limited categories. I don’t think the arcades are completely dead but they are not the

destination places they used to be.

Did Space Lords turn out to be your last coin-op?

I was working on a shooting game prior to my departure from Atari. That game

died but the gun was used later on Area 51. I joined Electronic Arts who were trying

to start up their own coin-op group. My intention was to start doing consumer

games. But EA had some old Atari friends and I decided to join them. I had done

one puzzle game which I killed and was working on a shooting game when they

decided to drop out of the coin-op market. Then I was even more determined to

enter the consumer games business.

How did you come to start doing N64 programming?

I was looking for a project to work on, so I contacted many companies to see

what they had to offer. I was planning to work with another programmer from EA

but he decided to join some friends to start up a new company. Atari wanted the

coin-op Wayne Gretzky 3D Hockey done on the N64 and I was looking forward to

doing something on that platform. This was partly because the game promised to

look better than the PSX but also because it looked like we could be the first hockey

title available. So I joined a group at Atari and we started work on Wayne Gretzky

3D Hockey. This turned out to be more work than I expected partly due to the state

of N64 development systems but also due to the fact the coin-op was not going to

be done until just before we released.

112 Chapter 6: Interview: Ed Logg

As you mentioned, a lot of the appeal of playing an arcade game like San Fran-

cisco Rush seems to be sitting in the chair, having the gearshift, the steering

wheel, the force feedback, and so forth. How do you try to capture that for the

N64, which has none of these niceties?

You are right.

The home does not

have the environ-

ment of the arcade

cabinets but we can

do things on the

home games we can

never do in the

arcade. We can pro-

vide more choices

for the player, more

tracks for them to

learn, and more

things to discover.

I try to keep the

basic play the same

but I always try to

add value to the

product. This is one thing I made clear when I joined Atari. Atari wanted me to just

do a straight port. That had always worked for them in the past. I did not believe

this would work and told them I would be adding additional “stuff.” For example,

on Gretzky we added a full-sized rink, a new AI, instant replay, more players, full

seasons, etc. In general, home games require considerably more work. I also believe

we can do different games for the home market that we could never do in the

arcade. So for me, this opens up new possibilities.

Arcade pieces must be easy to learn with rules that are obvious and provide

entertainment that lasts ninety seconds. The home market is not bound by these

rules. Instead you must provide more life for your product. Often this means it takes

the player longer to “finish” the game. Even when the player has finished it, there

must be reasons why he will want to go back to do it all over again.

Do you like the engineering challenges of doing home conversions?

I actually enjoy the “old style” of trying to get everything to fit. I also enjoy

adding tricks to get the frame rate as high as possible. It was very interesting to get

all of SF Rush into 8 MB, which includes around 3 MB of audio and all the

graphics.

Chapter 6: Interview: Ed Logg 113

San Francisco Rush: Extreme Racing for the Nintendo 64

Do you miss doing original designs?

Yes, I do miss the old game designs. 2D worlds are so much easier for the

player to understand. I also like the idea of creating a game with a fixed set of rules

and enough randomness so that the player can create different play-styles and their

own strategies.

I am not sure I could sell a game with an “old design.” Players have different

expectations now. They would expect 3D designs or Internet play or high-resolution

textures and pre-rendered movies or highly developed characters . . . Besides, just

about anything I do now will just elicit comments like “It is just a twist on game

xxx with a little of game zzz.” For the record, many of the old designs were based

on previous game ideas. Remember, Asteroids came from a previous game with a

little of Space War thrown in, even though many thought of this as an original

design.

You have been working with Atari for more than twenty years now, so you must

really like it there.

Yes, Atari has been very good to me. I have a deep sense of loyalty to the com-

pany and the people I work with. Besides, I like what I am doing, so I see little

reason to leave. I think the loyalty is mostly due to heredity. Longevity comes from

doing what I like.

Working on games requires something which many people do not have. Many

cannot take the constant pressure to perform, the long hours, and the thought that

their “baby” that they have been working on may get killed after eighteen months of

hard labor. Others are programmers or artists who have found more interesting

things to do.

I must admit I have often thought of doing something else. I just have not found

anything else I want to do more than what I am doing now. That could change or I

may find myself doing games until I retire.

In the last few years, Asteroids, Centipede, and Gauntlet have all been remade.

How do you feel about the remakes?

Many are doomed to fail just like most game ideas. Gauntlet was a good case of

a remake that worked very well. Arkanoid was a remake of Breakout that worked

very well. So remakes can work, but it is difficult.

The real failure comes from comparing the gameplay to the original. For exam-

ple, making a 3D version of Centipede makes the gameplay harder because the 3D

information is not as easy for the player to process. Remember, designers have had

twenty years to play these old games and come up with a new twist to make a new

great game. The fact that they haven’t done it yet seems to indicate that it is

unlikely. Not impossible, but unlikely.

114 Chapter 6: Interview: Ed Logg

Which one of your games might you want to remake?

If I had the

answer to that, and

if I believed it was

the best idea I had, I

would be working

on it. Besides, if I

told you, then some-

one else would be

doing it now,

wouldn’t they? In

other words, I don’t

have any idea how

to take some old

classics and make

them new and inter-

esting in today’s

market.

How has the game development industry changed over the years?

The games industry has definitely changed, but it is still a video game industry.

Video games were not a $7 billion industry when I started. With big business comes

big money and that invariably brings with it control over how it is spent. So there is

definitely more politics at the corporate level. The interference from management

comes from their need to control the costs, but the real reason, I believe, is due to

the evolution of the games themselves. By that I mean, we could design and pro-

gram a game in three months in the early years. In three months you did not spend

enough money for them to interfere. Games have evolved to the point where you

cannot do a game with just one person in a realistic amount of time. It takes several

programmers, several artists, an audio specialist, and someone to manage the pro-

ject over a period from twelve to twenty-four months. The console market has

changed too. You did not need to spend $1 billion to launch a new console in the

early days, but it costs that much now. So with evolution comes longer periods for

development and higher costs to produce a product. With the higher costs comes

more money and hence more control (i.e., interference) over how it is spent.

For your original designs, you served as both designer and lead programmer. Do

you enjoy working in both capacities?

Working as game designer and programmer is a good idea if you can pull it off.

There are very few people who are good at both. So it is not a strategy I recommend

today. For example, for today’s complex multi-character and multi-level games, I

Chapter 6: Interview: Ed Logg 115

Gauntlet Legends

am not as good a designer as I would be on other styles of games. So I would be

willing to give up this role to someone else.

The programmer has to implement the design and if the designer’s ideas are not

communicated well enough, then the game is programmed differently than the

designer expected. I believe it is often the programmer who can make or break the

“feel” of a game.

You seem to have missed one point. I was also project leader on many projects.

This is a role I am very good at but receive no acknowledgment. My projects are

almost always on time and if there are problems, management is often told well in

advance. No one outside Atari probably is aware of this. Unfortunately, I do not

enjoy this role so I try to spend as little time as possible actually managing a project.

You even served as artist on your early games, didn’t you?

Early on it was a

good idea. There is

no reason to train an

artist to create a rock

on graph paper and

provide me with the

coordinates so I

could enter them into

my game. When

there was so little in

the way of graphics

or audio required, it

makes no sense to

have another special-

ized person doing

this. Today, it is an

entirely different

matter. Today it is absolutely required.

Do you feel that any of your games are underappreciated?

As a game designer, no, I do not feel I have any games that were under-

appreciated. If the game design works, then the gameplay is fun and the game sells.

As a programmer, yes, there are probably some game ideas or algorithms or pro-

gramming speed which are underappreciated. Many programming tricks I do for

personal enjoyment so I am not looking for external recognition.

116 Chapter 6: Interview: Ed Logg

Asteroids

In the early days you were pretty limited by the technology available to you. Did

the technology limitations foster creativity?

Yes, I would have to agree. There were many times I spent thinking about how

to do something on a given hardware and that turned into a game. Xybots was cer-

tainly one of those games. On Gauntlet we created new hardware to make the

gameplay possible.

When working with an original game design, where do you start?

First, I try to come up with the game and then look at all the aspects of the play.

From the market perspective: will it sell, is the timing right, licensing requirements,

competition, et cetera. From the player’s perspective: what makes this game fun and

what is unique that will make it interesting. From the development side: what will it

take to do this game in terms of people and equipment and will it be fun to do. Ideas

themselves come from just about every possible source. I have mentioned how

some come from previous games, brainstorming ideas, technical challenges, and

other people’s suggestions.

So, once you have your idea, do you start coding right away, or do you spend a lot

of time thinking it through ahead of time?

With the large budgets and large teams these days, it is necessary to do a game

design document and technical design document before the game gets too far into

development. However, I try to start work on some critical aspect while the design

documents are being drawn up. I believe it is extremely important to work on the

aspect of the game that will make or break the concept. The front-end movies, story

line, front and back end screens can all wait until the gameplay has been proven.

Sometimes this prototyping phase is quick but often it can take several months.

Once you have proven the gameplay concept in a prototype, how does the rest of

development progress?

Games go through four phases for me. The high at the beginning of a project of

doing something new and the feeling that this will really be a great game. The pro-

ject often makes giant leaps in short periods. The middle part of the project is

mundane. The concept has been proven but there is often so much work to do and

the game does not appear to change much for all your effort. The third phase is

often full of panic and stress. This is the part just before release when you just want

the project to end. The fourth phase is one of satisfaction after the game has been

released.

With the current long projects I often feel I am getting diminishing returns for

my effort, so I am happy to have the game end. In my case, almost everything I had

planned for my game has been implemented, so I am happy to call it done. Except

for finding those irritating last-minute bugs . . .

Chapter 6: Interview: Ed Logg 117

So after the prototype is functional, you don’t really enjoy the development

process?

Yes, I would say the bulk of the game is done after the core game concept has

been proven. However, there are often parts that prove rewarding during the long

development before the game is finished. But after doing so many games over the

past thirty years, working on, say, the user interface just does not get me all excited.

No, I would like to do a prototype and leave it to someone else to finish. But I

feel I still have the vision for the gameplay and I do not believe another person or

group would continue the gameplay as I envision it. So in the end I would feel that

the game was not what I expected, not mine anymore. I would always have the feel-

ing that if I had worked on it to the finish, the game would be better than what

anyone else could have done. I guess I would feel differently if I had not been as

successful as I have.

What role do you think AI plays in games?

In the old games AI had no involvement. Often the enemy would follow a fixed

set of rules with some randomness thrown in if necessary. These days it is entirely a

different matter. It is becoming very important for modern games. Some people

have recommended that, when appropriate, each project have one specially trained

person dedicated to doing the game AI. And for some games, I would agree.

Why do you think the games require more sophisticated AI now?

I believe the theme and gameplay of most new games require more AI. The sim

games, the shooters, et cetera, all try to give the real sense of intelligent life compet-

ing against you. If games do not try to mimic real life then a set of rules may do just

fine.

How important do you think it is to make the AI in a game “real”? That is, to

provide the AI only with the information the player would have in the AI agent’s

position?

It is not necessary but may lead to more believable enemy AI, so I would rec-

ommend it in some cases. For example, in Steel Talons, the enemy gunners would

not turn or fire until they could see you visually. If there was a hill in the way or you

were hugging the ground at the end of their range, then they did not see you. This is

one case where it was necessary.

Lately, a lot of attention is being given to combining games and stories. Many

arcade coin-ops, perhaps as part of their nature, have almost no story. What do

you think about telling a story within a game?

I have never been high on stories. I feel it is absolutely necessary to have the

player grasp the theme: setting, ambience, and goals. Sometimes stories help to

118 Chapter 6: Interview: Ed Logg

TE
AM
FL
Y

Team-Fly®

make the goals easier to understand. Some games are made like a movie, so a story

makes good sense: the player feels he is the main character that he is controlling. In

a coin-op game, a story makes no sense unless it is shown in the attract mode. We

do not want the player wasting his time watching something when he could be play-

ing or putting in more money.

You mentioned before that you specifically wanted to get into doing games for the

home market. Why was this?

I wanted to do home games instead of coin-op games because I saw more

opportunity to do something new in the home market.

Do you not see any future for coin-op arcade games?

I suspect

coin-op games in

the arcades will tend

toward cheaper sim-

ulation rides

(physical movement

or encompassing

environment), just

like you see now.

They provide some-

thing you cannot get

at home and are

cheaper than the

rides at Disneyland.

I believe the coin-op

arcade market is

already there. The

coin-op street mar-

ket will always need to be inexpensive. So I see a consumer platform in a coin-op

box or cheap PCBs with simple games that do not require long development times.

I believe the consumer market already dominates over the coin-op industry. I do

not have the numbers, but it is clear to me by looking at sales numbers of hit games

and the dollars they represent. It is sad to see the changes in the coin-op industry. I

am sure glad I was a part of the industry. I feel I was definitely in the right place at

the right time.

Chapter 6: Interview: Ed Logg 119

The arcade version of San Francisco Rush 2049

Ed Logg Gameography

Super Breakout, 1977

Video Pinball, 1979

Asteroids, 1979

Othello (for Atari 2600), 1979

Football (4-player conversion), 1979

Centipede, 1981

Millipede, 1982

Gauntlet, 1985

Gauntlet II, 1986

Xybots, 1987

Tetris (conversion to NES), 1988

Steel Talons, 1991

Space Lords, 1992

Wayne Gretzky 3D Hockey (conversion to N64), 1996

San Francisco Rush (conversion to N64), 1997

San Francisco Rush 2 (conversion to N64), 1999

San Francisco Rush 2049 (conversion to N64 and Dreamcast), 2000

120 Chapter 6: Interview: Ed Logg

Chapter 7

The Elements of
Gameplay

“We ended up with a game that I didn’t know how to win. I

didn’t know which were the best strategies or tactics, even

though I designed all the game’s systems. That is what makes

a good strategy game.”

— Julian Gollop, talking about his game

X-Com: UFO Defense

121

W
hat are the game design elements that make up a really good game? Of

course, there is no definitive answer to such a question. Nonetheless, as a

game designer you will be expected to intuitively know exactly what the

answer is. Understanding game design, as with any art form, is very much an inter-

nalized understanding, a “gut” reaction, a “feeling” you might have. It may be that

you will not be able to form that answer into words, but you will need to understand

what aspects of a game are strong and which are weak, and how the latter can be

replaced with more of the former. Experience plays a big part in understanding what

makes a game fun, experience both as a game designer and as a game player.

Over my years of playing and creating games I have come up with my own

answers for what makes a game great, and in this chapter I discuss some of those

qualities. Some of these topics may seem fairly distinct from each other, yet to my

mind they all play a crucial role in making a good game. Certainly I cannot hope to

list all of the knowledge I have, since, as I mentioned, much of my understanding is

more akin to a “sixth sense” than anything I could hope to write down in a book.

But the ideas contained in this chapter should help to give you a starting point.

Unique Solutions

For me, one of the most exciting moments of being a game designer is when I hear

someone talking about playing one of my games, and they explain a successful tac-

tic for a given situation that I had never considered. This could be a solution to a

specific puzzle, a way to incapacitate challenging enemies, or a method for maneu-

vering a perilous canyon. I see the games I develop as creating situations in which

game players can utilize their own creativity to succeed. When the player’s creativ-

ity can lead them to solutions which I had not envisioned, it shows me that my game

is doing its job.

Anticipatory versus Complex Systems

Good designers will try to guess what players are going to attempt to do and make

their game respond well to those actions. For instance, take an RPG that features a

puzzle that involves placing weights on a series of pressure plates. (Having put such

a puzzle in a game of my own, I would like to implore game designers to be a bit

more creative than that, as pressure plates are surely one of the most overdone puz-

zle devices still in use. But I digress.) Suppose the designer leaves a conspicuous

pile of rocks a few rooms over from the pressure plate puzzle. The obvious solution

to the puzzle is to use those rocks on the pressure plates to achieve the desired

results. But what if the player tries dropping his various weapons on the plates

instead? This is a perfectly valid solution which should work equally well, provided

the player has weaponry of the appropriate weights. What if the player has the

122 Chapter 7: The Elements of Gameplay

Summon Minor Threat spell which allows him to summon a variety of different

small monsters? If the player summons those monsters onto the pressure plates, they

might do the trick too.

Now the designer, having thought through the puzzle fully, can have the pro-

grammer add in code where the game reacts correctly if either rocks, weapons, or

monsters are on the plates. This is the anticipatory school of game design, where

the designer thinks what the player might do and hardwires the game to work well

with those actions. I agree that this tactic is surely better than allowing for just one

solution. However, what if the player thinks of some other weight he can place on

the pressure plates? What if the player uses his Berkshire Blizzard spell on the pres-

sure plates, causing snow to fall on them? Enough snow could conceivably pile up

on the plates to have a significant weight. However, if the game has been hardwired

only for rocks, weapons, or monsters, the game will not react appropriately. The

player will have thought of a perfectly reasonable solution and the game will fail to

recognize it.

Instead of hardwiring, however, what if the designer had the programmer come

up with a system where every object in the game had a weight associated with it?

This would include rocks, weapons, monsters, weather effects, blood, and anything

else found in the game-world. If the programmer then made the pressure plates sim-

ply get the weight of all of the objects on top of them, regardless of their type, then

this one, global solution would work for all objects. If each object was set up with a

reasonable weighting, it would not matter what object the player tried to place on

the pressure plates, as they would all work automatically.

This latter method is less of an anticipatory system of game design; it is more

holistic in its approach. It relies more on creating reliable, consistent systems with

which your game will function. Then, for a puzzle such as the pressure plate one

described above, the designer and programmer come up with a series of success

conditions for that puzzle. Instead of “the puzzle is solved if the player uses rocks,

weapons, or monsters to offset the plates,” the rule is “the puzzle is solved when the

plates are offset by the correct weight being placed on top of them.” Certainly the

example of this puzzle is a simple one, but the same techniques can be applied to

much more sophisticated and interesting systems which engender a wide variety of

successful playing styles.

Emergence

It is the development of numerous robust and logical systems that leads to

player-unique solutions to situations in the game. One could describe these solu-

tions as “emergent” from the systems design of the game, a popular buzzword in

game design circles. Establishing a game universe that functions in accordance with

logical rules the player can easily understand and use to his advantage allows

Chapter 7: The Elements of Gameplay 123

players to come up with their own solutions to the problems the game presents.

Nothing can be more rewarding for the player than when he tries some obtuse,

unobvious method for solving a puzzle or a combat situation and it actually works.

The more complex systems that work correctly and concurrently with each other,

the more interesting and varied the solutions to situations become. Consider the

game Civilization, with its numerous systems running in parallel. These systems

work together to create some of the most compelling gameplay ever pressed to disk.

Another example of this sort of emergent strategy can be found in the original

Centipede. Anyone who has ever played the game knows that the piling up of

mushrooms is one of the greatest impediments to a long game, and many players

understand the importance of keeping the play-field as clear as possible. As the

devotees of the game pumped quarter after quarter into the game, they began to

notice some patterns. First, they recognized that the flea is responsible for dropping

most of the problematic mushrooms, though destroyed centipede segments also

drop them. Second, they saw that the flea does not come out on the game’s first

wave. Third, it was observed that the flea is triggered by the absence of mushrooms

in the bottom half of the screen. Thus the famous “blob” strategy was developed,

one that the game’s designer, Ed Logg, never anticipated. To use the blob strategy,

the player would clear all of the mushrooms from the board on the first wave, and

then allow mushrooms to survive only on the bottom-right quadrant of the screen.

If, through careful destruction of the centipede, the player only allows mushrooms

to be created in that section of the screen, the flea will never come out, making the

game much simpler indeed. This is an emergent solution to racking up a high score

at Centipede, one which players no doubt felt quite proud of when it was

124 Chapter 7: The Elements of Gameplay

The Civilization
games are some
of the best
examples of
complex
gameplay
emerging out of
multiple
consistent
systems running
in parallel.
Pictured here:
Civilization II.

discovered. Furthermore, it was a discovery that Logg, as the game’s creator, did

not even know was there to be found. That is good game design.

Non-Linearity

Non-linearity is another buzzword in the game industry, and well it should be.

Non-linearity is what interesting gameplay is all about, and many designers forget

this in their work. Non-linearity gives interactivity meaning, and without non-

linearity, game developers might as well be working on movies instead. The more

parts of your game that you can make non-linear, the better your game will be.

In general, when someone says something is linear they mean that it follows a

line. A line is a series of points connected in either two- or three-dimensional space,

where one can find any point on that line using a specific equation, such as, in a 2D

case, y = mx + b. In layman’s terms, this means that a line must be straight. If one

considers any two points on that line, say A and B, there is only one way to navi-

gate that line from A to B. There are no choices to be made; one simply must

navigate all of the points between A and B. Outside the world of mathematics, we

can consider reading a book to be a linear experience. If one is reading a 323-page

book and if one does not skip pages or chapters, there is only one way to read the

book: by starting on page 1 and reading all of the pages leading up to page 323.

Games, however, are non-linear works. In playing chess, there are multiple

ways to capture the opponent’s king, to move from the game’s predetermined start-

ing state to its conclusion. Indeed, there are a vast number of different ways to be

victorious in chess, and that variety is what keeps the game interesting. These

choices make chess non-linear. Suppose the chess board were one-dimensional

instead of two, each player’s pieces could only move in one direction, and each

player had only one piece. This version of chess is a linear one, since there are no

meaningful choices for the player to make and the outcome of every game is com-

pletely predetermined. And, of course, it is not a whole lot of fun either.

Types of Non-Linearity

So when we say we want our games to be non-linear, we mean we want them to

provide choices for the player to make, different paths they can take to get from

point A to point B, from the game’s beginning to its end. We can mean this in a

number of ways: in terms of the game’s story, in terms of how the player solves the

game’s challenges, in terms of the order in which the player tackles the challenges,

and in which challenges the player chooses to engage. All of these components can

contribute to making a game non-linear, and the more non-linearity the developer

creates, the more unique each player’s experience can be. Furthermore, the different

Chapter 7: The Elements of Gameplay 125

non-linear components can interact with each other to make the whole far greater

than the sum of its parts.

� Storytelling: I discuss non-linear storytelling in more detail in Chapter 11,

“Storytelling.” Of course, a non-linear story line is necessarily tied to

non-linear gameplay, and no one would bother to try to make a story non-linear

if the game itself offered the player very little in the way of meaningful

decisions. Storytelling is perhaps one of the most neglected parts of games in

terms of non-linearity, with many developers allowing for non-linear gameplay

while constraining their games to a completely linear story.

� Multiple Solutions: I discussed above how a well-designed game will enable

the player to come up with his own solutions to the challenges the game

presents. Not every player will think of the same way to go about solving a

situation, and, given that these alternate solutions are reasonable, any challenge

must have multiple ways for the player to overcome it. Having multiple

solutions to the individual challenges within a game is a big part of

non-linearity; it enables the player to have multiple paths to get from point A

(being presented with the challenge) and point B (solving the challenge).

� Order: Beyond being able to figure out the solutions to challenges in unique

ways, players will enjoy the ability to pick the order in which they perform

challenges. Many adventure games have made the mistake of being overly

linear by allowing the player access to only one puzzle at a given time. In order

to even attempt a second puzzle, players must complete the first one. That is a

linear way of thinking, which proves especially frustrating when a player gets

stuck on a particular puzzle and, due to the game’s linear nature, can do nothing

else until that puzzle is solved. Giving the player choices of different puzzles to

solve allows them to put aside a troubling puzzle and go work on another one

for a while. After completing the second puzzle, the player may return to the

first, refreshed and revitalized, and thereby have a better chance of solving it.

� Selection: Another way of making a game non-linear is to allow the player to

pick and choose which challenges they want to overcome. Say that between

point A and point B in a game there lies a series of three challenges, X, Y, and

Z, which are non-order dependent, that is, the player can do these challenges in

any order he wishes. What if, once the player surmounts challenge X, he does

not have to go back and solve challenge Y or Z, he can simply move on to point

B in the game, perhaps never returning to Y or Z? The same is true if the player

initially chooses to tackle Y or Z instead of X. Any one of the choices will

allow the player to proceed. The advantage is that if the player finds challenge

X to be insurmountable, he can try challenge Y or Z. This greatly decreases the

chance of the player becoming permanently stuck. It need not be the case that Y

is easier than X; the mere fact that it is different may allow the player a better

126 Chapter 7: The Elements of Gameplay

chance of getting through it, depending on his strengths as a player. Other

players may find X to be easier than Y or Z, but giving the player a choice of

which challenges he takes on allows the player to exploit his own personal

skills to get through the game. Of course, after completing challenge X, the

player may still have the option of going back and completing the Y and Z

challenges, perhaps just for the fun of it or because overcoming those

challenges somehow improves his chances down the line. Perhaps completing

Y and Z gives his player character greater overall experience or riches. This

type of non-linearity can also be used to add totally optional side-quests to the

game. These challenges are not strictly required for the player to get to the end

of the game, though they may make it somewhat easier or merely provide an

interesting diversion along the way. Whatever the case, these optional

challenges provide an extra degree of non-linearity, further customizing the

player’s experience.

Implementation

My first game, Odyssey: The Legend of Nemesis, is without doubt the most relent-

lessly non-linear game design I have ever done, and includes examples of all the

types of non-linearity described above. Odyssey is an RPG and takes place on an

archipelago that includes seven primary islands for the player to explore. Though

the player is required to complete at least one quest on the first island before mov-

ing on to the rest of the game, there are two quests, each with multiple solutions

from which the player may choose. Indeed, clever players can skip the quests

Chapter 7: The Elements of Gameplay 127

Odyssey is an
extremely
non-linear game,
allowing the
player to solve
puzzles in
whatever order
he chooses and
to select which
quests he wants
to go on. The
game almost
always provides
more than one
solution to any
given puzzle.

entirely if they figure out how to rob a particular townsperson. From there, the

player is able to move freely about the next five islands, picking which ones he

wants to explore and which he prefers to just pass through. Indeed, all that is

required for the player to reach the seventh island and the end-game is for the player

to successfully navigate each island, killing the monsters that get in his way. Of

course, killing those creatures is made significantly easier if the player receives the

rewards for completing the quests. But if the player so chooses, he can skip the

entire middle of the game. Of course, few players have done this, preferring instead

to explore the different quests and situations they encounter there. Nearly every sin-

gle one of these quests has multiple ways for the player to solve it, with his actions

having a direct impact on how each of the island’s mini-stories resolves. Finally, the

game itself has multiple endings for the player to explore, endings which suit the

different overall goals the player may have: survival, revenge, or a sort of justice

and harmony. Though the game had a very definite story, I am happy to say that I

doubt very much that any two players ever experienced it in exactly the same way.

Non-linearity is an extremely powerful tool to use in designing a game, and the

descriptions above of the types of non-linearity a designer can employ may seem

obvious to the reader. What is astonishing, then, is how many games fail to provide

any substantial non-linearity for the player, instead insisting that the player play

through the game on a single line from point A to point B. One reason for this is

that creating all of these non-linear elements can be quite time consuming. Consider

that between point A and B, we have the aforementioned challenges X, Y, and Z,

but the player only has to overcome one of these challenges in order to progress,

say challenge X. The player can then continue playing through to the end of the

game having never interacted with challenge Y or Z. As a non-linear game, that is

the player’s prerogative. The problem arises when a cost accountant looks at the

game and tries to figure out where the game’s budget can be trimmed. Well, obvi-

ously, if Y and Z are not strictly necessary, why bother having them at all? Why

spend a lot of money on the programming, art, and design necessary to get Y and Z

working when there’s a chance the player will never see them? Unfortunately,

accountants are often not in touch with the finer points of game design, and when

you say, “But non-linearity is what makes this game great!” they are likely to dis-

miss you as “difficult.”

Non-linearity is also often hard to pull off from a design perspective, certainly

harder than simple linearity. This may be another reason why so many designers

shy away from it at the first opportunity. Designing numerous obstacles that are dif-

ferent enough to provide variety for players while all applying roughly the same

challenge is not an easy task. In the X, Y, and Z challenges example, if Z is signifi-

cantly easier than X or Y, it is quite likely no one will ever bother with X or Y. In a

way, a game with poorly designed choices for the player is nearly as linear as a

game without any choices at all. The non-linearity your game provides must be

128 Chapter 7: The Elements of Gameplay

TE
AM
FL
Y

Team-Fly®

meaningful and useful to the player or it is a waste. Designers who think too highly

of their own design skills may also avoid non-linearity in their designs because they

want the player to experience every single element of the game they decide to

include. “Why spend a lot of time on portions of the game that not everyone will

see?” say these egotistical designers, starting to sound a lot like the accountants.

The Purpose of Non-Linearity

It is important to always remember that non-linearity is included in the game to pro-

vide the player some meaningful authorship in the way she plays the game. If forced

to stay on a specific line to get from the beginning of the game to the end, the player

will tend to feel trapped and constrained. The challenges along that line may be bril-

liantly conceived, but if the player has no choice but to take them on in order, one

by one, the fun they provide will be greatly decreased.

Non-linearity is great for providing players with a reason to replay the game.

Replaying a game where the player has already overcome all of the challenges is

not that much fun. In replaying a more non-linear game, however, players will be

able to steer away from the challenges they succeeded at the last time they played

and instead take on the game’s other branches. However, it is important to note that

replayability is not the main motivation for including non-linearity in your game

designs. I have heard some game designers complain that replayability is unneces-

sary since so many players never manage to finish the games they start playing

anyway. So if they never finish, why add replayability? These designers do not real-

ize that the true point of non-linearity is to grant the player a sense of freedom in

the game-world, to let each player have a playing experience unique to himself, to

tell his own story. If the player wants to replay the game again, that is fine, but the

primary goal of non-linearity is to surrender some degree of authorship to the

player.

Furthermore, the contention that players seldom finish games and hence the

games do not need to be non-linear is a self-fulfilling prophecy. The reason players

fail to finish games is often because they become stuck at one particular juncture in

the game. This may be a boss-monster who is too difficult, a puzzle that is too con-

founding, or merely failing to find the exit from a given area. If the game were

more non-linear, however, players would have much less chance of getting stuck at

any point in the game, since the variety of paths available would increase the likeli-

hood that the player’s unique talents would be sufficient for him to make it

successfully past one of them.

At a Game Developer’s Conference talk entitled “A Grand Unified Game The-

ory,” Noah Falstein suggested that when non-linearity allows the players to tackle a

series of required challenges in whatever order they desire, completing one chal-

lenge should make the others easier for the player to accomplish. In the case of a

Chapter 7: The Elements of Gameplay 129

collection of puzzles, this can be done by providing the player with a hint about the

other puzzles once he completes one of them. In the case of a collection of battles

of some sort, this can be done by providing the player with additional weaponry

with which to survive the other battles. Whatever the case may be, using this tech-

nique increases the chance that the player will be able to overcome the challenges

at hand and get on with the game.

A note of caution: all designers should understand that non-linearity is not

about having the player wander around the game-world aimlessly. If the game is

non-linear to the point where the player has no idea what she is supposed to try to

accomplish or how she might go about it, the non-linearity may have gone too far.

Often game designers talk up their in-development games by making statements

like “In our game-world, the player can do anything they want; there are no restric-

tions. The game is completely non-linear!” Such a game would likely be

completely annoying as well. Of course, by the time these “completely non-linear”

games have shipped most of the non-linearity has been stripped out and the player

is left solving puzzles on a rail. Somewhere between “on a rail” games and total

freedom lies an ideal middle ground, where the player is left with a sense of free-

dom accompanied by a sense of guidance.

Modeling Reality

The desire to model reality in computer games is one that has driven game develop-

ment for a number of years. The more real we make the games, the proponents say,

the more compelling and immersive gamers will find them. But is this always the

case? What would a greater degree of reality add to a game like Tetris or Centipede?

Surely they could not be much more immersive than they already are. Consider a

game such as Civilization, which is already modeled on reality. Would adding more

reality to it make it any more fun? Actually, quite the opposite is true: adding a

more realistic economic model or combat system would detract from the game’s

strengths as a macro-strategy game and quite possibly make the game more annoy-

ing than fun.

The trouble with modeling reality in games comes when the games get mired in

reality to the point where they come to resemble real life a little more than players

actually want. Alfred Hitchcock described films as “Life with the dull bits cut out.”

Indeed, games can be seen as modeling life or some aspect of life while leaving out

the tedious and boring parts. If the designer, in an attempt to achieve a greater

degree of reality, decides to include too many unnecessary and dull details, the

game will likely become tedious to play. My favorite example of this is the use of

food in RPGs. Many RPGs of the ’80s were perpetually on a quest to make them-

selves more real than other RPGs, to up the ante with each new game that was

released. One way designers attempted to do this was to add food, and to require

130 Chapter 7: The Elements of Gameplay

the player to remember to feed his characters periodically, lest they starve to death.

Here was a “dull bit” that did not need inclusion, especially as eating regularly

scheduled meals is not the first thing that jumps to people’s minds when they think

of adventuring in hostile worlds.

Using reality as a basis for your game has its advantages, however. First and

foremost, it provides players with a world they are instantly familiar with, a world

in which they have some idea of what actions are reasonable and which are out of

the question. Whether in Civilization, SimCity, or Deadline, a properly executed

realistic setting gives players an instant “in” to your game-world. They understand

or at least think they understand how it works and what they can do to be successful

in it. Players can start playing the game and instantly have some idea of what they

are supposed to accomplish. A more abstract game like Centipede or Tetris, on the

other hand, has such abstract goals that players must be taught what it is they are

supposed to do, either through reading the directions or by experimenting with the

game-world.

A potential downside to having a realistic world is that, since the game mimics

a reality players are familiar with, players will expect certain game-world elements

to work in a certain way and will be very quick to notice when something fails to

do so. For example, many of the early first-person shooters, such as Doom and

Marathon, did not allow the player character to jump. The worlds of these

first-person shooters were more “realistic” than the worlds game players were

accustomed to finding in computer games, so real that the players’ expectations

were raised and many were quick to complain that they could not jump over even

Chapter 7: The Elements of Gameplay 131

Early first-person
shooters such as
Marathon did
not allow the
player to jump
or crouch. But
the realistic
nature of FPS
titles soon
caused players
to demand such
features be
added.

waist-high obstacles. So the next generation of FPS titles added the ability to jump,

then to crouch, then look up and down, and so on and so forth, making the games

still more complicated with each element of reality added. Now, as the worlds pos-

sible with RT3D engines look more real than ever, players are constantly asking

questions such as “Why can’t I lie flat on the ground? I can do that in real life; why

not in the game?” Some would say that, certainly for the novice players, these FPS

games have grown too complex as a result of their attempt to model reality.

Bringing in a certain level of reality raises players’ expectations in a way that the

totally abstract world of a Centipede or Tetris never does. Players never question

their capabilities in these worlds because the boundaries were completely arbitrary

in the first place.

So is there a definitive answer to whether or not you should model reality in

your game? Of course not, just as there are no easy answers in all of game design,

and as there are no easy answers in art. As a game designer you must strike the bal-

ance between reality and abstraction, weighing what your game needs from a

gameplay standpoint with what your story and setting require and with what your

engine can reasonably handle. What is vital to remember, and what many designers

often forget, is that more reality is not always a good thing.

Teaching the Player

Attempting to model reality may be one way to give players an advantage going

into your game-world; through their own life experiences, players will know to

some extent what to expect of your game-world. However, even with the most real-

istic game, players need time to learn how to play your game, and this learning

experience is often a crucial time in a player’s overall experience with your game.

The first few minutes a player spends with your game will often make the difference

between whether she wants to continue playing it or not. Whenever a player tells a

friend about your game, she will often remember those first few minutes and say,

“Well, it was a little weird to get used to” or, preferably, “It was great. I jumped

right into the game and found all this cool stuff.”

In the past, many computer games relied on manuals to teach players how to

play them. With some titles players literally had almost no chance of success in the

game without first reading a large chunk of the manual. Today many games try to

get away from this reliance on the player’s reading ability, realizing that often the

last thing a player wants to do when he has just purchased a new game is to sit

down and read an extensive instructional manual. Players definitely have a strong

desire to just pick up the controller and start playing the game. Now that so many

games allow the player to do just that, the importance of allowing the player to

“jump right in” has increased. If your game is too difficult to get a handle on within

the first minute, the player is likely to put it down and try something else.

132 Chapter 7: The Elements of Gameplay

This does not mean that your game has to be dumbed down or simplified,

merely that you must introduce the complexity of your game-world through the

gameplay instead of through the manual. For example, at first your game should

start out requiring the player to perform only the simplest of actions. Say you are

creating a third-person over-the-shoulder action/adventure game akin to Tomb

Raider. It makes the most sense to first teach the player how to move the player

around correctly on the ground. Then, after the player has had a chance to become

accustomed to the horizontal movement controls, you might introduce a section

where the player has to jump to cross a canyon or climb up a cliff. After enough of

that, you might want to introduce some simple combat challenges, where the player

will learn how to use his character’s weapons.

It is important that during the introduction of these controls the player is in a

safe environment that engenders learning. If the player already has to worry about

dying at every step and the game is generally unforgiving of the player’s mistakes,

chances are good that the player will become frustrated quickly. Half-Life did this

particularly well, with an introduction to the game that provided a safe yet interest-

ing environment and allowed the player to become accustomed to the controls

without immediately threatening him. Prince of Persia was another game that was

particularly good at introducing challenges to the player in a way that taught the

player through example instead of by punishing him. For instance, when the player

first encounters a break-away floor in Prince of Persia falling through it is

non-lethal. Similarly, spikes are introduced in such a way that the player is very

likely to notice them and to be able to survive them. Subsequent encounters with

spikes will not be so forgiving, but by then the player has learned of the threat they

Chapter 7: The Elements of Gameplay 133

Prince of Persia
carefully taught
the player what
to expect of
traps such as
collapsing
floors and sharp
spikes.

pose to his game-world character, and if he is clever he will be able to survive

them.

Rewards

During this learning period in the game, it is important to reward the player for even

the simplest of accomplishments. This makes the player feel that, indeed, he is on

the right track with the game and encourages him to keep playing. It is true that

players do not want their games to be too simple and too unchallenging, but punish-

ing them for blunders from the very start of the game is not the right way to produce

this challenge. The key is to give the player success early on, to draw him into the

game, to make him think that he knows what the game is all about, that he is better

than it. “Ha ha, this game is easy, I rule!” he may say. And then, when the game

becomes suddenly more challenging, the player will already have been drawn into

the game and will be much more likely to see the challenge as a reasonable one, one

that he can surely overcome. After all, this game is easy, right?

Recently, many complex games have started introducing the player to the gam-

ing world through a tutorial level which exists outside of the game-world proper.

The player can access this tutorial world through the main menu as an alternative to

starting a “real” game. These tutorial levels are generally a good idea and are cer-

tainly an improvement over teaching the player about the game in the manual. The

tutorial levels do one of the things that computers do best: provide an interactive

learning experience. The one problem with tutorial levels is that they are seldom

much fun to play, and as a result many players will skip them and head straight for

the actual game. There is a feeling among players that the tutorial level is not part

of the “real” game, and many players want to start playing this “real” game as soon

as possible. If the designer includes a tutorial level because he wants to make his

game difficult from the very beginning and avoid teaching the player how to play

through the gameplay, players who skip the tutorial will become frustrated. Tutorial

levels are good for players who want that sort of educational prelude to the game,

but they must not replace making the beginning of the game itself easy to play.

Again, Half-Life provided a tutorial level that taught players about the game-world,

but the tutorial worked in conjunction with the beginning of the actual game itself,

which was quite easy to play and had a friendly learning curve. Of course, making

the tutorial level as entertaining as possible goes a long way toward encouraging

players to actually play it.

Often these tutorial levels include instructions which explain what keys or but-

tons the player is supposed to press in order to achieve certain effects. Often

voice-overs with accompanying on-screen text tell the player to “Press the spacebar

to fire your primary weapon” or “Press and hold down the blue X for a super

jump.” Some games go so far as to actually tell the player during gameplay what

134 Chapter 7: The Elements of Gameplay

the controls are, such as Crash Bandicoot. These detailed explanations of what the

player is required to do in order to be successful can be quite a boon to making a

complex game easier to pick up. Even beyond that, however, games like Spyro The

Dragon and The Legend of Zelda: Ocarina of Time go so far as to have actual game

characters tell the player character what the controls for the game are. “Spyro, press

and hold the blue button in order to glide,” the friendly elder dragon says in the for-

mer game. I think this goes too far and totally shatters the player’s suspension of

disbelief. The in-game characters should not know anything about the player and

certainly nothing about a PlayStation controller. However, I do think it is helpful to

remind players of the game’s controls while they are playing, through more

removed GUI displays and non-game character voice-overs. Many modern games

include such sophisticated controls that they are likely to alienate non–hard-core

gamers, and reminding novice players of what they need to do in order to perform a

certain move is a good idea.

I would say that, in retrospect, all of my games have been too difficult, and cer-

tainly too hard for the player to get into. Damage Incorporated may have done the

best job at introducing the player to the game-world through easy early levels. One

game that erred in the opposite direction is Odyssey, my turn-based RPG. In it the

player starts off shipwrecked on an island, without any weapons or possessions of

any kind. I wanted the player to, immediately, be frightened and need to find a safe

place to hide in a nearby cave. I achieved this by having a few monsters start charg-

ing in the player’s direction a few turns after the player arrives on the beach. The

player has no chance of defeating these creatures on his own, and needs to enter the

nearby cave to survive. Originally, I had the cave hidden in the woods, making it

Chapter 7: The Elements of Gameplay 135

Console titles
such as The
Legend of Zelda:
Ocarina of Time
are good at
teaching the
player how to
control the
game.

hard for the player to find and thereby making the game even more unforgiving.

Fortunately, my playtesters convinced me that the introduction was too hard, and I

moved the cave out into the open where the player could easily see it. However, the

problem remained that, before the player even has a chance to become familiar with

the controls, she is assaulted by strange monsters, with no real idea of what she is

supposed to do about it. I often wonder how many players were frightened away by

this overly challenging introduction and never played the rest of the game as a

result.

Input/Output

Your game’s input and output systems are two of the primary factors that determine

how steep the learning curve for your game is and whether a player will find it intu-

itive to play. Using the input/output systems you design, the player must be able to

control and understand the game effortlessly. Designing these systems is one of the

hardest aspects of game design, since, if they are designed well, the player will not

even know they are there. But if they are designed poorly, players will become eas-

ily frustrated, complaining that the game’s controls prevent them from doing what

they really want to do in the game. Designing input and output systems are “invisi-

ble” arts in that the goal of their creation is for them to be transparent to the player.

This can sometimes lead to designers failing to fully consider how to best make the

I/O work in their game, a mistake you must avoid if you want your games to be any

fun to play.

Controls and Input

Nothing is more frustrating than, as a player, knowing exactly what you want your

game-world character to do but being unable to actually get him to do that because

the controls will not let you. Good gameplay is never about trying to figure out the

controls themselves; keep the puzzles in the game-world, not in the control scheme.

The controls are the player’s interface between the real-world and game-world. In

order for the player to experience true immersion in the game-world the player must

be able to manipulate the game-world exactly as intuitively as he manipulates the

real-world. Every time the player has to think “Now, what button do I have to press

to do that?” that immersion is destroyed.

Though the controls for many computer games seem to be getting more and

more complex, particularly those for 3D action games, there is a lot to be said for

keeping your controls simple. Indeed, a lot of the success of games like Diablo,

Command & Conquer, and The Sims can be attributed to the fact that the player can

play these games one-handed, controlling everything with only the mouse. The

mouse is an extremely powerful input device when used correctly. Its great strength

136 Chapter 7: The Elements of Gameplay

is that it is a control device with which most non-gamer computer users are already

familiar. This makes mouse-only games very easy to jump into, since they mini-

mize the time the user must spend learning controls.

A big part of designing a good mouse-based interface is making a system that

does not look as sterile and business-like as the Windows file manager yet retains

its ease of use. Making the interface look attractive is mostly a matter of well-

conceived art, but making it attractive without losing any of its intuitiveness and

functionality can be quite challenging. Whenever an artist suggests making a button

look a certain way, the designer must consider if the new design takes away from

the player’s ability to understand what that button does. Often, you can borrow

clearly understood icons from other interfaces, either from other games or from

real-world devices such as VCRs or CD players. For example, everyone knows

what a “fast forward” symbol on an audio device looks like, and using this appro-

priately in your game will mean that players instantly know what a given button

does. Making buttons in your game that players can intuitively understand and that

also look attractive is equal parts creativity and playtesting. If the people

playtesting your game tell you your buttons are unobvious and confusing, they

probably are, and you need to return to the drawing board.

A common game design mistake is to try to include too much. This applies to

all aspects of gameplay, but particularly to controls, where sometimes the cliché

“Less is more” really holds true. Every time you add a new button or key to your

game, you must ask yourself if the complexity you have just added to the game’s

controls is worth the functionality it enables. When designing a PC game the temp-

tation is particularly great, since the keyboard provides more keys than any game

Chapter 7: The Elements of Gameplay 137

The Diablo
series’ extremely
simple controls
make it one of
the most easy-to-
learn games
available.
Pictured here:
Diablo II.

would ever need to use. Unfortunately, some games have tried to use nearly all of

them, binding some unique function to practically each and every key. Complex

keyboard controls favor the expert player while alienating the novice, leading to a

radically decreased number of people who might enjoy your game. Due to the lim-

ited number of buttons they provide, console control pads are much more limiting

in what they will allow the designer to set up. Unlike many other designers, particu-

larly those making the switch from PC to console, I often feel that this limitation is

a good one. Control pads force the designer to refine his controls, to cut away all

that is extraneous, and to combine all of the game-world actions the player can per-

form into just a few, focused controls. This leads directly to games that are easier to

learn how to play. Indeed, many of the most popular console games do not even use

all of the controller’s buttons. Because of the massive keyboard at their disposal,

designers of PC games are not forced to focus the controls of their games in the

same way, and I think their games may suffer for it. As I mentioned above, some of

the most popular PC games have managed to squeeze all of their controls into the

mouse.

Much of the increasing complexity of game controls can be attributed to the

increasing dominance of RT3D games. These games, by trying to include the abil-

ity for the player’s game-world surrogate to move forward and backward, up and

down, sideways left and right, turn left and right, and pitch up and down, have

already used a massive number of controls while only allowing the player to move

in the game-world and do nothing else. In many ways, the perfect way to simply

and intuitively control a character with total freedom in 3D space is still being

explored. This is why very few of the successful 3D games released thus far have

allowed the player total freedom to control his character. Indeed, the most success-

ful 3D games, such as Super Mario 64, Quake, or Tomb Raider, have restricted

movement to a ground plane.

One technique that can be used to make your controls intuitive to a variety of

players is to include multiple ways to achieve the same effect. For instance, if one

looks at the interface used by the RTS game StarCraft, players are able to control

their units by left-clicking to select the unit, then clicking on the button of the

action they want the unit to perform, and then left-clicking on a location in the

world where they want the unit to perform that action. Players can also left-click on

the unit to select it and then immediately right-click in the game-world, causing the

unit to do the most logical action for the location the player clicked, whether it

means moving to that point or attacking the unit there. Furthermore, StarCraft also

allows the player to access a unit’s different actions through a hot key instead of

clicking on the button. This has the pleasant side effect of keeping the interface

simple enough for the novice player to master, since it is all point-and-click, while

the expert player can spend his time memorizing hot keys in order to improve his

game. In many console action games, different buttons on the controller will

138 Chapter 7: The Elements of Gameplay

TE
AM
FL
Y

Team-Fly®

perform the same action. A common choice to make, particularly on PlayStation

games, is to allow the player to control character movement through either the left

directional pad or through the left analog control stick. Crash Bandicoot, for

instance, allows the player to move with either the directional pad or the analog

stick, and also allows the player to access Crash’s ability to slide by either pressing

a trigger button or one of the buttons on top of the controller. Providing multiple

ways for a player to achieve a single game-world action helps to ensure that a given

player will enjoy using one of the ways you have provided.

There is a lot of room for creativity in game design, but controls are not one of

the best places to exercise your creative urges. Your game should be creative in its

gameplay, story line, and other content, but not necessarily in its controls. Some of

the most successful games have taken control schemes which players were already

familiar with from other games and applied them to new and compelling content.

Sometimes the established control scheme may be weak, but often it is not weak

enough to justify striking out in an entirely new direction with your own control

system. As a designer you must weigh what is gained through a marginally superior

control scheme with what is lost because of player confusion. For example, Sid

Meier’s RTS game Gettysburg! included as its default method for ordering troops

around a “click-and-drag” system instead of the established “click-and-click” sys-

tem found in other games. His system was quite creative and actually may have

been a better way of controlling the game than the established paradigms. However,

it was not so much better that it outweighed the confusion players experienced

when first attempting to play the game, a fact he admits in the interview included in

Chapter 2 of this book. Console games are particularly good at providing uniform

Chapter 7: The Elements of Gameplay 139

StarCraft
provides the
player with a
very elegant
interface which
allows her to
issue orders to
her units using a
variety of
techniques.

control schemes, with fans of games in a particular genre able to pick up and imme-

diately start playing almost any game available in the genre, even if they have never

seen it before.

During the course of the development of a game, as you are playing the game

over and over and over again, it is very easy to get accustomed to bad controls.

Though the controls may be poorly laid out or counterintuitive, as the game’s

designer you may have used them so much that they have become second nature.

However, as soon as someone plays the game for the first time, she will quickly be

frustrated by these controls and is likely to stop playing as a result. A proper

playtesting phase will include many players playing the game for the first time, and

witnessing their initial reaction to the controls is crucial to understanding how intu-

itive your controls really are. Do not think, “Oh, she’ll get used to it,” or “What an

idiot! These controls are obvious; why can’t he see that!” Instead think, “Why are

my controls bad and what can I do to fix them?”

Designing controls that players will find intuitive can be quite challenging,

especially with such a variety of control setups for different games, particularly in

the PC market. For example, it can be hard to determine what the “standard” con-

trols for an FPS are when the last three successful FPS games each had a unique

control scheme. Almost every PC action game released in the last decade allows

players to configure the controls however they desire, and this is an absolute must

for any PC game that demands the player manipulate a large number of buttons.

That said, many players will never find or use the control configuration screens,

either because of a desire to start playing the game immediately or a general lack of

savvy with the computer. Many, many players will be left playing with whatever

the default keys are, and this is why it is the designer’s job to make sure these

default settings are as playable as possible. You should never use a strange or con-

fusing set of default controls for your game merely because the programmer in

charge likes it that way or the team has grown accustomed to them. Always make

sure the default controls are as intuitive as possible.

Particularly in action games, when your controls are perfect, the wall separating

the player from the game-world will disappear, and the player will start to feel like

he truly is the game-world character. This is the ultimate sign of an immersive

game, and achieving this effect is impossible without strong controls. In a game

where that level of immersion is possible, the controls must be completely invisible

to the player. This can be frustrating to a designer. Why work so hard on something

that, if implemented perfectly, will be completely invisible? In order to feel satis-

fied with a job well done, the designer must realize that it is the transparency of

controls that allows the player to enjoy the rest of what the game has to offer.

140 Chapter 7: The Elements of Gameplay

Output and Game-World Feedback

While the player’s ability to intuitively control the game-world may be key to a suc-

cessful game, outputting information about that game-world to the player is just as

important. Computer games contain numerous complex systems, commonly per-

forming more calculations than a human would ever be able to track. Indeed, that is

the area where computer games excel. Condensing that massive amount of data into

its most representative form and communicating that information to the player is

key to a well-designed output system.

Consider a strategy game in which the player has a number of units scattered all

over a large map. The map is so large that only a small portion of it can fit on the

screen at once. If a group of the player’s units happen to be off-screen and are

attacked but the player is not made aware of it by the game, the player will become

irritated. Consider an RPG where each member of the player’s party needs to be fed

regularly, but the game does not provide any clear way of communicating how hun-

gry his characters are. Then, if one of the party members suddenly keels over from

starvation, the player will become frustrated, and rightly so. Why should the player

have to guess at such game-critical information? In an action game, if the player

has to kill an enemy by shooting it in a particular location of its body, say its eye,

the player needs to receive positive feedback when he successfully lands a blow.

Perhaps the enemy reels back in pain or screams in agony once an attack damages

him. If the player does not receive such feedback, how is he supposed to know he’s

on the right track? Of course, all computer games conceal a certain amount of infor-

mation from the player, and games cannot possibly communicate all of the

information they have about the game-world to the player. But they must communi-

cate what is reasonable for the player’s character to know, and communicate that

data effectively.

Almost all games present the player with a view of the game-world as the cen-

tral part of their output system. Through this view the player sees the object he is

currently controlling and its location and state in the game-world. Your game

should try to communicate as much information through this view as possible. Con-

sider a third-person 3D action game. Certainly the player sees the environment and

position of her game-world surrogate, but what about the condition of the

player-character? Perhaps as his health goes down, the character’s animations

change to a limp or hobble instead of moving normally. Similarly, the strength of

the player’s armor can be represented by texture changes on that character, with the

armor appearing more and more deteriorated as it takes damage and nears destruc-

tion. The player’s current weapon can be represented by the player seeing that

weapon equipped on the character. If the player has a spell of protection currently

in effect on her character, perhaps the character should emit a certain glow to easily

communicate that to the player. Though the designer may also want to include this

Chapter 7: The Elements of Gameplay 141

data in a Heads Up Display (HUD) of some sort, communicating it through the

game’s primary game-world view makes it that much more transparent and easy to

understand for the player.

What the game-world view cannot represent is typically contained in some sort

of a GUI which often borders the game-world view or is overlaid on top of it like a

HUD. This GUI may be simple, such as the high score and lives remaining display

on Centipede, the small potion-health display at the bottom of the screen in Prince

of Persia, or the score/moves display in almost any Infocom game. For more com-

plicated games, the GUI is also often more complex, such as the button bars used in

any of Maxis’ Sim games, the extensive status display in the original System Shock,

or the extensive party data provided in many RPGs, such as the Bard’s Tale games.

Many GUIs in older games were created in order to block off a large portion of the

screen. This was not because of any sort of design decision, but instead because the

game’s engine was not fast enough to handle rendering the game-world full screen.

As engine technology has improved, games have attempted to make the game-

world view take up the vast majority of the screen, with the GUI minimized as

much as possible.

A very few games try to work without any GUI whatsoever. One in particular is

Oddworld: Abe’s Oddysee. The game’s director, Lorne Lanning, felt very strongly

that any sort of GUI would distance the player from the game-world. As a result,

Abe’s health is communicated to the player through the way he animates. Since the

game lets the player always have infinite lives, there was no need for a lives

remaining display that so many console games now include as their only GUI ele-

ment. Crash Bandicoot, for instance, only displays the lives remaining GUI if the

142 Chapter 7: The Elements of Gameplay

Oddworld:
Abe’s Oddysee
did away with
an in-game GUI
entirely, giving
the player an
unobstructed
view of the
game-world.

player presses a button to bring it on the screen, defaulting to a completely unob-

structed view of the world. Certainly, as technology has allowed it, the trend has

been to get away from on-screen HUDs as much as possible, allowing the game-

world view to take over the screen. The advantages of the immersion gained by a

minimized GUI are obvious, and if the game-world can effectively communicate all

of the information the player needs to play, there is sometimes no reason to use a

GUI at all.

The most important part of designing a GUI is to try to keep it as visual as pos-

sible. In fast-paced action games in particular, the GUI is designed to communicate

information to the player as quickly as possible, whether this is the player’s current

health, ammo available, or nearby monsters (through some sort of radar). If any-

thing, the ascendancy of the graphical user interface as the dominant mode of

controlling a computer, first through the Macintosh and subsequently through Win-

dows, shows that most people think visually instead of in numbers or words. As a

result, a well-designed graphical HUD in your game will be easier for a player to

glance at and understand than one that contains a lot of numbers or words. This

explains the superiority of the health bar instead of a health number or percentage.

The artists will like a graphical HUD as well, since a health bar can look a lot more

attractive than a big, ugly number.

A game element that is particularly well designed is the “head” used in Doom

and Quake. This face, which appears at the center of the bottom of the screen, rep-

resents the player’s approximate health completely visually. The face starts out

healthy and snarling, ready to take on the world. As the player’s game progresses

and he loses health, the head starts to look bruised and bloodied, eventually looking

Chapter 7: The Elements of Gameplay 143

The head at the
bottom of the
screen in Doom
is a well-
designed
interface element
because it
communicates
the player’s
current health
visually.

all but dead when the player has almost run out of health. At any point during the

game the player is able to glance down at the head and instantly get a sense of how

much health he has remaining. If the health had been represented instead by a num-

ber, it would have been much more difficult for the player to comprehend his

current health level just by glancing at it. The difference in time may be millisec-

onds, but in a fast-action game, that may be the difference between life and death.

Of course, the visual representation of data can also have a negative side effect

if that representation is too obtuse for the player to easily understand. For instance,

in WarCraft, the buttons for the different actions that a unit can perform are all rep-

resented by icons, which I would generally encourage. However, some of the

buttons can be a little difficult to figure out at first. Fortunately, the game also dis-

plays text at the bottom of the screen when the player’s mouse cursor hovers over a

particular button, communicating what that button will do if clicked. What would

have been even better is if the icons on the buttons were just a bit more obvious.

Admittedly, representing a real-world action such as “guard” through a 32x32 icon

can often be quite a challenge. The GUI for your game needs to balance the superi-

ority of visual representation with the clarity of text, possibly using a combination

of both as needed.

Audio output as a communication device to the player is something that is often

underused in games. Not all of the information about the game-world needs to be

communicated to the player through visual stimuli. For instance, in The Sims, the

player gains a good sense of whether his character is enjoying a particular conver-

sation based on the tone of the participants’ voices. In Command & Conquer, the

player knows that a particular unit has received a particular order by an audio cue

provided by that unit: “I’ll get right on it!” Similarly, when units off-screen are

being attacked, the game communicates this to the player by saying “Unit attacked”

or “Unit lost.” Audio cues can provide an excellent supplement to on-screen infor-

mation, or can work quite effectively as the sole way of communicating critical

information.

A good output system for a game is both powerful and intuitive. It allows play-

ers to jump right into the game and understand what is happening in the

game-world, but it also provides expert players with all the information they need

to play the game effectively. Over time, the data the game communicates to the

player should become transparent, just as the player’s controls should become

invisible once the player is familiar with them. Players should not have to think

about understanding the world; they should just “know” what they need to by

quickly looking at the screen and be able to react to it just as quickly through intu-

itive and responsive controls. As I have stated before, it is important not to get too

creative in developing your input/output systems. The dominant paradigms from

other games are often dominant for a reason: they work. The expression that “good

144 Chapter 7: The Elements of Gameplay

artists borrow but great artists steal” is nowhere more true than in I/O design in

games.

Basic Elements

In this chapter I have discussed just a few of the elements of good gameplay: unique

solutions, non-linearity, modeling reality, teaching the player, and input/output. I

feel that each of these components deserves serious thought as you set out to

develop a game. Of course, this is far from a complete list, and as you work as a

game designer you will accumulate your own personal list of elements which you

feel contribute to good gameplay. No one can say for certain what the elements of

good game design are. Each game designer must decide that for herself. This per-

sonal preference is part of what makes each game bear the distinct stamp of its

author and lends the best games the individuality that makes them great.

Chapter 7: The Elements of Gameplay 145

Chapter 8

Game Analysis:
Tetris

Designed by Alexey Pajitnov
Released in 1987

F
ew games are as universally well respected by game developers as Tetris.

Often when a game becomes as popular as Tetris has, with versions for every

system imaginable and untold millions in sales, gaming professionals start

complaining about what a poor game it is. Myst is a good example of this. On its

146

release, the title received near universal praise from the gaming press for being a

fun adventure game in a beautifully conceived world. Game developers themselves,

though not quite as enthusiastic, still thought it was a good game. Multiple millions

of copies later with years spent on the best-seller charts, the same gaming press

found reason to start hating the game and its amazing continued popularity. Game

developers are particularly loud in voicing their dislike for the game. Is the game

worse now? No, of course not. Do gaming professionals, press and developers alike,

resent the game for its sales? It would appear so.

But this is not the case with Tetris. Tetris conquered the world in terms of popu-

larity, yet one is hard pressed to find anyone with a negative comment about the

game. What is it about Tetris that makes the game immune to criticism? It would

appear something about the game’s simplicity and clearness of design vision make

even the most cynical game developer concede the game’s greatness. Contrary to

what happened with Myst, when Tetris was first released, most of the gaming press

dwelled on the game’s origins in Russia and seemed underwhelmed, or at least

unexcited, by the title’s gameplay. The game was so simple, its technology so lack-

ing in razzle-dazzle that, perhaps, the press found themselves incapable of writing

enthusiastically about the game—at least at first. Now that the game is an undis-

puted classic, any game critic will be happy to tell you about the hundreds of hours

she spent blissfully lost in the game.

Gameplay in Tetris is exceedingly uncomplicated. The game-world is a tall,

rectangular, 2D box. Blocks appear at the top of the box. The blocks are made up of

four squares arranged in every possible pattern where all the squares share at least

one side with another square. The blocks then slowly fall to the bottom of the box,

and the player is able to move these blocks to the left and right, or rotate the piece

in 90 degree increments. Once the player hits an obstruction, either the bottom of

the box or another piece, the block stops moving, the player loses control of the

block, and another piece appears at the top of the screen which the player can now

control. When the blocks at the bottom of the screen form a horizontal line across

the rectangle, that line of squares disappears, and any squares above that line move

down one row. The player’s game is over once incomplete rows of the blocks fill up

the rectangle and subsequent pieces are prevented from entering the play-field.

Puzzle Game or Action Game?

Tetris is often referred to as a puzzle game, and for good reason. Tetris has elements

obviously reminiscent of a puzzle, with the player needing to find how blocks best

fit together. In this way the game is similar to a right-angle jigsaw puzzle, or any

number of other “organize these geometrical shapes in this small space” puzzles. An

even better comparison would be the traditional game pentomino, from which

Chapter 8: Game Analysis: Tetris 147

Alexey Pajitnov, Tetris’s designer, is supposed to have drawn inspiration. In

pentomino, one must take twelve different shaped pieces, each made out of five

squares, and fit them into a square box. One can see the similarities, but at the same

time Tetris changes the game into something entirely different, something entirely

more challenging and compelling. Pajitnov could have just as easily made a direct

adaptation of pentomino to the computer, as many other developers have done for

jigsaw puzzles or “sliding number”-type puzzles. This might have been an enter-

taining program, though perhaps not as fun as the actual game itself since part of the

fun of pentomino is the tactile nature of manipulating the blocks. But by taking the

puzzle and changing it into a game that could only happen on the computer,

Pajitnov ended up creating a unique new game, which is far more entertaining than

the original.

Many times when members of the computer game intelligentsia refer to a game

as being a puzzle game, they do so with derision. For them a puzzle game is one

that presents a series of static puzzles to the player, puzzles which never change and

never react to the player’s actions. They argue that a game must provide a reaction

to the player’s actions, and an opponent for the player to compete against. Hence,

the critics would say, these so-called “puzzle games” are not really games at all, but

just puzzles. Furthermore, often the puzzles found in these games have only one

solution, further limiting the player’s interactive experience. Examples would

include most all adventure games, such as Zork, Myst, or even Grim Fandango,

games that, though they provide the player with a world to explore and challenging

puzzles to complete, do nothing to create a unique experience for the player.

148 Chapter 8: Game Analysis: Tetris

Tetris carefully
balances action
and puzzle
elements to
create a unique
gameplay
experience.
Pictured here,
and throughout
this chapter:
classic mode in
The Next Tetris.

TE
AM
FL
Y

Team-Fly®

But Tetris is never criticized for this problem, because it so brilliantly combines

the mechanics of a puzzle game with the mechanics of an action game in order to

create a truly compelling gameplay experience. Thus everyone who plays Tetris,

each time they play it, has a unique experience. One action game mechanic Tetris

uses is the sense of an ever-approaching threat that the player has to address in a

limited amount of time. In Centipede this threat is the anthropod winding its way

down from the top of the screen. In Tetris it is the block dropping from above. If the

player does not move and rotate the piece before it reaches the bottom of the

screen, and if the player does not determine an optimal placement for this piece, the

piece may get stuck in a location that blocks off lower rows from being completed,

and the player gets one or more lines closer to ending his game. As gameplay pro-

gresses, the speed at which these blocks fall from the top of the screen increases,

thus increasing the challenge for the player and ramping up the difficulty over the

course of the game.

Another similarity between Tetris and action games that further distinguishes it

from other puzzle games is the variety of gameplay situations Tetris can create:

each game a player plays is unique. The play mechanics set up an infinitely large

number of unique games, with each move the player decides to make influencing

the rest of her game. The way a piece is positioned into the blocks already at the

bottom of the screen directly impacts where the next piece can be placed. Should

the player fill up the four-block-long slot with only two blocks from an upside-

down “L”-shaped piece? Or should she hold out, waiting for that desperately

needed “I”-shaped piece? The “L” will not fill the slot completely, but no one

knows how long it will be until the “I” piece arrives. In other cases the player may

have a number of different positions in which to put a piece, and the player must

think ahead, figuring out if she puts a piece in a given slot what sort of slots that

will leave available for later pieces. The player constantly has to consider where

future blocks will or will not be able to fit. A player may learn to recognize certain

piece configurations, but every game is sufficiently unique that no player can be

completely prepared for the challenges she may face.

Tetris as a Classic Arcade Game

Indeed, there are many indications that Tetris is an example of what I call the “clas-

sic arcade game” form. This is despite the fact that it was not originally conceived

for gameplay in the arcades (though its rampant popularity eventually led to its

arrival there), and that it was created years after the classic arcade game form had

stopped being used by professional arcade game developers. Looking over the list

of classic arcade game qualities described in the Centipede analysis in Chapter 4,

we can see just how Tetris fits the guiding principles of the form.

Chapter 8: Game Analysis: Tetris 149

� Single Screen Play: Of course, Tetris takes place on only one screen. The player

is able to view the entire game-world at one time and make informed decisions

about what he wants to do with a given piece based on that. There is no

exploration component to the game, no way to really surprise the player

(beyond what piece appears next), so the player has all the information he

needs to be successful at the game, and has nothing to blame but himself for

failure.

� Infinite Play: Tetris allows the player to keep playing until, through her own

bad decisions, the blocks reach the top of the box. Every game ends in defeat,

and no one can truly say she has “beaten” the game. Players can always find

ways to improve their Tetris playing ability. This is a crucial difference between

Tetris and a traditional puzzle. Once a player has solved a puzzle, if she

remembers how she did it the first time, the puzzle will no longer present any

challenge to her. People usually do not enjoy doing puzzles multiple times,

whereas a well-designed game can be replayed forever. Tetris is just such a

game.

� Multiple Lives: Unlike most classic arcade games, the original Tetris

implementation only offers the player one life. Once the blocks reach the top of

the box, the player’s game is over. The design of the game, however, allows the

player to see that he is doing poorly while not defeating him instantly. As the

blocks stack up at the bottom of the rectangle, the player sees the mistakes he is

making and has time to figure out how to better line up the blocks before his

game is over. So, while Tetris does not offer the player multiple lives, it does

150 Chapter 8: Game Analysis: Tetris

Despite being
developed years
after classic
arcade games
had fallen out of
style, Tetris’s
gameplay
embodies many
of the design
principles of that
genre of games.

Chapter 8: Game Analysis: Tetris 151

give him a chance to learn the game well enough to achieve some minor

successes before forcing him to start over.

� Scoring/High Scores: Tetris uses a model for giving the player a score and

recording it in a high-score table which is directly taken from the system used

in games like Asteroids or Galaga. Indeed, since the game cannot be defeated,

it is the possibility of achieving a higher score that can become the player’s true

impetus to play the game again.

� Easy-to-Learn, Simple Gameplay: Tetris truly excels in how simple and

obvious its game mechanics are. The player really only needs three buttons in

order to play the game successfully, and these all translate into obvious results

on the screen. This means that virtually anyone, regardless of how familiar they

are with computer games, can walk up to the game and start playing it

immediately. However, a player will never be able to fully master the game due

to the game’s ramping-up difficulty and the potential for infinitely long games.

� No Story: Tetris has even less story than most classic arcade games, and is the

case most often cited by people who want to point out that games do not need

stories to be compelling for the player. The only sort of setting Tetris has is its

origins in Russia, which has been used for various aesthetic effects in the

different incarnations of the game. The first PC version of the game, as

published by Spectrum Holobyte, included backdrops behind the gameplay that

involved different scenes from Russian life, and the music sounded vaguely

Slavic in origin. But once people learned what a great game Tetris was,

subsequent implementations of the game, such as the one for the Nintendo

Gameboy, had no Russian theme to them and had no setting or story at all. The

game did not suffer one bit for this lack of story. Indeed, Tetris’s total lack of

setting may actually be something that separates it from the classic arcade

games, which all made an attempt to be grounded in a fantasy world of some

sort, whether it was outer space in Galaga, insects in a garden in Centipede, or

funky ghosts chasing a little yellow man around in Pac-Man. Tetris has no such

pretensions, and thus stands out.

The Technology

Another similarity between Tetris and classic arcade games is that none of those

games relied on their technology to impress the player. For CAGs, the graphics the

arcade machines in the early ’80s could produce were so lackluster compared to

what players would find in other media, such as movies or television, that players

had to be drawn in by something else. As a result, the gameplay had to be truly cap-

tivating for these games to survive. Despite the fact that much more sophisticated

graphics were available by the time Tetris was released in the West in the late ’80s,

the game did not need fancier graphics and stuck to a very simple 2D implementa-

tion. Tetris’s gameplay is so strong that it does not matter how technologically

simple its implementation may be, the game is still wildly entertaining.

The implementation of Tetris is so simple that many aspiring game program-

mers start out by making a Tetris clone. Indeed, numerous companies have

attempted to add fancy graphical effects to the game, including making it 3D. The

first of these was probably Welltris, a sequel of sorts to Tetris, designed by Pajitnov.

In Welltris, a 3D “well” takes the place of the Tetris box. Tetris-style pieces (though

not always of four blocks) fall down along the sides of the well and must be lined

up into rows on the bottom. The gameplay was considerably more complex without

being particularly more fun or challenging. As a result, players were uninterested,

and went back to the simplicity of the original. Many subsequent Tetris knockoffs

attempted to make “improvements” on the original, either through fancy effects or

special pieces of various sorts. None of these attempts were particularly successful,

and players continued to want to return to the original.

The attempts to add technological sophistication to Tetris failed, not just com-

mercially but also artistically. The enhanced technology added to these knockoff

products was actually detrimental to the original game design, polluting its purity

and making the game lose its elegance and fun in the process. Of course, the moral

to the story is that enhanced technology is not necessarily beneficial to a given

game, and game designers must be wary when the whiz-bang engine effects start to

get in the way of what makes the game entertaining in the first place.

While Tetris may have not needed much in the way of computer technology to

function, it is worth pointing out that there could be no Tetris without a computer.

Tetris is not a game adapted from a pen and paper or board game, but rather some-

thing that only can exist in a world carefully controlled and governed by a

computer. As mentioned previously, Pajitnov is said to have drawn his inspiration

from the non-computer puzzle game pentomino. In adapting it to the computer,

Pajitnov changed it into a form which could exist only on a computer. The descend-

ing of the pieces from the top of the screen at a steady rate, the way they can

interact with the pieces already at the bottom of the screen, and the random way in

which pieces become available to the player are all operations only a computer pro-

gram could provide while still allowing for an entertaining experience for the

player. These are all tasks the computer performs expertly, and it was brilliant of

Pajitnov to think to add them to his game.

152 Chapter 8: Game Analysis: Tetris

Artificial Intelligence

All the game has in terms of AI is the random number generator that picks the next

piece to enter the play-field. However, the game mechanics are such that this ran-

dom number is enough to completely change each game, presenting the player with

unique challenges after every piece is dropped. Since the randomness ensures that

the player never knows what the next piece will be, he is forced to play the piece in

a way that is optimal for whatever one of the seven pieces comes along next. (Many

incarnations of Tetris include a “next” feature, which shows the player the next

piece that will come onto the play-field, a feature which does make the game a bit

easier. Even when using this, however, players still do not know what the

next-next-piece will be, hence they are still just making an educated guess as to

where to stick the currently falling block.) If gameplay is about opposition, meaning

an opponent providing a challenge to which the player must react, and if in solitaire

computer games that opponent is the computer, then the fact that a random number

generator provides all the challenge in Tetris demonstrates an important point. The

AI the player faces only needs to be as smart as the game mechanics require. An AI

needs to present the player with a situation that will challenge him, and it really

does not matter how the AI arrives at that challenge. It could be as complicated as

the AI for a deep strategy game like Civilization, or it could be as simple as the ran-

dom piece picker found in Tetris. What matters is that the AI matches up with the

game mechanics to sufficiently challenge the player.

The random nature of which pieces arrive at the top of the screen might suggest

to the reader that success at Tetris is just luck. If the pieces a player gets are

Chapter 8: Game Analysis: Tetris 153

Tetris has a very
limited artificial
intelligence that
randomly picks
the blocks which
fall into the play-
field. Despite its
simplicity, this AI
provides the
perfect challenge
for the player.

random, how can different players’ scores be compared against one another? The

key point to realize here is that, over time, the randomness of the pieces evens out.

Just as die rolls in a board game even out over the course of the game, the random

pieces passed to the player in Tetris end up functioning as if they were not random

at all. Since there are only seven types of pieces, none with more than four blocks,

and since the player (at least initially) has a large space in which to manipulate

them, the randomness keeps the game from becoming predictable while still mak-

ing one player’s game comparable to another’s. Over the course of a game, a player

will get a few hundred pieces. The number of times the player gets just the piece

she was looking for is evened out by the times she does not get the piece she wants.

It may be that the player will fail to get exactly the right piece at the right time and

that, since the player’s box is already full of pieces, the player’s game ends as a

result. However, in order to get to a situation where she could not use whatever

piece was given to her, the player had already made a number of mistakes to put

herself in such a perilous situation. In the end, the random piece picker found in

Tetris provides a fair, consistent challenge to all players.

Escalating Tension

Tetris is very ruthless in the way it escalates tension throughout the player’s game.

Unlike a game such as Centipede, the player gets no reprieve when a wave ends, nor

does he get the ability to “start fresh” when he loses a life. In Tetris the player

“dies” when the box fills up with pieces that fail to make complete rows, and his

game is over, period. This means that the player must be constantly on his guard,

constantly considering what to do with a piece before it reaches the bottom of the

screen. Even a fast-paced game such as Doom provides the player with plenty of

respites from the action. In that first-person shooter, there are safe corners to hide in

and rooms where, once all the threats have been eliminated, the player can wait

indefinitely without being threatened. Tetris never lets up and constantly confronts

the player with a new challenge that must be addressed.

The only reprieve the player finds in Tetris is when she “battles her way back”

from a tricky situation. Say the player has dropped some blocks in bad locations,

thereby blocking off uncompleted rows below. Now the player’s game is harder

because she has less space and time to manipulate her pieces before they are

stopped at the bottom of the screen. The game’s tension has escalated as a result of

the player’s mistakes. Now the player may be able, through careful placing of sub-

sequent pieces, to erase the poorly placed bricks and finally complete the rows

below. Now the game’s tension has decreased and the player is back to where she

was, with more space and time to manipulate the falling pieces. The player feels a

sense of accomplishment and relief. She is able to relax momentarily, knowing she

has a “clean slate” to work with once again. Of course, this only lasts until the

154 Chapter 8: Game Analysis: Tetris

player makes another mistake, and then the game’s tension increases once again.

Further escalating the game’s tension is the acceleration of the speed at which

the pieces fall over the course of the game. When the player’s score increases above

certain specific amounts, the pieces in the game start moving at a faster rate, which

makes the game more nerve-racking for the player. Since the pieces fall faster down

the board, the player has less time to figure out the best position for a given piece,

and also less time to manipulate the piece into that position. At the game’s fastest

speed, most players will be incapable of placing a piece in an ideal location, and

with a piece in the wrong place the game only gets harder. Just before the speed

increases, the player might start to feel that he has mastered the game and could

play Tetris indefinitely. But when the speed increases, whatever sort of rhythm the

player had established is thrown off. Now the player needs to do everything he was

doing before, only faster.

Once the player starts making mistakes in Tetris, these mistakes compound,

making the game harder and harder to play. As the player fails to create rows at the

bottom of the screen, the player has less and less space in which to manipulate his

pieces. When the player accidentally drops a piece in the wrong location, that piece

may block rows below from being completed, and will make it harder to maneuver

subsequent pieces around that ill-placed piece. When the player tries to hold out for

an “I”-shaped piece to fill a narrow column of empty spots, the player will have to

keep placing other pieces in perhaps less-than-perfect locations until that piece ran-

domly arrives. In all these ways, Tetris penalizes the player for failure. Instead of

giving the player a chance to catch up as some computer games do, Tetris just pun-

ishes her, making it even harder to come back from errors made previously. Further

complicating matters are the bonus points the player receives for removing four

rows all at once with an “I” piece. With this tactic, the game tempts the player into

taking potentially game-ending risks.

Simplicity and Symmetry

Tetris, as has been discussed, is a very simple game. A big part of its success is due

to its simplicity and that it is so easy to learn while being so relentlessly challeng-

ing. The player does not need to learn any special moves in order to play the game.

There are a very small number of keys used by the game, and those keys produce

very obvious results on the screen. It is interesting to look at the pieces used in

Tetris. They are all composed of four squares, and, in fact, the seven different types

of pieces used in the game represent every possible combination of four squares,

where each square must share a side with another square in its group. Since the

player can rotate the pieces to whatever orientation he wants, there are only seven

truly unique combinations of squares possible.

Chapter 8: Game Analysis: Tetris 155

It has been reported that Pajitnov, in creating Tetris, originally considered using

pieces consisting of five squares combined into twelve unique pieces. Indeed, the

pentomino game from which Pajitnov drew his inspiration used twelve five-square

pieces. Pajitnov soon realized that this was too many different pieces to have to

manipulate in Tetris’s high-pressure setting, where the player has a limited amount

of time to find a perfect fit for a given piece. Certainly a game using five-square

pieces could have been challenging in its own way, and perhaps a slower falling

speed and larger play-field could have compensated for the added complexity of the

larger pieces. But would it have been Tetris? No. Would it have been as fun and

addictive as Tetris? Probably not. At some point a complexity level begins to stifle

the core nature of a game, and confuses players instead of challenging them. Using

five instead of four squares ruined the simplicity Pajitnov was striving for, and as a

result he reduced the number of squares a piece could have.

There are actually thirteen unique combinations of five squares possible, where

each square shares a side with another square. So it would appear that the original

pentomino game, with its twelve blocks, did not use a complete set of pieces. I have

never tried pentomino, so I have no idea how much fun that puzzle may be. Part of

what makes Tetris so elegant is the completeness of its pieces. Every possible per-

mutation of four squares with squares sharing sides is used in the game. Remove

any one of the pieces from Tetris and the game’s balance would suffer. When play-

ing, players will find themselves presented with situations that cry out for certain

pieces. Certain arrangements of the blocks on the bottom of the screen leave holes

that can only be perfectly filled by a specific Tetris piece. Part of what lends Tetris

its balance is the fact that Pajitnov was wise enough to include each piece possible,

156 Chapter 8: Game Analysis: Tetris

All of the pieces
in Tetris are
composed of
four squares,
each of which
shares at least
one side with
another square.
This gives the
game an
inherent
consistency and
balance.

thus providing a piece for every type of gap. The natural completeness and symme-

try of the pieces available to the player in Tetris is a crucial component of its

balance.

Ten Years On, Who Would Publish Tetris?

One must wonder, if Tetris were created today, what publisher would be willing to

publish it. Originally Tetris was sold as “the game from Russia” and was attached to

art and music of a similar nature, almost as a gesture to our new friends in what was

then the U.S.S.R. Had Tetris been dreamed up by a kid in a garage in Iowa one

wonders if it ever would have been published at all. (One would like to be optimis-

tic and think that he would have been able to code it up, release it as shareware on

the Internet, and the game’s fame would still have been assured.) Tetris is the ulti-

mate in low-technology gameplay, and many game publishers simply refuse to

publish games that do not utilize the latest in computer graphics wizardry. After all,

where will they find the pretty screenshots for the back of the box? The game lacks

any sort of story or even setting, another absolute must for the people in marketing.

What sort of copy will they write in their ads? Indeed, it is a testament to Tetris’s

brilliant gameplay that it cannot be adequately described in any amount of words,

much less in a catchy one-liner. Even looking at a static screenshot of Tetris is a

thoroughly unexciting experience, one which cannot hope to communicate the

game’s sublime art. Gameplay is an elusive subject for manipulators of the written

word; it must be experienced to be understood.

Chapter 8: Game Analysis: Tetris 157

Chapter 9

Artificial Intelligence

“I’d basically watch the game play until I saw the AI do some-

thing stupid, then try to correct that and repeat ad infinitum.

Over a long enough period that produced a pretty darn good

AI. I have always tried to teach the AI the same successful strat-

egies that I use in playing a game.”

— Brian Reynolds, talking about the creation of the

artificial intelligence for his games Civilization II and Alpha
Centauri

158

TE
AM
FL
Y

Team-Fly®

A
rtificial intelligence can mean a variety of different things in different con-

texts. In an academic context, artificial intelligence is sometimes defined as

a system that can reliably pass what is called the Turing test. In the Turing

test, a human is presented with a computer terminal into which he can type various

sentences and can then see responses printed on the screen. If this user believes that

the responses are provided by a human, even though they were actually provided by

the computer, then that computer would have passed the Turing test and could be

said to have artificial intelligence.

One could apply a similar test to computer games. If one is playing a game of

Unreal Tournament and cannot tell if the opponent one is playing against is a

human opponent or a ’bot, then one could say that the game passes a limited ver-

sion of the Turing test and therefore possesses some sort of artificial intelligence.

However, in actual practice, even if the game had failed that test, people would

have said that the game has artificial intelligence, just not really good artificial

intelligence. When game developers talk about artificial intelligence, they do not

mean the computer’s ability to trick the player into thinking he is playing against

actual human opponents. Instead, game developers refer to whatever code is used to

control the opponents the player battles as artificial intelligence. How the game

reacts to the player’s actions is determined by the game’s AI. The reactions of the

game may be completely random or completely logical; in either case the code

which controls those reactions is referred to as the game’s artificial intelligence.

Consider a game like Centipede. The AI for this game is completely predict-

able, with the various insects moving in predetermined patterns, with a small

Chapter 9: Artificial Intelligence 159

If a player plays
a game of
Unreal
Tournament and
cannot tell
whether the
opponent is a
’bot or a human,
the ’bot’s
artificial
intelligence has
passed the
Turing test.

amount of randomness thrown in. Some people would say that the game does not

really have any AI. Indeed, the behaviors of the creatures in the game are exceed-

ingly simple to implement. But at the same time, the game provides a great deal of

challenge for the player. The difficult part of creating the AI for a game like Centi-

pede lies entirely in the design of those creatures’ behaviors, coming up with the

movement patterns that will provide an interesting challenge for the player. The AI

is more design than implementation. Tetris, perhaps, is an even more extreme

example. The only AI the game could be said to have is the random number genera-

tor that determines which piece will drop into the play-field next. Yet Tetris is

designed such that this is the only AI the game needs.

The reader may be wondering why I am talking about game AI in a book about

game design. Surely AI is a programming task, and since this book is not about pro-

gramming, the discussion of AI contained in this chapter may seem out of place.

But determining what the AI will do and actually programming that behavior are

two fairly distinct tasks. The first primarily involves creativity and the second con-

sists of a whole lot of hard work. A game’s designer should be intimately concerned

with making sure the game’s AI behavior is as well conceived as possible and per-

forms the actions most likely to provide the player with a challenging and

compelling gameplay experience. Part of designing a good game is designing good

AI for that game, and a designer who just leaves the creation of the AI up to pro-

grammers better hope that they are good AI designers. If they are not, the game will

likely not be much fun to play.

If a computer game is like improvised theater, where the player gets to be direc-

tor of the primary character or group of characters, then all of the other actors in the

play are controlled by the artificial intelligence. As the game’s designer, you want

to direct those AI-controlled actors to create the most stimulating experience possi-

ble for the player. These AI agents are not just the opponents the player might

battle, but also any characters with which the player interacts. How will a town full

of people behave? How will they react to the player’s actions? Designing the AI is

a big part of designing a game.

Goals of Game AI

Players have different expectations of the AI they find in different types of games.

Players do not expect much of the AI in an arcade game like Centipede or a puzzle

game like Tetris. As I have discussed, these games provide plenty of challenge to

the player while using various simple-minded or outright stupid opponents. In a

wargame like Close Combat, however, players expect a lot more from the intelli-

gence of the opposing forces. In an RPG, players expect to move into a simulation

of a living world, where characters move around in a town more or less “realisti-

cally.” In a game like The Sims, the AI more or less is the game; with weak AI the

160 Chapter 9: Artificial Intelligence

game would simply not be worth playing.

So different games provoke different expectations in the player of how smart

the AI agents in those games need to be. However, we can still construct a general

list of goals for any computer game AI, goals which change in importance as the

design goals for a given game vary.

Challenge the Player

Providing a reasonable challenge for the player must be the primary goal for AI in

any computer game. Without setting up a challenge of some sort, a game becomes

unchallenging and therefore too easy to defeat. Worse still, a game that provides no

challenge stops being a game entirely and becomes more of an interactive movie.

In a classic arcade game like Robotron 2084 or in a first-person shooter like

Doom, the challenge mostly comes from the player being overwhelmed by adver-

saries, and by the powerful abilities those adversaries have. For instance, in my

oft-used example of Centipede, the bugs can kill the player by touching him, while

the player must shoot the creatures in order to kill them. This puts the player at

something of a disadvantage. The fact that there are multiple insects attacking the

player at once does not help matters. As a result, the AI for these creatures can be

fairly simple and predictable, yet the player is still challenged by them.

The same imbalance holds true in Doom, where the player may run out of

ammo but his enemies never do, where the player is much more helpless in the dark

while the enemies can detect the player just as easily as in the light, and where

often the enemies, such as flying creatures, can go where the player cannot. The

Chapter 9: Artificial Intelligence 161

The Sims’
success is
completely
dependent on
the strength of
its artificial
intelligence.

fact that the creatures far outnumber the player also tends to compensate for the

reality that none of the creatures is very smart. The AI in Doom has to appear more

sophisticated than the Centipede insects because the Doom world seems more real

than the Centipede world, as I will discuss in a bit. The fact remains that primarily

the AI provides a challenge for the player by being more powerful and numerous

than the player.

Creating a challenging AI for a real-time strategy game like StarCraft is an

entirely more difficult proposition. The expectation in games of this sort is that the

player is competing with someone equivalent to him in strength. In your average

real-time strategy game, both sides have a large number of troops to manipulate and

the ability to build more as needed. Both sides usually need to mine a resource of

some kind and use that to build more structures or troops. Basically, the AI in an

RTS has to do everything the player does and seem smart while doing it. Often the

AI is given an advantage by being able to see the entire level while the player can-

not, and possibly having a larger number of starting units, an easier method for

obtaining more, or a bigger pool of resources from which to draw. Nonetheless, cre-

ating a challenge for a player in an RTS game is quite difficult since it requires the

AI to plan the movement of the units beyond the individual unit level, making the

units appear to work collaboratively, as a player would use them.

The difficulties presented in creating a challenging AI for an RTS game are

only magnified in a turn-based strategy game such as Alpha Centauri. Here the AI

is supposed to operate just as the player does. Of course turn-based strategy games

are some of the most thought-intensive games available, so that only amplifies the

problem of creating a compelling opponent AI. Furthermore, the computer does not

get to benefit as much from its extremely fast processing power; since the game is

162 Chapter 9: Artificial Intelligence

In a classic
arcade game
like Robotron
2084, the
challenge comes
from the sheer
quantity of
opponents the
player must fight.

turn-based, the player has as long to think about a move as he likes. Often turn-

based strategy AIs create a challenge for the player by cheating in various subtle

ways, though I would certainly be the last to accuse any particular game of doing so.

Regardless of the game type, the AI must present the player with an interesting

challenge. Without good AI, a game may become similar to playing chess with your

(much) younger brother: somewhat pointless. The difference is, when you play

chess with your kid brother, you hope to teach him the nuances of the game so that

one day he may become a good player. You may also enjoy socializing with him,

making an otherwise pointless game of chess worth it. Sadly, the computer game AI

you battle has no hope of improving and is woefully inadequate when it comes to

providing companionship. In order for a game AI to justify its existence, it must

provide the player with a challenge.

Not Do Dumb Things

AI for a computer game must not appear overly stupid. Players love laughing at AI

when it does something completely foolhardy. Nothing breaks a player’s suspension

of disbelief more than when an AI agent fails to navigate around a small obstacle

such as a fire hydrant or a tree, or when an agent charges right off a cliff to its doom

like a lemming. To the player, it is completely obvious what the AI should do in

each situation. But what may look obvious to the player can actually be a fairly

complex action for the agent to perform or understand. Nonetheless, for the game to

avoid becoming a laughingstock, the game’s AI must have a solid mastery of what

seems obvious to human players.

Chapter 9: Artificial Intelligence 163

Developing a
challenging AI
for a turn-based
strategy game
such as Alpha
Centauri can be
quite difficult
since the player
is supposed to
be fighting
opponents with
roughly the
same strengths
and weaknesses
as himself.

The number of dumb things the AI will be able to get away with has a direct

relationship to what sort of intelligence the AI is supposed to represent. For

instance, in my first-person shooter Damage Incorporated, the player is supposed

to be almost exclusively battling human opponents. In Marathon 2, however, the

player is battling a variety of alien species mixed with some robots. The enemies in

Marathon 2 are able to get away with appearing stupid since they are non-human

creatures. In Damage Incorporated, conversely, since the enemies are all humans

they must look much smarter. For another example, in Damage Incorporated,

according to the game’s story and the appearance of the levels in the game, the

action is supposed to be transpiring in a real-world environment. On the other hand,

Centipede 3D takes place in a whimsical fantasy world that bears only a tangential

relationship to the real-world. Therefore, while the guards in Damage Incorporated

need to appear to be tracking the player like real human soldiers would, in Centi-

pede 3D it is less absurd that the centipedes are unable to make a beeline for the

player and instead have to wind back and forth between mushrooms. AI stupidity is

acceptable relative to the type of world the computer game is supposed to represent.

Be Unpredictable

Humans are unpredictable. That is part of what makes them good opponents in a

game. This is one of the primary reasons that people enjoy playing multi-player

games; a skilled person will be challenging to fight in a way a computer never will.

A large part of that is the unpredictability of a human opponent. The same should be

true of the AI opponents in a computer game. When the game gets to the point

164 Chapter 9: Artificial Intelligence

When fighting
aliens in a game
such as
Marathon 2, the
player has
lowered
expectations of
how smart these
enemies will be.

where the player feels with certainty that she knows exactly what the enemy forces

are going to do at any given second, the fun of playing the game quickly wanes.

Players want the AI to surprise them, to try to defeat them in ways they had not

anticipated. Certainly multi-player games still have the advantage of including a

social component, which is a major factor in their success, and the AI in your game

will never be able to be a friend to the player in the same way another human can.

But if you cannot provide the social component of multi-player games, you can at

least strive to make the AI agents provide much of the same challenge and unpre-

dictability that a human opponent can.

In all art, the viewer wants to see something she had not been able to anticipate,

something that challenges her expectations. When, within the first ten minutes, you

know the exact ending of a movie, book, or play, a big part of the thrill of experi-

encing that work is removed. The same is true for computer games. Of course,

games can surprise players with their predetermined story, or what sort of environ-

ment the next level will take place in, or what the big boss robot will look like. But

if the AI can also contribute to this unpredictably, the game gains something that no

other component of the game can provide: replayability. Players will keep playing a

game until it no longer provides them with a challenge, until they no longer experi-

ence anything new from playing the game. And an AI that can keep surprising

them, and thereby challenging them, will help keep their interest high.

Successful unpredictability can take many different forms in games. It can be as

simple as the random number that determines what piece will drop next in Tetris.

Surely this is a very simple case, and optimally we would hope many games could

Chapter 9: Artificial Intelligence 165

The only AI Tetris
needs is a
random number
generator.
Pictured here:
classic mode in
The Next Tetris.

provide deeper unpredictability than that. But at the same time, one must realize

that for Tetris, it is the perfect amount of unpredictability. If players knew what

piece was coming next, the game would lose a lot of its challenge. Indeed, with the

“next” feature on (which displays the next piece to drop on the side of the screen)

the game becomes significantly easier. Pure randomness is often a really good way

to keep the player interested in the AI, to make them wonder, “What’s it trying to

do?” when in fact it is just being random. The randomness in Tetris provides the

unpredictability required to keep the player challenged for hours.

Sometimes the goals of computer game AI can get confused, and in a quest for

the holy grail of realism a designer or an AI programmer can end up making a very

dull opponent for a game. Sure, the agent always makes a decision which “makes

sense” given its current situation; it may even make the decision most likely to win

the current battle. But if that logical decision is completely obvious to the player,

how much fun is it going to be to fight that AI? If every time you run into a room in

a first-person shooter, the Orc you find there is going to spin around, heave its club

above its head, and charge at you while swinging wildly, the next time you play that

room the situation will be much less challenging. What if sometimes the Orc is star-

tled by the player’s sudden arrival? Then the Orc might flee down the hall or go

cower in a corner. What if sometimes the Orc decides to hurl his club at the player

instead of trying to use it as a melee weapon? That would certainly provide enough

spice to keep the player on his toes. You must remember that each human being is

different and that many humans are known to act irrationally for any number of rea-

sons. That irrationality keeps life interesting. If the player is battling humans or

human-like monsters/aliens in a computer game, a little irrationality will result in

making the opponents seem that much more real, believable, and interesting to

fight.

“Fuzzy logic” is one method AI designers and programmers may try to use to

keep the AI agents unpredictable and interesting. Essentially, fuzzy logic takes a

logical system and inserts some randomness into it. In fuzzy logic, when the AI is

presented with a given situation, it has several worthwhile courses of action to

choose from instead of just one. Say the player is at a certain distance with a certain

weapon while the AI agent is at a certain health level and is equipped with a certain

amount of weaponry. There may be three reasonable things for the agent to do in

this case, and they can each have different numerical values or “weights” represent-

ing how good a choice each is. Say that running up and attacking the player makes

a lot of sense, so it rates a five. Doing a threat display in order to frighten the player

makes a bit of sense, so it rates a two. And maybe trying to circle around the player

in order to disorient him is also plausible, so it rates a three. Using these different

weights, the agent can simply randomly pick a number from 1 to 10 (the total of the

weights). If less than or equal to 5, the agent will run up and attack. If 6 or 7, the

agent will try to frighten the player. And if 8 through 10, the agent will do its best

166 Chapter 9: Artificial Intelligence

to disorient the player. The weights represent the chance that the AI will make a

given decision. If the AI has enough different plans at its disposal, the player will

never be able to know exactly what the AI will do, thereby making the AI unpre-

dictable. In the final analysis, basing AI decisions on randomness makes the agent

look like it is performing complex reasoning when it is not. The player will never

know that the AI in question just picked its action randomly. Instead, if the agent’s

action does not look too stupid, the player will try to imagine why the AI might

have chosen to do what it did, and may end up thinking the agent is pretty sly when

really it is just random.

Of course, the unpredictability of an AI agent in a game must not conflict with

the other AI goals I have listed here. If an agent is so busy being unpredictable that

it cannot put together a solid plan of attack against the player, it is not going to be

much of a threat to the player and he will not be challenged. Ideally, unpredictabil-

ity enhances the challenge the AI presents, instead of proving a detriment. If the AI

randomly chooses to do something completely foolish when what it was doing was

about to lead to victory, the player cannot help but wonder, “Why would the AI do

such a stupid thing?” When working on the behaviors of the creatures in a game, it

is always important to keep an eye on the bigger picture of what that AI is trying to

accomplish.

Assist Storytelling

Game AI can be used to further a game’s story. For example, in an RPG, a player

may travel to a certain town which is home to a number of fearful residents who

dread the arrival of outsiders. If the player only observes these people, they can be

seen to be navigating the town, going to the stores, restaurants, and factories just as

people in a real town would. This sets the scene for the town and makes it seem real

to the player. But whenever the player approaches these people, they turn away,

fleeing to safe areas to avoid interacting with the player. Why is this? What does it

say about the town and the people who live there? Why are they frightened? The

player wants to know why, and will start exploring the game’s story as a result. Eng-

lish teachers are notorious for telling their students that it is better to show than to

tell. This is especially true in a visual medium such as computer games. Instead of

just seeing that the town’s inhabitants are frightened of strangers in a cut-scene, a

properly designed AI can actually show the player this interesting information.

Even the adversaries that a player might fight in a battle can be adjusted to aid

in the storytelling process. Suppose that in a wargame the player is supposed to be

fighting a general who is known for being compassionate about the welfare of his

troops, perhaps more than is logical in a combat situation. The player could send in

a few snipers to pick off several of the opposing force’s troops that are serving as

guards along the border between two contested areas. If the AI for the enemy

Chapter 9: Artificial Intelligence 167

general was properly designed, the slow drain of troops in that manner would start

to enrage him. Once infuriated, the general would try a foolhardy attack to get back

at the player’s forces, thus putting him at the disadvantage. Here again, a bit of the

game’s story has been told through the AI.

In my game Damage Incorporated, the player is a U.S. Marine Corps sergeant

in charge of a fire-team of four men. Together with his men, the player storms

through numerous missions against a variety of heavily armed opponents. The men

each have different strengths and weaknesses. Some are headstrong and will charge

bravely into a fight. Some of the squad members are more careful about firing their

weapons than others, and as a result are less likely to hit the player or the other

teammates. These personality traits are all communicated through the AI that these

teammates use. Before each mission, the player gets to choose his team from a

selection of thirteen different soldiers, each with a dossier the player can read. The

dossiers provide a psychological profile of each of the teammates, which gives

some insight into their personalities. Furthermore, when actually on a mission, the

teammates are constantly speaking, either in response to the player’s orders or just

to comment on a given situation. This gives further insight into their personalities

and how they will behave on the battlefield. If the player reads the dossiers and

pays attention to the squad members’ personalities carefully, he will notice warn-

ings that some of the teammates may not be completely balanced psychologically.

For some teammates, if they are taken on too many missions they will “crack” or

become “shell-shocked” and attempt to run away from the battle. Other teammates,

if taken on specific missions that they do not agree with ideologically, will turn

168 Chapter 9: Artificial Intelligence

In Damage
Incorporated,
the AI the
player’s
teammates
exhibit plays a
crucial role in
telling the
game’s story.

TE
AM
FL
Y

Team-Fly®

against the player and his men. The AI, of course, handles these “shell-shocked”

situations, which thereby helps to tell the story of these characters.

One area where AI is often avoided entirely by designers but where it can be

quite useful is in dynamic storytelling. All too often designers cobble a story

around a game instead of integrating the story and gameplay together. Furthermore,

often designers want to tell static stories in which how a given character will react

to the player is entirely predetermined, regardless of the player’s actions in the

game-world or how the player treats that particular character. While designers often

strive to keep the battles and action sequences as dynamic and unpredictable as pos-

sible, they almost always want to keep the stories exactly the same every time the

player experiences them. Why not have the player be able to affect the mood of the

different NPCs he encounters? Maybe if the player says all the right things and does

not ask questions about sensitive subjects, the NPC becomes friendly toward the

player. Maybe the player can only coax crucial information out of a character after

first becoming his friend. Perhaps the player’s reputation precedes him, where the

actions the player has performed elsewhere in the world directly impact how that

NPC will treat the player. If the player has done less-than-good actions earlier in the

game, maybe the player has to redeem himself in the eyes of a character before he

can proceed in the game. Of course, there is a wide range of different effects that

can be achieved using the game’s AI to create interesting interpersonal relation-

ships. Sadly this is something that has been all but unexplored in commercial

games to date. Instead of telling static stories, we could be telling ones that, though

not entirely procedurally generated, were subtly different depending on how the

player played the game. Using AI to spice up and vary the story from game to game

may make telling a story much more difficult, but what it can add to the game’s

non-linearity and replayability is enormous.

Create a Living World

In many games, the AI does more than just provide a threat and a challenge to the

player. A game may even include AI agents that the player does not directly interact

with at all. The AI can instead be used to inhabit the living world the game creates.

A game-world may be infinitely detailed in terms of the objects it contains and how

it looks and sounds, but players are used to a real-world which also contains living

organisms that think for themselves and behave in interesting ways. Therefore, cre-

ating a sterile game-world filled with inanimate objects is not going to be a very

authentic reality for the player. One does not need to go overboard in filling up the

game-world with complex ambient AI agents; a little can go a long way. Whether

this means a few birds that fly around in the sky, insects that crawl around on the

ground, or humans that go about their daily business, adding ambient life to a world

can do a lot to make the game-world seem more real to the player. And the more

Chapter 9: Artificial Intelligence 169

real it is, the more likely it is that the player will be able to immerse himself in it.

There is a close connection between filling the game with ambient life and

using the AI to tell the game’s story. Creating these inhabitants does a lot to estab-

lish the setting for your game, and setting is a key part of telling any story. But

ambient life in a game goes beyond just establishing that setting; it helps make the

player feel less lonely in the game-world. How many times have you played a game

where you felt like you were walking around a sterile wasteland, as if an extermina-

tor had come through previously to eliminate any signs of life? Players love to see

that the world has ambient life in it, creatures they can just look at rather than kill,

and the depth it adds to the world can be invaluable.

The Sloped Playing Field

Often when programmers get together to talk about AI for computer games, they

concentrate their discussions on how they want their AI agents to be on equal foot-

ing with the player. This was certainly the case at the AI round tables I have

attended in years past at the Game Developer’s Conference. These AI specialists

want their AI systems to know only what the player would know, see what the

player can see, and so forth. This, they suggest, will make the conflict between the

AI and the player more realistic and therefore more interesting.

Of course, for years games have been giving the AI agents unfair advantages

over the player. They have made the AI have more hit-points than the player. They

have outnumbered the player a hundred to one. They have made the AI agents have

a practically psychic knowledge of every location in the game-world, which allows

them to know exactly where the player is at any given second, certainly an unfair

advantage. Some game AIs have even been known to cheat. Surely this is unfair to

the player, the AI programmers will say. The AI should be on equal footing with the

player, they proclaim, and should triumph over the player through its wits alone.

But is it really better to put the AI and player on a level playing field? First and

foremost, this is quite likely to lead to an AI that fails to provide much of a chal-

lenge for the player. The fact remains that a shrewd player is going to be able to

outsmart even the most sophisticated game AI without that much difficulty. Trying

to put the player and AI on equal terms will create a much larger challenge for your

AI programmers. They will need to invest countless more hours in developing an

AI that has even a slight chance of beating the player, time that cannot be spent

improving other parts of the game. In the end they will end up with an AI that does

not provide a captivating gameplay experience. In the worst case, the AI is too busy

being “real” to avoid performing blatantly stupid actions.

A big part of what drives AI programmers to attempt a level playing field for

players and AI agents is the programmers’ own egos. These programmers pride

themselves on their work and will assert that they can come up with an AI that will

170 Chapter 9: Artificial Intelligence

be able to challenge a player without having to resort to superior numbers, greater

strength, or any sort of cheating. The programmers want the bragging rights of

being able to say that their AI is as smart as a human. Often hours and hours are

spent trying to come up with the sophisticated algorithms required for such equal

versus equal competition, and in the end something has to be hacked together to

make the game actually function. The goal of game AI is to support the game and

enhance the player’s experience, not to serve as a test-bed for artificial intelligence

techniques.

Besides, there is something romantic for the player when he manages to defeat

an AI opponent despite the fact that the AI’s forces greatly outnumber his own,

were better armed and equipped, and even had the benefit of prescient knowledge

of the map. Just as the Hollywood action hero triumphs over countless foes, players

want to overcome seemingly insurmountable odds for their own victories. Tipping

the scales in the AI’s advantage only makes the player’s eventual victory all the

more sweet. Unless, of course, the design ends up making the game too hard.

How Real is Too Real?

Another potential AI programming pitfall is creating an AI which, though it actually

performs like a “real” person, ends up detracting from the gameplay as a result. In

terms of the stories they tell and the settings they employ, games are often contriv-

ances, strictly unreal situations that are specifically set up because they are

interesting, not because they are authentic, and the AI must support this.

Consider the James Bond movies. These films are like many popular games in

that they feature a lot of action and exciting situations with less of a focus on char-

acter development or meaningful stories. In nearly every film, Bond is captured at

some point and tied down to a particularly hideous execution device. This device

does not kill Bond instantly, but instead employs some slower method, such as a

laser steadily burning a hole down the middle of the table to which James is

strapped. Why does the villain not simply shoot Bond? Or simply aim the laser

straight at him? Why does the villain almost always leave before the execution has

actually been completed? And why does the villain reveal to Bond his entire mad

scheme for world domination before he starts the execution device in motion? None

of it is very smart behavior, but it is fun to watch, and fits with the overall style of

the movie. It entertains the audience, which is the primary goal of the Bond films.

Realism is much less of a concern.

And so it is with games. If the enemy AI is so smart, surely it should realize

that it has no chance against the player, and should lock itself away in a safe

bunker, refusing to open the door for anyone. It has, in fact, saved its own life by

doing this, which is the smartest decision possible. But what has it done to the

game? Now the player is stuck, since he has no way of getting to the enemy and

Chapter 9: Artificial Intelligence 171

continuing on with the game. Another example might be a cowardly AI that runs

from the player when sufficiently wounded. This is used to great effect in many

games. But what if the agent was faster than the player, and better at dodging into

safe locations? When quite wounded, the AI agent will start fleeing from the battle,

with the player left with no other option but to chase after it. If the AI is speedier

and better at navigation, the player will have a hard time catching up with it. What

may have been a fun action game now becomes a tedious chase with a foregone

conclusion, since the agent is mortally wounded and has no chance of recovering its

health. And what of the deadly serpent boss the player must battle? With its protec-

tive armor coating, it is impervious to the player’s attacks, and can only be

damaged by being shot when its mouth is open. So the strictly logical choice might

be to always keep its mouth closed whenever the player has any chance of getting

off a shot. This is a decision it can make very easily. But now, of course, the player

has no chance whatsoever of winning the battle. Is this fun?

The point again is that the AI must never overshadow the gameplay, and it

must never distract the development team from the true goal of the project: to make

a fun, playable game. If the AI is really very sophisticated but, as a result, the game

is unplayable or extremely frustrating, a player is not going to remark on how smart

the AI is. A player may notice advanced rendering algorithms which improve the

visuals of a given title. He may remark on this and appreciate the game’s aesthetic

value even if the gameplay is poor, but a non-programming player is not going to

appreciate sophisticated AI if the game that features it is not any fun to play.

AI Agents and Their Environment

Computer game AI cannot be designed or developed in a vacuum. For a game AI to

turn out well, it needs to be developed in close association with the game’s game-

play and the environments in which that gameplay is going to take place. The

simple fact is that no AI agent is going to be smart enough to prevail in all situa-

tions. While an AI may be exceedingly good in wide open spaces, when it is thrown

into a narrow canyon it will encounter problems its programmer never anticipated.

If the AI programmer comes up with an AI that can handle the confined spaces,

chances are it will not be as good out in the open. The best one can hope for is that

the AI has a fighting chance in a specific type of gameplay situation. If the levels

and AI are not developed in synchronicity, then there is little chance that the oppo-

nents the player faces will appear very smart at all.

This creates special problems in terms of how to best produce a game. Level

design is often one of the last tasks to be carried out on a game, before it goes into

final balancing, then testing, and finally ships. Similarly, AI is usually only worked

on after the game’s rendering is firmly in place, most of the mechanics for the

player’s movement are fully functional, and many of the other more critical

172 Chapter 9: Artificial Intelligence

programming tasks are mostly done. Now, if the same person who is designing the

levels is also creating the enemy AI, it might be simple to integrate the develop-

ment of the two, but this is rare if not unheard of in modern game development. As

a result you have two teams—the programmers and the level designers—working

in parallel. Unfortunately, the usual case is that each charges forward with their

work without fully considering the other. The level designers do not have the AI

yet, so they cannot tailor their levels to support it. It is just the opposite on the other

side of the equation: the programmer does not have the levels yet, so it is hard for

him to make AI that will function well in those levels. The situation is a catch-22.

Once the levels are done in terms of architecture, the AI is finally added to them,

and then it turns out that one or the other needs to be radically reworked if the game

is going to be any fun. In the worst case scenario there is no time to rework either

the levels or the behaviors, and the gameplay ends up suffering as a result.

Of course, the level designers will protest that the AI should be designed to fit

the levels they create. And, similarly, the AI programmers will complain that the

levels simply must be reconceived to work with the AI they developed. Since I

have worked as both a level designer and an AI programmer, I may be in a special

position to arbitrate this dispute. In my opinion, neither party is entirely right, and a

little give and take is required on each side. I would advocate trying to make a sim-

ple, playable AI first. It does not need to be bug free or work perfectly in every

situation. If it works fairly well in some situations, level designers can start making

levels that facilitate what the AI is known to do well. As the level designers take

this direction, the AI programmer can keep working on his AI, getting rid of any

bugs while always keeping an eye on what shape the game-world is taking. The AI

programmer must communicate to the level designer when he sees a problem

emerging in a level, such as a situation the AI is unlikely to handle well. At the

same time the design of the levels may give the AI programmer new ideas about

what tricks the AI can pull off. Maybe ledges start showing up in the game-world

that would be ideal for sniping. Or perhaps the structure of the game-world’s archi-

tecture suits itself to large troop movements. If the AI programmer can then add

functionality to his algorithms to allow the agents to identify these locations and

behave accordingly, the AI will become stronger as a result.

A level designer must be willing to sacrifice cool-looking geometry if it does

not allow the AI to function. If the AI is not functioning, the game is not any fun,

and the primary responsibility of a level is to provide the player with a compelling

and entertaining experience. In my game Damage Incorporated, the player is

responsible for not only controlling her own player, but also for directing four

teammates in a 3D environment. When I was working on that game, one of the

greatest challenges I encountered was getting the teammate AI working in a way

that appeared intelligent to the player. Fortunately, I had a rudimentary form of this

AI working before any real level design began. This way I realized ahead of time

Chapter 9: Artificial Intelligence 173

that the teammate AI would not be smart enough to jump or swim to areas. This

meant that the levels had to be designed accordingly, or the teammates would not

be able to reach the end of a level with the player. Also, the teammates performed

badly in tight, constrained spaces, often running into each other or blocking the

player’s progress. The levels had to be made with large, open areas so that the AI

agents could have a decent chance of performing well.

But even with foreknowledge of the sophistication of the game’s AI, once

Damage Incorporated entered testing, endless problems arose with the AI. The

teammates constantly seemed to be able to get wedged in tiny little spaces they

were not supposed to enter. The end solution turned out to be about 25 percent code

fixes and 75 percent reworking parts of the levels to eliminate the little nooks into

which the AI agents jammed themselves. There were countless sections of levels

that I had wanted to look a certain way but that needed to be scrapped because the

AI simply could not function in those areas. I was sad to see those sections go, but

not as sad as a player would have been when he managed to get a teammate stuck

in a crevice. The AI and levels had to work together if the final game was going to

be any fun to play.

174 Chapter 9: Artificial Intelligence

Getting the AI
agents in
Damage
Incorporated to
work properly
required many
changes to the
levels.

How Good is Good Enough?

Damage Incorporated suggests another interesting point about the sophistication

that will be required of AI in different games. What made the work on Damage

Incorporated so challenging was the fact that the player was counting on the AI to

perform certain actions for him. If the player ordered a teammate to move to a cer-

tain position, he expected that marine to reach that position and defend it. If the AI

failed to do so, the player might die as a result, and would curse the AI for failing

him. Even worse, if the player ordered the AI to relocate to a specific position and

the trooper had difficulty getting there, the player would become frustrated, espe-

cially when the appropriate path to that location was completely obvious to the

player. But if an enemy AI agent had trouble finding a path to a location, the player

would never be the wiser. If an opponent got stuck in a corner on rare occasions, the

player would be all too happy to exploit the AI agent’s stupidity by mowing down

the stuck foe with a blast of machine gun fire. However, if a teammate got stuck in a

corner, he would be unable to follow the player to the end of the level. Since the

player could not finish a level unless his entire squad was in the “Extraction Zone”

for that level, the AI’s mistakes would end the player’s game prematurely. Nothing

frustrates a player more than dying because of faulty teammate AI.

One can take a couple of lessons away from the problems I had with the AI

implementation on Damage Incorporated. The first is to never do a game with

teammates in a complex 3D environment. The other conclusion is that the amount

of AI sophistication a game requires is dependent on how much the failure of that

Chapter 9: Artificial Intelligence 175

In a game with
teammates, such
as Damage
Incorporated,
the failure of the
AI agents to
work as the
player expects
seriously
impedes the
player’s ability to
play the game.

AI will impact the player. If the AI screws up and the player’s game ends as a

result, that is very bad. If the AI makes mistakes and the only consequence is that

the player’s game gets slightly easier, then it is a failing the player can probably

live with, as long as it is a rare enough occurrence. So when a designer is working

on an AI system or critiquing a programmer’s work, she should always keep in

mind how important it is that the system function correctly. It is perfectly accept-

able if only the development team knows of the AI’s stupidity while the player is

completely ignorant of its shortcomings.

It would be nice to make every system in a game as smart as possible, but the

realities of the production cycle dictate that there is only so much time that can be

invested in any given part of a game. Rare is the case that a programmer has fin-

ished all of the work needed for a game and still has time to “polish” everything

that he would like. As such, spending a lot of time on overly sophisticated AI sys-

tems will directly take time away from other tasks which desperately need work.

The reader will notice that when I listed the attributes that a game’s AI needs to

have, I did not list “be a respectable, academic-quality artificial intelligence.” The

AI for a game only needs to be good enough to challenge the player while not

appearing overly foolish in its actions.

In his fascinating Game Developer’s Conference talk “Who Buried Paul?”

Brian Moriarty discussed the concept of “constellation” in games. This theory is of

particular relevance to game AI. Roughly stated, the theory is that humans, when

presented with some seemingly random data, will try to make sense of it, to put it

into order, and to try to find meaning where there may, in fact, be none. For game

AI, then, Moriarty suggested that having your AI perform seemingly random

actions will cause players to think the AI has some grand, intelligent plan. A player

might think something along the lines of the following: “Why did that platoon of

tanks suddenly storm over that hill? There does not seem to be any reason for it.

Maybe they know something I do not. Maybe they are regrouping with a force I

cannot see.” Players who are not game developers themselves will have a tendency

to try to believe that game AI agents make intelligent choices. Of course, there is a

fine line. If players see an AI agent pointlessly ramming into a wall they will know

something is amiss. It is important to remember that players do not want to find

bugs in your game, and will do their best to believe in the intelligence of the char-

acters they see therein. By throwing in some random behavior, your AI agents may

come out looking smarter than they really are.

176 Chapter 9: Artificial Intelligence

Scripting

Of course, game AI does not need to spontaneously think up every behavior that is

performed in the game. In some games, a combination of dynamic AI with predeter-

mined paths and scripted behaviors may create the most exciting experience

possible for the player. Usually scripted behaviors work best in games that have pre-

defined locations and where players are not likely to play through those levels

repeatedly. In these games, players are likely to come into a given area from a cer-

tain location, and therefore the designer can make assumptions about what plan of

attack will provide the most interesting challenge for the player.

First-person shooters are a good example of a game genre that works well with

somewhat scripted AI behaviors. Half-Life is perhaps the ideal example of a game

that uses AI scripting to create opponents that players enjoy fighting. That game

was widely praised in the gaming press for the strength of its AI, while in fact much

of that perceived intelligence was accomplished using scripted paths that the AI

agents would move to in specific situations.

Setting up scripted behaviors that are specific to a level is very much the con-

cern of the level designer. The level designer already needed to concern herself

with where the opponents should be placed to create maximum gameplay effect.

But with scripted behaviors the designer needs to repeatedly play an area to figure

out the most devilish places for the AI to hide, where it should retreat to when low

on health, and how it should best reposition to have the greatest chance of defeating

the player. Of course, the AI agent cannot only be on a path. The AI must still be

used to enable the agent to determine which location it should try to get to in which

situation. Furthermore, the AI must be able to realize when the scripted plans are

not working out and when to try an unscripted, more general behavior. One might

think that having AI agents that use scripted, predetermined behaviors will fail to

produce the unpredictability I discussed earlier. One might wonder how a scripted

behavior can be anything but predictable. For just this reason, scripted behavior

should be used just to give the AI agent hints as to where good locations to duck

and cover might be, not to specify where the agent must always go, regardless of

the situation. The agent must still be able to react to the player’s tactics in order to

avoid looking too foolish.

Chapter 9: Artificial Intelligence 177

Artificial Stupidity

The fact that games are often referred to as having not artificial intelligence but

rather artificial stupidity is quite telling about the quality of AI present in many

games. It is certainly true that the AI in almost all games is not something which in

and of itself is impressive. However, when considered in terms of what it is

intended to do—challenge the player—many of the best games really do present

well-designed computer opponents. While multi-player games provide many ave-

nues for interesting gameplay design and production, a large segment of the gaming

population is still going to desire single-player games. Solitaire games provide a

unique experience, and the game’s AI is crucial to making that experience as fun as

possible. It is the designer’s responsibility to carefully conceive this artificial intelli-

gence, and to make sure those who implement it have a clear understanding of what

the AI must do to successfully challenge and entertain the player.

178 Chapter 9: Artificial Intelligence

TE
AM
FL
Y

Team-Fly®

Chapter 10

Interview:
Steve Meretzky

In the early 1980s, Infocom’s games were quite unique; so much so that

the company preferred to call them something else entirely: interactive

fiction. Infocom’s titles were totally separate and distinct from the arcade

game clones and derivatives that so many other computer game compa-

nies were publishing at the time. Infocom’s interactive fiction appealed to

an entirely different and more sophisticated group of computer game

players. The games’ content was surprisingly literate and professionally

made, with a consistent level of quality that has never been matched.

Their text-only nature gave them a literary quality which lent them some

degree of respectability, enough to garner a review of the game Deadline
in the New York Times Book Review and the admission of two of

Infocom’s implementors, Steve Meretzky and Dave Lebling, into the

179

Science Fiction Authors of America as interactive authors. The Book
Review has certainly never reviewed a computer game since, and the SFA

subsequently changed its rules to prevent the inclusion of any more inter-

active authors. Steve Meretzky remains one of Infocom’s greatest talents,

having worked both on one of Infocom’s best-selling games, The Hitch-
hiker’s Guide to the Galaxy, and on one of its most respected, A Mind
Forever Voyaging. Since the demise of Infocom, Meretzky has continued

the literary tradition in adventure gaming first with a string of titles for

Legend Entertainment and subsequently with his own company, Boffo

Games, which produced the lovely The Space Bar. Currently, Meretzky is

involved with Internet game company WorldWinner.com. Of late, adven-

ture games have fallen out of favor with publishers, game audiences, or

some combination of both. One cannot help but wonder: what happened

to the adventure game fans that made Infocom such a huge success?

What initially attracted you to computer games?

In the late ’70s and early ’80s, I was actually pretty repelled by computer games

and, in fact, by all things computer-ish. I considered them nerdy and antisocial, and

it seemed that whenever the talk turned to any computer-related subject, English

went right out the window. Lots of people in my dorm were playing the original

mainframe Zork, since it was being written at the Lab for Computer Science, and I

found their preoccupation with the game pretty distasteful. I played a little bit of

Maze Wars at the Lab, and I had a brief fling with Space Invaders, but that was

about it.

Until, in ’81 my roommate Mike Dornbrook was Infocom’s first and, at the

time, only tester. He started testing Zork I on an Apple II on our dining room table.

When he wasn’t around, I started playing a little and was soon very hooked. Zork II

soon followed Zork I into our dining room “test lab.” I reported all the bugs that I

found, even though Mike was getting paid to find bugs and I wasn’t.

So that lead to employment at Infocom?

At MIT, I majored in Construction Project Management, and that’s the work

that I did for the first couple of years after I graduated in June of ’79. It was awful:

tedious work, boring people, far-from-cutting-edge companies. So, in the fall of

1981, when my roommate Mike Dornbrook went off to business school in Chicago,

Marc Blank (VP of Development at Infocom) needed a new tester for his forthcom-

ing mystery game, eventually named Deadline. Since I had proven myself an able

tester while testing Zork I and II for free, he hired me on an hourly basis as the

replacement tester for Mike. At this point, Infocom still had no office, and just one

or two full-time employees. I continued to test at home on the Apple II.

180 Chapter 10: Interview: Steve Meretzky

In January of 1982, Infocom moved into wonderful office space at the edge of

Cambridge, and I started working out of the office, testing Deadline and then later

Zork III and Dave Lebling’s first post-Zork effort, Starcross. In June, I began as a

half-time employee, having been just a contractor up to that point.

Even at this point, I didn’t really have any plans to become a game author—I

was just having a good time doing something fun for a change, and waiting to figure

out what I wanted to do with the rest of my life. I had minored in writing at MIT,

and had submitted some science fiction stories to various magazines, but didn’t get

anything published.

So how did you come to make the jump from tester to author? Did you have to

prove yourself first?

Sometime late in the summer of ’82, Marc Blank asked me if I’d be interested

in writing a game. I agreed right away, pretty much thinking that, while testing

games was quite a bit of fun, writing them was probably going to be even more fun.

I didn’t have to prove myself, for a few reasons. First, I’d known Marc for a few

years at MIT; we were both involved with running the campus film program, so he

knew that I was a pretty hard-working and creative person. Second, Infocom was

still quite small and informal, with virtually no bureaucracy involved in such deci-

sions. And third, in making suggestions while testing games, I’d shown that I

understood the game and puzzle design process.

So what was your inspiration for Planetfall?

My main interest as a reader, and as a writer, was science fiction, so it was a

foregone conclusion that the game would be SF. And since character interaction was

what the Infocom development system was weakest at, an environment like a

deserted planet seemed like a good idea. Beyond that, I can’t really say.

What were your design goals with the Floyd character?

The idea of having a single, very well fleshed-out non-player character was a

very early design focus of Planetfall. The Infocom games up to that point had usu-

ally had half a dozen characters each, such as the wizard, genie, dragon, princess,

and gnomes in Zork II. Because of the large number of such characters, all were

rather thin. I thought that by having just one other character (not counting the

extremely brief appearances by Blather and by the alien ambassador during the

opening scene) I’d be able to make that character more interesting and more

believable.

I can’t remember how I got from that point to Floyd, although “cute robot” was

a very early decision. Perhaps the influence was the Star Wars trilogy, which was

then between Empire and Jedi. The character of Willis, a cute alien in Robert

Heinlein’s book Red Planet, may have been another influence.

Chapter 10: Interview: Steve Meretzky 181

Did you always plan to force the player to allow Floyd to be killed in order to win

the game?

No, that decision definitely came midway in the game design/implementation

process. Floyd was turning out to be somewhat more humorous than originally con-

ceived, and he was also turning out to be somewhat more sentimental a character

than originally conceived: rubbing his head against your shoulder, getting his feel-

ings hurt, discovering the remains of his old friend Lazarus, et cetera. It was clear

that people were going to be very attached to him, and at some point the idea just

clicked that I could create this really emotional moment.

Also—and this is a relatively minor influence on the decision, but still worth

mentioning—at the time Electronic Arts was just getting started. They were running

a series of ads meant to establish their stable of game designers as artists. One of the

ads quoted one of their designers as saying something like, “I want to create a com-

puter game that will make people cry.” There was a little touch of a budding rivalry

there, and I just wanted to head them off at the pass.

The Hitchhiker’s Guide to the Galaxy was an adaptation from an already much

loved radio series and book. How did you go about adapting a piece of linear fic-

tion into interactive form?

It was actually quite ideal for adaptation, because it was a fairly episodic story

line, and because it was an environment filled with all sorts of great characters,

locations, technologies, et cetera, while the story line wasn’t all that important. It

was challenging, but good challenging, not bad challenging.

How was it working with Douglas Adams?

On the plus side, Douglas was already an Infocom fan and had played several of

our games, so he understood what an adventure game was and he understood the

abilities and limits of our system. On the other hand, he had never written non-

linearly before, and that’s always a difficult process to get a handle on. Also, I was

somewhat awed to be working with him, and didn’t assert myself enough at the start

of the process. So I think you’ll see that the beginning of the game is quite linear,

including the destruction of Arthur’s house and the scene on board the Vogon ship.

Later, when Douglas became more comfortable with interactive design and when I

got over my sheepishness, the game became one of the most ruthlessly non-linear

designs we ever did.

It was quite wonderful to collaborate with Douglas. He’s a very intelligent and

creative person, and humorous as well. He’s not a laugh a minute, as you might

expect from his writing, but more wry with lots of great anecdotes. He was con-

stantly coming up with ways to stretch the medium in zany ways that I never would

have thought of on my own: having the game lie to you, having an inventory object

like “no tea,” having the words from a parser failure be the words that fell through a

182 Chapter 10: Interview: Steve Meretzky

wormhole to start the interstellar war, et cetera.

How evenly was the work divided between you two?

The original goal was that we’d do the design together, Douglas would write the

most important text passages and I’d fill in around them, and I’d do the implementa-

tion, meaning the high-level programming using Infocom’s development system.

Douglas came to Cambridge for a week when we got started. Then we

exchanged e-mails daily, and this was in ’84, when non-LAN e-mail was still pretty

rare. We also exchanged phone calls approximately weekly.

However, Douglas’ single overriding characteristic is that he is the world’s

greatest procrastinator. He was slipping further and further behind on his schedule,

and at the same time, his fourth Hitchhiker’s book, So Long and Thanks for All the

Fish, was about a year late and he hadn’t written a word.

So his agent sent him away from the distractions of London and forced him to

hole up in a country inn out in the western fringes of England. So I went over there

to stay at this inn, which was an old baronial estate called Huntsham Court which

had been converted into a delightful inn, and spent a week there completing the

design. Then I returned to the U.S. and implemented the entire game in about three

intense weeks, just in time for an abbreviated summer of testing. Douglas came

back over in September for some final rewriting of key text portions, and it was

done in time for a late October release. The game quickly shot to number one on the

best-seller lists, and stayed there for months.

I’ve seen Hitchhiker’s referred to as a particularly hard Infocom game. Was that

your intention?

Douglas and I both felt that adventure games were becoming a little too easy,

that the original Zork had been much harder than more recent offerings, and the

24/7 obsessive brain-racking was what made these games so addictive. So we might

have overreacted and gone too far in the other direction. Certainly, Infocom’s testing

staff was strongly urging that the game be made easier.

On the other hand, the game’s most difficult puzzle, the babel fish puzzle,

became a revered classic, and Infocom even began selling T-shirts saying, “I solved

the babel fish puzzle.” So it’s possible that, while some people were turned off by

the level of difficulty, others were attracted by it. My feeling was, and continues to

be, that people who find the game too hard can get hints, while people who find the

game too easy are screwed because there’s no way for them to make it harder.

Another contributor to the difficulty may have been the abbreviated testing

schedule for the game, because an already aggressive schedule was made even more

so by Douglas’ spell of procrastination. More time in testing generally results in an

easier game, because the inclination is that if even a single tester found a puzzle too

hard it should be made easier.

Chapter 10: Interview: Steve Meretzky 183

A Mind Forever Voyaging is almost completely missing the humor you are so well

known for in your other titles, yet I think it is one of your best works. Was your

goal with that project to make a more serious game?

Yes, partly that was a reaction to having just completed a purely comedic game

(HHGTTG), and partly the feeling that interactive fiction was such a compelling

medium that really “took over” someone’s life for days at a time, it was an ideal

way to put out a political/social message. It was my attempt to change the world, as

it were. The goal was not just to make a work that was more serious and that had a

message, but also to create a work that moved away from puzzles and relied more

on its story.

The pretense for the player’s existence in AMFV is very interesting and a change

from other Infocom games. Did you feel the need to “break the mold” with this

title?

I’m not sure what the inspiration was for the main character in AMFV being a

self-aware computer, although I can remember the moment when the idea came to

me, just sitting at my dining room table with one of my roommates, eating dinner.

The navigational and interface differences just seemed like a natural extension of

that initial decision. “Breaking the mold” in that way wasn’t in my mind as much as

“breaking the mold” in the game’s content, as I mentioned earlier.

Did you meet much resistance from within Infocom to do the title, or did the suc-

cess of your previous games grant you the freedom to do whatever you wanted?

Were there fears that the game would be too different?

No resistance at all, and sure, the fact that my games to date had been both criti-

cal and market successes certainly helped. But the Infocom philosophy at the time

was to do a mixture of games aimed at our core audience—the Zork games and

Enchanter games, for instance—along with a few more experimental games aimed

at pushing the envelope creatively and attempting to expand the audience for inter-

active fiction. Another example of this latter category were the “junior level” games

like Seastalker and Wishbringer, which were an attempt to bring interactive fiction

to a younger audience. There were some slight concerns that the game was a little

too puzzle-less, and in fact we beefed up the puzzles in the last section—not in the

epilogue section, but where Ryder comes and occupies the complex.

AMFV also pushed the envelope in the technical direction, being the first game

in the “Interactive Fiction Plus” line, requiring 128K of memory rather than just

64K. It was also about twice as large as any other Infocom game to date.

184 Chapter 10: Interview: Steve Meretzky

As you mentioned, the moral implications of the game are particularly strong.

Why have you not made a serious game since?

I would like to because I really enjoyed creating AMFV, and I still feel that com-

puter games can have as much of an artistic component as books, movies, theater,

etc. And I’ve gotten so much feedback over the years from people who were

impacted by AMFV. A couple of people have mentioned to me that they went into

the computer games industry because of playing it.

Unfortunately, even though AMFV had a pretty significant impact on the people

who played it, there weren’t that many people who played it or bought it compared

to other Infocom games: about thirty thousand. And the sort of creative freedom

that I had at Infocom has not been present since. With game budgets soaring into

seven figures, publishers are not interested in anything that is in any way unproven

or experimental.

A couple of years ago, I was involved in a group that was attempting to put

together an adventure game whose purpose, in addition to entertainment, was to

expose the plight of Chinese-occupied Tibet. One of the people involved was Bob

Thurman, a Columbia University professor who is one of the leaders of the Free

Tibet movement. He also happens to be the father of Uma Thurman, who would

have been in the game and would have brought along a number of other Hollywood

celebrities. Not just actors, but people like Philip Glass to do the score, et cetera.

There was even the possibility of a cameo by the Dalai Lama. Even with all that

marquee value, we couldn’t find a publisher who was interested.

But it seems that serious works are allowed to exist in other media, alongside

more “fun” or “light” works. Why do you think this is not the case in computer

games?

I think one problem is that the games industry tends to be less profitable than

other media. I’ve heard, for example, that it’s very rare for a movie to lose money

once everything is said and done, including foreign distribution, video, and all that.

The vast majority of computer games lose money. So I think that as difficult as it is

in cinema to get something made that is kind of experimental or a little bit different,

it’s way harder in the computer games industry. The executives in my industry are

much more afraid of doing anything to shatter expectations.

I think another difference is that there is a path for the less expensive, artier

films. There’s really no similar path like that in the computer games industry. There

are sort of signs that maybe something might be developing on the Internet. It’s very

encouraging that the Computer Game Developer’s Conference has been running the

Independent Games Festival. But for the most part there’s nothing like a Blair Witch

Project or a Crying Game that the computer games industry can really point to.

Chapter 10: Interview: Steve Meretzky 185

So, I think without an avenue for that kind of more experimental game, and

with publishers being even more conservative than in other industries, the bottom

line is publishers want the “safe game.” And the safe games tend to be the ones that

aren’t serious or message-oriented.

So you think Internet distribution might lead to the creation of more serious

works?

Well, I think that it may happen if a distribution channel coalesces, and the

Internet does seem to be the best bet for that. And it’s really not just distribution, it’s

also on the PR side. All the major magazines pretty much ignore everything except

for the major publishers’ games. In fact, I remember one tiny little blurb, and I think

it was really just in somebody’s column. It wasn’t the magazine reviewing a game,

but just one of the columnists mentioning that he’d run into a game that he liked and

had maybe three column inches on it. And it was this very low production value

game that was being distributed over the Internet as shareware, and it sounded

really good, like the kind of game I would like. So I went ahead and I downloaded

it. And it just really stuck out as a real rarity for a computer gaming magazine to

have any mention of a game of that sort.

And certainly, in addition to having the distribution for something like that,

you’ve also got to have some method for getting the word out to people. You can

have a perfectly good distribution system, and if no one finds it, so what? But I

think if something like that does coalesce, there will be an avenue for someone to

do a relatively inexpensive game, something that could be done in a garage but that

does have something really interesting, that does push the envelope in some way

other than really high production values. It might be something that creates a new

genre, like a SimCity.

How did Leather Goddesses of Phobos come about?

Quite a funny story. When Infocom was still pretty young and small, a few

months after moving into its first Cambridge offices, it was decided to have a small

beer-and-pizza party for our handful of employees and consultants, the board of

directors, local retailers, and people from companies we were working with such as

our ad agency or our production warehouse. It was a very informal gathering of just

a few dozen people, but it was Infocom’s first social function, and Joel Berez,

Infocom’s president, and Marc Blank were extremely hyper about seeing it come off

perfectly.

The party was held in the large central room of Infocom’s office space, which

doubled as a meeting room and the “micro room” where we had our one Apple II,

our one Atari 800, our one TRS-80, etc. One entire wall of this room was a single

enormous chalkboard with a permanent handwritten table of all version numbers in

release. Something like this:

186 Chapter 10: Interview: Steve Meretzky

TRS-80 TRS-80 Apple Atari IBM DEC

Model 1 Model III II 800 PC PDP-11

Zork I 42 42 44 45 42 45

Zork II 17 17 17 19 17 17

Deadline 31 31 29 30 33 33

Zork III 10 12 12 10 13 13

Starcross 28 29 30 28 28 31

That is, every time a new version of a game was compiled in-house, it was

given a new version number. When a given version number was released on a given

machine, that number would be written up on the board. If the supply of, say,

Apple II Zork IIIs ran out, we would order more with the latest approved version,

and that particular number on the board would be updated.

So, to get back to the point of this story, shortly before this party I quietly went

over to the board and added a line for a game called Leather Goddesses of Phobos.

It was just a hack, and I just picked the name as something that would be a little

embarrassing but not awful. As it turns out, Joel spotted it before anyone arrived

and erased it in a panic. However, the name stuck, and for years thereafter, when-

ever anyone needed to plug the name of a nonexistent game name into a sentence, it

would be Leather Goddesses of Phobos.

Then, at some point in 1985, I came around to the idea of actually doing a game

by that name. After all, everyone loved the name, and had been loving it for years. I

brought it up as a project that would be a little racy, but that was really more of a

take-off on—and loving tribute to—SF pulp of the ’30s. The idea was instantly

accepted by Marc and the other game writers, as well as by Mike Dornbrook, my

ex-roommate who by this point had graduated business school and returned to

Infocom to head up marketing.

Upper management took longer to convince, particularly our humorless CEO Al

Vezza, who was really only interested in the business products side of the company

and found doing any games at all distasteful, even though they were wildly success-

ful and were financing the database project. In fact, a year later, when LGOP was

nearly done, and Infocom had been bankrupted by the business products effort,

Infocom was in the process of being acquired by Activision. Activision’s President,

Jim Levy (who understood games and game development), was being shown

around the offices by Al Vezza. LGOP came up, and Al quickly and nervously said,

“Of course, that’s not necessarily the final name.” Jim roared, “What? I wouldn’t

call it anything else!” Naturally this made everyone feel a lot better about the acqui-

sition. Unfortunately, Jim was axed by Activision’s Board of Directors about a year

after that.

Chapter 10: Interview: Steve Meretzky 187

How did you come to work on Zork Zero?

It was my idea to do a prequel to the game, and everyone loved the idea of call-

ing such a prequel Zork Zero. It poked fun at the whole sequelitis syndrome that

gripped and continues to grip the computer game industry. I had written Sorcerer,

the second game of the Enchanter trilogy that can be unofficially considered to be

Zork V. It was in the same universe as Zork, and as part of writing the game I com-

piled the first compendium of Zork history, dates, places, characters, et cetera, by

combing through the Zork games and the first Enchanter game, and then attempting

to tie them all together with a comprehensive geography and history. There was

some initial resistance to this from the original authors, but it quickly became appar-

ent how necessary—and later, how popular—a step it was.

So, I was pretty versed in the Zork milieu when Zork Zero began to be dis-

cussed. In fact, I think it’s safe to say that I was more of an expert on Zork-related

details than the original authors. Zork Zero had been on my list of potential next

projects for a couple of years, and probably would have been my game the year that

I did the Planetfall sequel, Stationfall, except that Brian Moriarty had just finished

an adventure-RPG hybrid that we had decided to place in the Zork universe called

Beyond Zork, and two Zork games in such close proximity wouldn’t work.

As an aside, after finishing Stationfall, the decision was between Zork Zero and

an idea that I had been tinkering with for years: an adventure game set on the

Titanic during its maiden voyage. But Infocom’s management finally decided, and I

heard this many times over the next few years as I pitched this project to many pub-

lishers during my post-Infocom days, “people aren’t interested in the Titanic.” So

when the Cameron movie came out and became the most popular movie ever, it was

something of a bittersweet moment for me.

When the decision came down to go ahead with Zork Zero, the first thing I did

was convene a brainstorming session with the original “implementors,” or three out

of four, at any rate. Marc Blank (who had long since left Infocom and moved to the

west coast), Dave Lebling (still a game author at Infocom), and Tim Anderson (still

a “senior scientist” special-projects programmer at Infocom) were all there. The

fourth original author, Bruce Daniels, had long since moved on. The only thing set

in stone going into this session was that the game would be a prequel, and that it

would end “West of a white house.” This session produced the very general frame-

work for the game: the setting of Dimwit’s castle, the reasons for the destruction of

the Flathead dynasty, and the collection of artifacts belonging to each of the twelve

Flatheads.

Zork Zero is a strange hybrid of a game: it’s almost all text, with just some snip-

pets of graphics thrown in. What was the general idea behind the design?

At the time, Infocom was undergoing some stress and soul-searching. Our sales

had been dropping for several years. Going into the 1987 product cycle, the thinking

188 Chapter 10: Interview: Steve Meretzky

TE
AM
FL
Y

Team-Fly®

from Infocom/Activision management was “There are N thousand hard-core adven-

ture game fans who’ll buy any Infocom game no matter how many we put out.

Therefore, the strategy should be to put out as many games as possible.” We put out

eight games during 1987, whereas in any previous year we’d never put out more

than five. And all of them did pretty badly. So, going into the 1988 product cycle,

the thinking was “Text adventures are a dying breed; we need to add graphics to our

games.”

Throughout Infocom’s existence, we had always denigrated graphical adven-

tures, and during the early and mid-’80s, this was pretty correct. While the early

micros were pretty good at arcade-game-style graphics, they were pretty awful at

drawing pictures, as seen in the graphic adventures of that time period. But then the

Macintosh came out, providing much better black and white graphics than had been

seen to date, followed by the Amiga, which did much better color graphics than

anyone had seen before. IBM-PC graphics cards were also getting better. So graph-

ics were starting to look reasonable and give all-text a run for its money. Infocom

was a bit slow to come around to this truth.

So, in late ’87 and early ’88, Infocom’s development system was being com-

pletely overhauled to handle the addition of graphics. At the same time, the game

authors were collectively and individually wrestling with the issue of how to use

graphics in games. Some people decided just to use them to illustrate occasional

scenes, the way a book with occasional illustrations might use pictures. This is what

Dave Lebling did with his IF version of Shogun.

Since the goal for Zork Zero was to be a classic puzzle-based adventure game

on steroids, I decided that I primarily wanted to use graphics for puzzle-based situa-

tions, so I created five graphical puzzles: a rebus, a tower of Hanoi, a peg-jumping

game, a pebble-counting game called nim, and a card game called double fanucci.

But I didn’t want the game to just look like an old-fashioned text adventure the rest

of the time, so I designed the three different decorative borders: one for outside, one

for inside buildings, and one for inside dungeons. I also gave every room an icon,

and then used those icons for the on-screen graphical maps, which was a pretty

good mnemonic device. Finally, I used graphic illustrations in the Encyclopedia

Frobozzica, a book in the library that was basically an in-game version of the Zork

universe compendium that I’d begun compiling while working on Sorcerer.

But none of the graphics games sold any better than the previous year’s all-text

games, and by mid-’89 Activision decided to shut Infocom down.

They didn’t improve sales at all?

I would say that during the previous year, ’87, all the games sold around twenty

thousand. And the four graphical games that came out in late ’88 and early ’89 also

sold around those same numbers.

Chapter 10: Interview: Steve Meretzky 189

So why do you think that was? LucasArts and Sierra seem to have been quite suc-

cessful with their graphical adventures around that time.

Yes, at the time Sierra was selling several hundred thousand copies of their

games. But certainly not Lucas nearly as much. Lucas was in fact quite frustrated

that they were putting out games that they felt were technically pretty identical to

the Sierra games and in terms of writing and content were really superior to them,

and yet only selling a fifth or a third as many copies. And I don’t really know what

to think about that. It might just be that Sierra was doing a really good job produc-

ing games that were very well aimed at a middle-brow audience, at kind of the

broadest audience. And much like many of the Infocom games, Lucas games tended

to appeal to a somewhat more sophisticated and therefore smaller audience.

So that’s why you think the Infocom graphical games didn’t take off?

Well, no. I think it was much more that by that point the graphical games had

become pretty sophisticated in terms of being not just graphical adventures but ani-

mated graphical adventures, like the Sierra and Lucas games of that period. And the

Infocom games weren’t really more than illustrated text adventures. Even though

the graphics were introduced, I don’t think it was perceived as being that much of a

new animal from what Infocom had been producing up until that point.

So do you think Infocom might have been more successful using graphics if they

had made them more integral to the design of the games?

It’s hard to say what might have happened in ’87 if Infocom had said, “We’re

going to go out and exactly imitate the Sierra adventure game engine the way Lucas

did.” On the one hand, it has always seemed to me that whoever gets to a market

first kind of owns it. And I think that’s another reason that Sierra really dominated

Lucas at that point. There were certainly a lot of companies that came in, did text

adventures, put a lot of effort into it and did some pretty good text adventures. For

example, Synapse Software, in the mid-’80s, with their BTZ engine did a few pretty

good games. But they got virtually no sales. It’s just pretty hard to go head to head

with a market leader, even with games that are just as good, because it’s hard to

make up for that head start. On the other hand, Infocom certainly had a name that

was pretty synonymous with adventure games, so if there was anyone who could

have made headway against Sierra’s head start it probably would have been

Infocom. But at this point it’s completely academic, obviously.

The Infocom games all ran off of pretty much the same storytelling system, using

nearly identical game mechanics from game to game. Do you think this shared

technology and design worked well?

It worked extremely well for its time. It allowed us to get our entire line of

games up and running on a new computer within weeks of its release. This was a

190 Chapter 10: Interview: Steve Meretzky

tremendous commercial edge during a time when the market was fragmented

between many different platforms and new, incompatible platforms were coming

out all the time. For example, there was a time when there were about twenty-five

games available for the original Macintosh, and fifteen of them were Infocom

games. This annoyed the Mac people at Apple to no end, since we didn’t use the

Mac GUI.

Also, the type of games we were doing lent themselves well to a “line look,”

both in the packaging and in the games themselves. It gave them a literary feel:

Infocom games all look similar in the same way that all books look similar.

But even today, engines are usually used for several games, particularly if you

include expansion packs. And even though the final products appeared to be pretty

similar, the Infocom library actually represents several generations of the ZIL

engine. There was a pretty major revamping when the “Interactive Fiction Plus” line

came along, starting with AMFV, and then another pretty major revamping around

’87 with the introduction of an entirely new, much more powerful parser. And then,

of course, there was a major overhaul for the introduction of graphics in ’88.

A lot of effort was put into the Infocom parser, and it was well respected as the

best in the industry. Did it ever get so good that you thought it couldn’t get any

better?

Certainly, by the time of the new from-the-ground-up parser circa 1987, I

thought we had a parser that, while it could certainly be improved, was about as

good as we’d ever need for a gaming environment. After all, we weren’t trying to

understand all natural language, just present-tense imperative sentences. The only

area where I would have liked to see continued improvement was in the area of talk-

ing to NPCs. But the main problem with making NPCs seem more deep and real

wasn’t due to parser limitations, it was just the sheer amount of work needed to give

a character enough different responses to keep that character from seeming

“canned,” even for a short while.

I personally loved and still love the text-based interface, both from a player and

a game writer point of view. But I don’t mind either reading or typing, and some

people dislike one or the other or both, and that tended to limit our audience, espe-

cially as non-reading, non-typing alternatives proliferated. But I find the

parser-based input interface to be by far the most powerful and flexible, allowing

the user to at least try anything he/she can think of, and allowing the game writer to

develop all sorts of puzzles that wouldn’t be possible with a point-and-click inter-

face. So many point-and-click adventure games became a matter of simply clicking

every object in sight in every possible combination, instead of thinking through the

puzzle.

Chapter 10: Interview: Steve Meretzky 191

What do you say to criticisms that the parser interface often proved more frus-

trating than intuitive, and that though the player may know what they want to

do, he or she may have trouble finding the correct words for that action?

I think that’s simply a poor parser. I can remember playing one Sierra game

where there was what I thought was a horse on the screen, and I was trying to do all

sorts of things with the horse, and it later turned out it was a unicorn. In those days,

when the resolution was so grainy, I was simply not noticing the one pixel that indi-

cated a horn. And so when I was saying stuff like, “Get on the horse,” it wasn’t

saying, “There’s no horse here,” which would have tipped me off that maybe it was

a unicorn. Instead it was responding with, “You can’t do that” or something much

less helpful. So to me, the fault wasn’t that the game had a parser interface; the fault

was that the game was not well written to begin with or well tested.

Certainly when someone sits down with even the most polished Infocom game,

there tends to be, depending on the person, a one-minute or a half-hour period

where they’re kind of flailing and trying to get the hang of the syntax. But for most

people, once they get past that initial kind of confusion, a well-written parser game

isn’t particularly frustrating. Even in the later Infocom games, we were starting to

introduce some things that were really aimed at making that very initial experience

less difficult: trying to notice the sorts of things that players did while they were in

that mode, and make suggestions to push them in the right direction. The game

would try to catch if they typed in an improper kind of a sentence, such as asking a

question or using a non-imperative voice. It would try to notice if they did that two

or three times in a row and then just say, “The way to talk to the game is,” and then

give a few examples.

And I think that the really critical thing about the parser interface has nothing to

do with typing, it is being able to use natural language for your inputs.

Did you ever feel limited by the Infocom development system?

The system was extremely powerful and flexible, and could grow to meet the

need of a particular game fairly easily. A minor exception was any change that

required a change to the “interpreter.” Every game sold consisted of the game com-

ponent, which was machine independent, and an interpreter, which was a

machine-specific program which allowed the game component to run on that partic-

ular microcomputer. Since there were twenty or more interpreters (one for the Apple

II, one for the Mac, one for the DEC Rainbow, one for the NEC PC-800, et cetera) a

change to the interpreter required not changing just one program, but changing

twenty-plus programs. So that could only be done rarely or when it was extremely

important, such as changing the status line in Deadline to display time instead of

score and moves.

A more stringent limit was imposed by the desire to run on the widest possible

array of machines, so we were always limited by the capabilities of the smallest and

192 Chapter 10: Interview: Steve Meretzky

weakest of those machines. In the earliest days, the limiting machine was the

TRS-80 Model 1, whose disk drive capacity limited the first games to an executable

size of 78K. As older machines “dropped off” the to-be-supported list, this limit

slowly rose, but even when I wrote HHGTTG, games were still limited to around

110K. Generally, this limit would be reached midway through testing, and then

every addition to the game, to fix a bug or to handle a reasonable input by a tester,

would require ever more painful searches for some text, any text, to cut or con-

dense. At times, this was a good discipline, to write lean, to-the-point text. But often

it became horrible and made us feel like we were butchering our own children.

Okay, that’s a slight exaggeration.

How did the development process work at Infocom? Were you fairly free to

choose what games you made?

In the early days, things were pretty informal, and decisions were made by

fairly informal consensus. In the later days, particular after the acquisition by

Activision, decisions were much more mandated by upper management. Generally,

the choice of a game was left up to the individual author. Authors with more of a

track record, like Dave Lebling and myself, had more leeway than a greenhorn

implementor. Of course, there were marketing considerations as well, such as the

strong desire to complete trilogies or the opportunities to work with a licensed prop-

erty such as HHGTTG.

One thing that was standard over the whole seven-plus years that I was at

Infocom was the “Implementors’ Lunches,” or, for short, “Imp Lunches.” These

were weekly lunches at which the game writers would get together to talk about the

games in development, share ideas, critique each other’s work, et cetera. It was

probably the most fun couple of hours of the week.

There wasn’t too much oversight during the first few months of a game’s life,

while the implementor was working pretty much alone, other than at the Imp

Lunches, any impromptu brainstorming, or requests for help/advice. But once the

game went into testing, first among the other writers, then with the internal testing

group, and then finally with outside “beta testers,” the game was under the micro-

scope for months on end. During this time, bugs and suggestions would often run

into the thousands.

How fluid and changing was the design of an Infocom game?

This varied from implementor to implementor. My own style was to do a little

bit of on-paper design before starting, mostly in creating the geography and any

“background universe” documents such as a time line in the case of Sorcerer, or the

rules of the deserted planet’s language in Planetfall. But for the most part I would

just jump right in and start coding with most of the characters and puzzles living

only in my head.

Chapter 10: Interview: Steve Meretzky 193

The Infocom development system was terrific, compared to the graphic-based

systems I’ve worked with since those days, because just the game writer working

alone could implement an entire section of the game in only a couple of days, and

then try it out and see how it worked. If it had to be scrapped because it wasn’t

working, it was no big waste of time or resources. This allowed for a lot of going

back and rewriting big sections of the game, which is inconceivable nowadays,

where such a decision might mean throwing away a hundred thousand dollars worth

of graphics.

Was there a lot of playtesting on Infocom titles?

Lots of testing. Since the development system was quite stable during most of

Infocom’s life, the testing was able to concentrate on game-specific bugs and game

content. There would ideally be about two weeks of “pre-alpha” testing where the

other game writers would play a game, followed by two to three months of alpha

testing with our in-house testers, followed by a month of beta testing with a couple

of dozen outside volunteers. If time allowed, there was also a month of “gamma”

testing, which was just like beta testing except that the idea was not to change a

thing unless a really major problem was found.

Testing for both game-specific bugs and game content went on pretty much

concurrently, although more heavily weighted toward content during the early days

of testing, and more toward bugs in the later days, when it became increasingly less

desirable to make any significant changes to game content.

The early testing period was probably the most fun and exciting time in the

game’s development. For one thing, after months and months of working alone, not

having any idea if a game was any good other than my own instincts, all of a sudden

a bunch of people are playing the game, usually enjoying it, and giving tons of feed-

back. It’s a real rush. Also, we had an auto-scripting feature where our network

would automatically make a transcript of each player’s sessions, which I could read

to see what everyone was trying at every point, so I’d often find things which were

wrong, but which testers didn’t necessarily realize were wrong. Or I’d find things

that they’d tried which were reasonable attempts to solve the puzzle at hand and I’d

try to reward such an attempt with a clever response or with a hint, rather than just a

default message like, “You can’t put a tablecloth on that.”

It was during the testing period that games became great. Going into the testing

period, the game was more like a skeleton, and the testing period, as one of our test-

ers once said, “put meat on the bones.” Lots of the humor, the responses to wacky

inputs, the subtle degrees of difficulty, the elimination of unfair puzzles—these

were all the products of Infocom’s excellent testing group.

194 Chapter 10: Interview: Steve Meretzky

The packaging for Infocom games was really unique. Why did the company go

above and beyond what so many other game publishers did?

When Infocom started, the standard for computer game packaging was some-

thing similar to a Ziploc bag. It was just a clear plastic bag with a Ziploc top and a

hole to hang on a pegboard in stores; the bag would hold a floppy disk and an often

cheaply photocopied manual. In fact, the early Radio Shack versions of Zork were

in just such a package.

The original publisher of Zork I was a company in California called Personal

Software. In fact, the product manager for the Zork line at Personal Software was

Mitch Kapor, who went on to found Lotus. Shortly after they starting publishing

Zork, Personal Software hit it big-time with a program called Visicalc, the first suc-

cessful piece of business software for computers. They changed their name from

Personal Software to Visicorp, and decided that they didn’t want to waste their time

dealing with games, and they gave Zork back to Infocom.

Rather than find a new publisher, Infocom decided to be its own publisher, and

hired an agency to design the packages. The result was the “blister pack” packages

for Zork I and Zork II, the first time such packages had been used for computer

games. This is the type of package in which a clear piece of molded plastic is glued

to a cardboard back, with the contents visible through the clear plastic, in this case

the contents being the Zork manual with the disk out of sight behind it.

When it was time for the packaging design on Infocom’s third game, Deadline,

Marc Blank went to the agency with a series of out-of-print books from the 1930s,

written by Dennis Wheatley. With names like Murder Off Miami and Who Killed

Robert Prentiss?, the books were a portfolio of reports and clues, just like a police

detective would be given when investigating a case: interviews with witnesses,

typed letters, handwritten notes, railway tickets, newspaper clippings, a used match-

stick, and lots more. The idea was that you were the detective, and after sifting

through the evidence, you should decide who the murderer was and how they did it,

and then open a sealed section of the book and see if you were right.

Marc was very influenced by those books in creating Deadline—in fact the

original working title was Who Killed Marshall Robner?—and he wanted the

agency to be very influenced by them in creating the packaging for Deadline. Marc

wanted the player to feel like they were a detective being placed on a case from the

moment they opened the package. Also, because of the strict limits on game size,

having lab reports and suspect interviews in the package freed up space in the

game for more interactive content. The Deadline package that resulted is very

reminiscent of those Dennis Wheatley books, with a photo of the crime scene, inter-

views, fingerprints, lab analyses of things like the teacup found near the body, and

even a bag of pills labeled “Pills found near the body.” Those were actually

white-colored SweeTARTS.

Chapter 10: Interview: Steve Meretzky 195

The Deadline package was a huge hit, even though we charged $10 more for it,

$50 MSRP instead of $40 MSRP. We decided that great packaging was fun, was a

great value-added, was a great way to “raise the bar” and make it harder for new

competitors to enter our market space, and most importantly, it was a way to dis-

courage pirating of our games. It was more difficult and less cost effective to need

to copy a bunch of package elements as well as the floppy disk. Also, because the

packages were so neat and so integral to the experience of playing the game, many

people wouldn’t have felt they owned the game unless they owned the complete

original packaging.

The next games were Zork III and Starcross. Zork III just went in a blister pack

to match its brethren, but Starcross was placed in a large plastic flying saucer, along

with an asteroid map of your ship’s vicinity. This package, while problematic for

some stores because of its size and shape, was phenomenally eye-catching and pop-

ular. Recently, a still-shrink-wrapped copy of Starcross in this original packaging

sold for three thousand dollars on eBay.

My favorite package of all the ones that I worked on was LGOP, with its scratch

’n’ sniff card and 3D comic. The comic was a collaboration between me, a comic

book artist, and a guy who specialized in translating conventional 2D comic draw-

ings into 3D layers. For the scratch ’n’ sniff card, I got several dozen samples from

the company that made the scents. Each was on its own card with the name of the

scent. So one by one I had other Infocom employees come in, and I’d blindfold

them and let them scratch each scent and try to identify it. That way, I was able to

choose the seven most recognizable scents for the package. It was a lot of fun see-

ing what thoughts the various scents triggered in people, such as the person who

was sniffing the mothballs card and got a silly grin on his face and said, “My grand-

mother’s attic!”

We, the implementors, had pretty wide latitude on the choice of package ele-

ments, as long as we stayed within budgetary parameters. But marketing often had

good ideas too, suggesting that my idea for a book in Zork Zero become a calendar,

and suggesting things like the creepy rubber bug in the Lurking Horror package.

But most of the best ideas came from the writers.

The best package pieces were those that were designed in from the beginning of

the game, rather than tacked on as an afterthought once the packaging process

started in mid-alpha. Most other game companies had anti-piracy copy protection in

their packages, but it was often completely obvious and mood-destroying, such as

“Type the seventh word on page 91 of the manual.” With the better Infocom pack-

age elements, you never even realized that you were involved in an anti-piracy

activity, because the package elements were so seamlessly intertwined with the

gameplay. And, of course, in the all-text environments of our games, the package

elements were a great way to add visual pizzazz to the game-playing experience.

196 Chapter 10: Interview: Steve Meretzky

There seems to have been a clear difference between Infocom games and the

games the rest of the industry offered, especially in terms of a consistent level of

quality. Why do you think this was? How was this quality maintained?

Partly, it was the very early philosophy of Infocom, and even before Infocom, in

the creation of Zork, which was to take a fun game, Adventure, but do it better. So

there was always a strong desire to be the best. Also, partly it was because the peo-

ple who made up Infocom were just a really smart and talented group of people.

And partly it was luck. We had early success, so when we created each new game

we could invest a lot of time and money into it, knowing that its sales would justify

the investment, while many other companies couldn’t assume that level of sales and

therefore couldn’t afford the same level of investment.

Our always improving development environment, parser, et cetera, was a big

reason for the high level of quality. The talented testing group, and the time we

scheduled for testing, bug-fixing, and general improvement, was another big factor.

Did Infocom’s consistent quality level allow it to weather the “crash” of the

mid-’80s pretty easily?

The mid-’80s crash began with a crash on the video games side, and then

spilled over into the PC market. Many companies had a mixture of video game and

microcomputer SKUs, but Infocom was entirely in the PC market. Also, our games

were as un-video-game-like as possible. Another reason why the mid-’80s slump

had little effect on Infocom’s game sales was that we were on so many machines,

and we could quickly get onto any new computers that were released. For example,

the Mac came out in early 1985, and our games were extremely successful on the

early Macs. And, of course, the high quality helped, because during any slump it’s

always the schlocky products that die first.

To me, it seems that Infocom games are the only titles from the early ’80s that

don’t seem at all dated. Why do you think that is?

Well, graphics from games in the early ’80s look awful, but text just looks like

text. So time is kinder to text adventures. And, as we’ve already covered, the games

were of a very high quality, which helps them hold up over time. And, once you’ve

eliminated technical obsolescence as an issue, ten to twenty years isn’t a very long

time for a creative work to age well or not well. Think about books, movies, TV

shows, et cetera from the same period. Only a very few that were unusually topical

would seem dated today, and Infocom games certainly weren’t topical, with perhaps

AMFV as a lone exception. And it’s certainly not unusual for people to continue to

enjoy the best works long after their creation: I Love Lucy is forty years old, Gone

With the Wind is sixty years old, the films of Charlie Chaplin and Buster Keaton are

eighty years old, Alice in Wonderland is one hundred fifty years old, and Shake-

speare’s plays are four hundred years old.

Chapter 10: Interview: Steve Meretzky 197

Did the Infocom team think that text adventures would be around forever?

We certainly thought they’d evolve, in ways foreseeable and unforeseeable.

While everyone had their own ideas, I’d say that around 1985 a composite of the

thinking at that point would be something like this: graphics will improve to the

point that they’re worth putting in adventure games, there will be a growing empha-

sis on story over puzzles, games and game-worlds will get larger, there will be more

realistic, believable characters in adventure games, many people who have been

successful storytellers in other media, such as fiction writers and movie auteurs, will

gravitate toward adventure games as the storytelling medium of the future. Looking

back, only the first of those points came to pass.

But despite anticipated changes, I think everyone thought that adventure games

would be around indefinitely in some form. I don’t think anyone thought that by the

end of the century all forms of adventure games would be virtually defunct as a

commercial game type.

It’s interesting that books seem to be able to coexist alongside television and film.

Why do you think text adventures cannot seem to do the same thing?

There is still a fairly vigorous marketplace for text adventure games. There are

still people writing them and people playing them, it’s just not an economic market.

The people writing them are not writing them for pay, they’re just writing them for

the joy of it, and the people playing them are mostly not paying for the experience.

And I think one thing that’s similar between writing text adventures and writing

books is that it tends to be a one-person operation, assuming that you use an exist-

ing text adventure writing system. One person without too much specialized

training can go off and in a few months write a text adventure game, just like some-

one with a typewriter, word processor, or big stack of paper and a pen can go off

and write novels.

Perhaps it’s just a matter of scale, as you mentioned before. The total number of

people interested in playing a computer game is just a lot less than the number of

people interested in other, traditional, non-interactive media.

I think that’s probably true, though I don’t know the numbers offhand. But I

imagine a best-selling book is probably not much more than a million copies or

something. I seem to recall that at the time we did the game, an aggregate of the

Hitchhiker’s books had sold seven million copies, so maybe a couple of million

each? And certainly the number of people who watch television is certainly dozens

of times more than that.

The interface for the Spellcasting series was interesting. It allowed the games to

function exactly like the Infocom text adventures, but then added the ability for

the player to use only the mouse to play by clicking on the list of verbs, nouns,

198 Chapter 10: Interview: Steve Meretzky

TE
AM
FL
Y

Team-Fly®

and so forth. What was the idea behind this new interface?

This inter-

face came from

the folks at Leg-

end, particularly

Bob Bates, who

had begun work-

ing on this

interface for his

post-Arthur

Infocom game

The Abyss,

based on the

still, at the time,

unreleased

movie. The game was canceled when Infocom was shut down by Activision, and

when Legend decided to start publishing their own adventure games, they continued

developing that interface.

The impetus for the interface was not a particular feeling that this was a

good/useful/friendly/clever interface for playing adventure games, but rather a feel-

ing that text adventures were dying, that people wanted pictures on the screen at all

times, and that people hated to type. I never liked the interface that much. The

graphic part of the picture was pretty nice, allowing you to move around by just

double-clicking on doors in the picture, or pick things up by double-clicking on

them. But I didn’t care for the menus for a number of reasons. One, they were way

more kludgey and time-consuming than just typing inputs. Two, they were give-

aways because they gave you a list of all possible verbs and all visible objects.

Three, they were a lot of extra work in implementing the game, for little extra bene-

fit. And four, they precluded any puzzles which involved referring to non-visible

objects.

Also, the Spellcasting games went beyond Zork Zero by having full-on graphics.

Did you make any changes to the way you wrote and designed your games as a

result?

Not much. I think I could take any of my graphic-less Infocom games, get an

artist to produce graphics for each room, and retrofit them into Legend’s graphical

engine. The menu-driven interface would be more problematic than the graphics.

Conversely, all the games I did for Legend had a hot key which allowed you to turn

off graphics and play them like a pure old-fashioned text adventure. So the graphics

were always just an extra, not a mandatory.

Chapter 10: Interview: Steve Meretzky 199

Spellcasting 101: Sorcerers Get All the Girls

In terms of the overall gameplay experience, what do you think was gained and

lost by the addition of graphics to the text adventures?

There’s the

unending, pas-

sionate, almost

religious argu-

ment about

whether the pic-

tures we create

in our imagina-

tion based on a

text description

are far more

vivid than any-

thing created on

even a high-

resolution millions-of-colors monitor. My own feeling is that there are probably

some people who create better images in their imagination, and some whose imagi-

nations are pretty damn feeble. Still, the change resulted in adventure games

moving in a somewhat lower-brow, less literary direction.

Second, there were some puzzles precluded by graphics. For example, puzzles

that relied on describing something and letting players figure out what it was by

examination and experimentation. An example from Zork I: the uninflated raft that

isn’t called that, it’s called a “pile of plastic.” You have to examine it and find the

valve and figure out to try using the air pump and only then do you discover that it’s

a raft. In a graphical game, you’d be able to see instantly that it was an uninflated

raft.

Thirdly, and most importantly, graphics cost way way way more than text. As

Brian Moriarty puts it, “In graphic adventures, you have to show everything—and

you can’t afford to show anything!” As a result, graphic games have far fewer of

everything, but most important, far fewer alternate solutions to puzzles, alternate

routes through the game, interesting responses to reasonable but incorrect attempts

to solve a puzzle, fewer humorous responses to actions, etc. In other words, graphic

adventures have a whole lot less “meat on the bones” than the Infocom text adven-

tures. You get a lot more of those infuriating vanilla responses, like, “You can’t do

that” or your character/avatar just shrugging at you.

How did Superhero League of Hoboken come about? Had you wanted to tackle

that genre for a while?

Well, I’d been wanting to make an RPG for many years, and at the time, the

early ’90s, RPGs were generally outselling adventure games. This was before the

200 Chapter 10: Interview: Steve Meretzky

Spellcasting 201: The Sorcerer’s Appliance

“death” of RPGs that lasted until the release of Diablo. But I thought that the usual

Tolkien-esque fantasy setting and trappings of RPGs had been done to death, and it

occurred to me

that superheroes

was an excellent

alternate genre that

worked well with

RPG gameplay,

with superpowers

substituting for

magic spells.

I originally

planned to make it

a full RPG, but

Legend had never

done anything that

wasn’t a straight

adventure game and were therefore nervous, so the only way I could convince them

was to make it an RPG/adventure game hybrid.

It’s the only superhero game I am aware of that was not dreadful. Why do you

think so few superhero games have been done?

I think that the dearth of superhero games is mostly a legal/licensing issue. Most

companies probably feel that only one of the well-known superheroes is worth cre-

ating a game around, and such licenses are hard to come by. And even if a license is

obtained, the cost of obtaining it means a lot less money in the development budget,

which is why all licensed games, not just superhero games, are often so mediocre. I

was able to get by with original content in Superhero League because it was a satire.

I don’t think I ever would have been able to convince Legend to do a “straight”

superhero game in the same style and engine.

Superhero League is your only RPG. What made you want to try a game design in

more of an RPG direction?

I enjoyed and still enjoy playing RPGs a lot, and I always try to make games

that would be games I’d enjoy playing myself if someone else created them. And I

always prefer to do something that I haven’t done before, whether it’s a new genre

as was the case here or a serious theme like AMFV or adapting a work from another

medium like Hitchhiker’s, or a larger scale like Zork Zero. Of course, that’s just my

preference. Publishers often have other ideas!

Chapter 10: Interview: Steve Meretzky 201

Superhero League of Hoboken

The game seems to automatically do a lot of things for the player that other RPGs

would require the player to do for themselves. Was one of your design goals to

make the RPG elements very simple to manage?

Because it was an adventure/RPG hybrid, we guessed that a lot of the players

would be RPG players who were pretty inexperienced with adventures, and a lot of

the players would be adventure gamers who were pretty inexperienced with RPGs.

So I tried very hard to make the puzzles pretty straightforward, and we tried to keep

the interface as simple and friendly as possible, given the highly detailed nature of

RPG interactions.

Superhero League of Hoboken seemed to be pretty popular. I was wondering why

you haven’t done another RPG since.

Well, it actually didn’t sell all that well. I don’t think it sold more than twenty,

twenty-five thousand copies. And it was certainly pretty disappointing, because I

spent somewhat longer on it, certainly longer than any of the other games I did for

Legend. And it got quite good reviews, so the sales numbers were pretty disappoint-

ing. I think it was Accolade who distributed that, but at the time Legend was not

doing all that well financially, so they didn’t really do that great a job on the market-

ing side. As the publisher but not the distributor, their job was to handle all the

advertising and PR, and they couldn’t really afford to do all that much on either

front. And Accolade as a publisher was certainly not as strong a publisher as some-

one like an EA might have been.

And I think something that really hurt Superhero League a lot was that the game

was delayed about a year from its original release date. That was partly due to the

delay of the previous games in the Legend pipeline ahead of it, and partly due to the

fact that the game was trying to do some things that couldn’t be done in the Legend

development system, and this required some extra support. They hired a program-

mer to do that, and he kind of flaked out, and therefore it had to be rewritten by

internal resources. So this served to delay the game, and it ended up coming out

middle of ’95 instead of middle of ’94. And it was a regular VGA game. So, in the

meantime, everything had become Super VGA. So by the time it came out it looked

very dated. In fact, I remember another game that came out around the same time

was Colonization. And I remember playing Colonization and being shocked at how

awful it looked. I’m sure the experience was very much the same for people looking

at Hoboken for the first time.

So would you ever want to do another RPG?

Certainly a lot of the projects that I started working on at GameFX were

role-playing games, but of course none of those came to fruition. I certainly very

much enjoyed working on Hoboken and I like playing role-playing games, so I defi-

nitely wouldn’t mind working on another one.

202 Chapter 10: Interview: Steve Meretzky

Hodj ’n’ Podj was certainly your most different game up to that point. Were you

trying to appeal to a

new audience with

the game?

Well, I wasn’t

really trying to

appeal to a new

audience. As with

all my designs the

audience was basi-

cally me. I always

just hope that there

will be enough

other people with

the same likes as

me to make the

game a success.

The idea for Hodj ’n’ Podj was at least five years old when it finally became a

real project. I originally conceived of the game as a way to bring back all those fun,

simple games which had pretty much disappeared, because the hard-core gaming

audience which was driving development decisions wouldn’t be satisfied by such

simple games. This, of course, was before those classic games became ubiquitously

available via CD-ROM “game packs” and more recently via the Internet.

At the time, I felt that a collection of such games would need a framework to tie

them together to

make them an accept-

able economic

package, thus the

overarching board

game and fairy tale

back-story/theme. Of

course, in the mean-

time, many

companies released

game packs with no

connecting theme or

mechanisms, and did

quite well with them.

Still, I’m very happy

creatively with the

decision to make the

Chapter 10: Interview: Steve Meretzky 203

Superhero League of Hoboken

Hodj 'n' Podj

Hodj ’n’ Podj mini-games part of a larger structure.

It was only after the game was well into development that we began to suspect

that it was going to appeal to a very different gaming audience. This was before the

phrase “casual gamers” had really entered the industry vernacular. As outside test-

ers, employees’ friends and family, et cetera, began playing early versions of the

game, we were surprised to find it appealing to people who didn’t normally like

computer games. We were particularly pleased and surprised to find how much

female players liked it. And finally, we discovered that the game was appealing to

another niche that hadn’t really been identified yet at that time, “family gaming”:

that is, parents and children playing together. And, thanks to the difficult leveling

mechanisms, parents could compete on a relatively level playing field with children,

without having to “play down” to a child’s level. It’s still the only game I’ve ever

written that I’ve been able to play myself for fun, and I still play with my kids every

now and then.

How did The Space Bar project come about and what were your design goals for

the project?

That’s another idea that had been brewing for a long time. I think the genesis

was actually back around 1986 or ’87, when the New York Times threatened to sue

Infocom because of our customer newsletter being called the New Zork Times. Our

lawyer completely poo-pooed the threat, but when Activision began negotiating to

buy Infocom, they insisted on all such “clouds” being removed, and thus we were

forced to change the name of the newsletter. There was a naming contest open to

customers, plus tons of discussions within the company, and the newsletter ended

up being renamed

The Status Line. But

in the meantime, I

suggested The Space

Bar and giving the

newsletter the ongo-

ing fiction that it was

being written by den-

izens of such a bar,

and populated with

ongoing characters

who were “regulars”

in the bar. I’m not

sure exactly how, but

at some point the idea

made the leap from

204 Chapter 10: Interview: Steve Meretzky

The Space Bar

newsletter idea to game idea.

The main design goal for the project was to create an adventure game which

was composed of a lot of smaller adventure games: a novel is to a short story collec-

tion as a conventional adventure game would be to The Space Bar. In addition to

just a desire to want to try something different, I also felt (once again reflecting my

own needs and wants in my game design) that people had increasingly scarce

amounts of time, and that starting an adventure game required setting aside such a

huge amount of time, many tens of hours. But if, instead, you could say to yourself,

I’ll just play this “chapter” now and save the rest for later, it would be easier to jus-

tify picking up and starting the game. Secondary design goals were to create a

spaceport bar as compelling as the one in the first Star Wars movie, to create a

Bogart-esque noir atmosphere, to be really funny, and to prove that you could make

a graphic adventure that, like the Infocom text games, could still have a lot of “meat

on the bones.” As with Hodj ’n’ Podj, I felt that just a collection of independent

games was too loose, and required a connecting thread, thus the meta-story involv-

ing Alias Node’s search for the shape-shifter, Ni’Dopal. Empathy Telepathy was

just a convenient device for connecting the “short stories” to the meta-story.

At the very beginning of the project, Rocket Science was really interested in

“synergies” to “leverage” their projects in other media: movies, action figures,

board games, books, et cetera. I suggested that a great companion project for The

Space Bar would be to commission an anthology of short stories by SF writers, with

each one selecting one of the characters/races we created for The Space Bar and

writing an original story about that race or character. Thus, it wouldn’t be a conven-

tional “novelization” of the game but an interesting companion piece. But, despite

initial enthusiasm on their part and repeated reminders on our part, Rocket Science

never did anything about it.

Correct me if I’m wrong, but it seems that The Space Bar was certainly your big-

gest budget project. Were you eager to work with such lavish production values?

Yes, it was more than twice the budget of Hodj ’n’ Podj, which was my largest

budget up to that point. But it was still a relatively small budget compared to other

graphic adventures of that time; Boffo was a pretty lean operation that really got a

great deal of bang for Rocket Science’s buck, and the same is true for our primary

art subcontractor for the game, Dub Media.

Even though it was a big budget, it certainly wasn’t lavish, because there was

never nearly enough money to do everything we wanted to do, so we were always

cutting corners. Just one example: Alias’ PDA was supposed to be an actual ani-

mated face, not just a disembodied voice. So in terms of what we wanted to do

versus what we could afford to do, it was actually my most financially tight project.

This is the big problem with graphic adventures, as discussed earlier, and the main

reason why the medium is basically financially dead at this point.

Chapter 10: Interview: Steve Meretzky 205

But the project, while extremely stressful from a budgetary standpoint, was still

a great time. Working with Ron Cobb as the conceptual artist was one of the real

thrills of my career. The Space Bar team was the largest team I’d ever directed,

which, of course, goes hand in hand with it being the largest budget, and it’s pretty

exciting having so many people contributing because almost everyone contributes

beyond their narrow areas of expertise/responsibility. And I felt that despite the cut

corners we substantially met every design goal, which was quite gratifying.

What led you to

WorldWinner.com?

After about a

year of canceled pro-

jects at

GameFX/THQ, I was

looking to get out and

was working with a

recruiter, and she

steered me toward

WorldWinner. The

individual games will

be very reminiscent

of the kind of games

in Hodj ’n’ Podj,

which was definitely

one of the main attractions. Also, working in a multi-player online environment was

a big lure, because I haven’t done that before.

So do you think the Internet provides new possibilities for a wider breadth of

games than is currently available?

Yeah, well I definitely think so in terms of providing an outlet for the more per-

sonal or more experimental kind of games. Other than that, for now, there are

certainly negatives about it in terms of bandwidth. With the games I’m doing now,

while there are really interesting and really fun things about them, it’s certainly kind

of annoying to be back in the days where 100K is really big, and in some cases too

big. I had gotten away from that as we got into the CD-ROM days, where the size of

things became, in most cases, completely inconsequential, and now all of a sudden

it’s back in spades. But yes, overall, there are certainly positives and negatives, but

overall the positives are very promising and the things that are negative about it,

like there are certain kinds of games we can’t do because of bandwidth—well,

people can still do those games via the normal, traditional channels.

206 Chapter 10: Interview: Steve Meretzky

The Space Bar

Do you find writing or playing games more fun?

Playing. Writing games is sometimes a lot of fun, and sometimes a lot of drudg-

ery, and sometimes it’s really brutally painful, like when your company goes out of

business. But playing games is always fun. Of course, the funnest parts of making

games are more fun than the funnest parts of playing games.

So much writing in games is dreadful. What do you think is important to keep in

mind when writing for a game?

All types of writing are different, and there are plenty of excellent novel writers

who couldn’t write a screenplay or vice versa. And writing for games is at least as

different as those two. Of course, there are exceptions also. It helps to be a game

player. You wouldn’t expect a novelist to succeed as a screenwriter if he hadn’t seen

any movies! So a lot of the writing in games is bad because it’s being written as

though it is for another medium. Of course, some of the writing is bad just because

the writers doing it are untalented. As with game design, programmers and produc-

ers often incorrectly feel that they’re capable of doing the writing.

One thing that makes the writing in games so different is that it often comes in

little disconnected chunks, one-word or one-sentence responses to various actions

by the player. There is a difficult tradeoff between keeping such snippets interesting

and keeping them terse. Also, writing has to be so meticulously crafted for

gameplay and puzzle purposes—give away just enough clues, not too many, don’t

mislead—that the quality of the writing often has to take a back seat. And the

non-linear nature of games is another obstacle to good writing. If you don’t know

whether Line A or Line B will come first, there often has to be a duplication of

information, giving the appearance of being sloppy or overly wordy. And finally,

there’s the issue of repetition. In adventure games, you often see the same piece of

writing over and over again, with familiarity breeding contempt for even very good

writing.

How organic is the design process for your games? Did the onset of graphics end

up limiting how much you could change your game?

Very organic, but you’re right, graphics games are far more limiting in terms of

how much the game can change once it gets beyond the original design stage. Of all

my games, AMFV was probably the one that changed the most as the game’s pro-

duction progressed. Originally, it was a much more ambitious, much less

story-oriented game, almost a “future simulator” where the player would be able to

set parameters in the present and then travel N years in the future to see what world

would result from those decisions.

I also think that development works best when the game grows during imple-

mentation, rather than mapping/plotting out the entire game to a fairly high detail

level and then starting implementation. That is another big advantage of text

Chapter 10: Interview: Steve Meretzky 207

adventures over graphic adventures. It allows me, in a game like LGOP or

Hoboken, to find and then hone a voice/style while a lot of the game is still on the

drawing board, resulting in better, more unified work.

A big issue for adventure games seems to have been difficulty. For instance, if the

game is too hard, you are likely to frighten away new players. But if the game is

too easy, the hard-core players will dismiss your game. Do you have any idea

what a solution to this problem might be?

Difficulty was a constant problem. Our games got consistently easier, which

didn’t seem to help attract any new players, and definitely seemed to turn off our

hard-core fans. Hint books and later in-game hints were definitely considered ways

to keep the games pretty hard without discouraging newer, less sophisticated, less

masochistic players. It’s a pretty good solution, because if the game is too hard,

hints can help, make the game a good experience for a weaker player, but if the

game is too easy it’s pretty much ruined for a stronger player. Another solution is to

have multiple difficulty levels, with more in-story clues in the easier levels, but this

is obviously a lot more work to design, program, and balance.

A frequent complaint one sees about adventure games is that they don’t have a lot

of replay value. As a designer, what do you do to add that replayability, or do you

not consider it a big issue?

Yes, that became increasingly a big issue as my games were competing not so

much against other adventures and RPGs, but against strategy games like Civiliza-

tion and RTS games like WarCraft. To some extent, you can have replayability in

adventure games. For example, Suspended was an extremely replayable Infocom

game, as you strove to finish the game with the lowest possible casualty levels.

Even with Zork I, I remember a New Jersey couple who used to write to us con-

stantly with new ways to win the game in ever-fewer numbers of moves. Alternate

puzzle solutions and “meat on the bones” responses to wacky inputs are other ways

to extend play time. But for the most part, it’s just a matter of making sure that it

takes thirty or forty hours to play the game, and hoping that that’s enough to get a

person to spend forty or fifty dollars on it.

Did you ever want to forget about the puzzles and have a game that mostly

focused on story? You seem to have done an “all puzzles” game with Hodj ’n’

Podj.

My desire, and I think this goes for most adventure games writers, is to do more

story and less puzzle, but puzzle is necessary to keep that thirty- to forty-hour play-

time goal. Of all my games, AMFV was certainly the most in the story direction, and

Zork Zero was probably the most in the puzzle direction. I certainly don’t agree that

Hodj ’n’ Podj was all puzzles, as the board game certainly has a well-developed

208 Chapter 10: Interview: Steve Meretzky

TE
AM
FL
Y

Team-Fly®

opening and closing story, and the gameplay fills in a little more between those

bookends: prince rescues princess, prince confronts brother, et cetera.

Did you ever add puzzles to a game solely to make the game longer?

I have definitely added puzzles simply to prolong the gameplay. I’d say the

whole third section of AMFV was partly that, and partly feeling scared that the game

was too different and too puzzle free and that people would rebel if at least there

weren’t some puzzles in the game. I think Planetfall and Stationfall were definitely

cases where, as the game went into testing, there was kind of an impression that the

game was too easy and over too quickly. Some more needed to be put in to keep

people from finishing the game in ten hours and feeling that they hadn’t gotten their

money’s worth.

Do you ever fear that some people who might like the story elements of adventure

games are scared off by the really hard puzzles?

Well, it is kind of a conundrum, because it seems like what makes adventure

games so compelling and obsessive are really difficult puzzles that have you up all

night, thinking about them even when you’re not sitting down playing the game.

Then, when you’re away from the game, you’re thinking about it and all of a sudden

“Oh my God, the kumquat over in the hay shed seven rooms over, I’ve never tried

that!” And you can’t wait to run home and boot up the game to your save and run

over to get the kumquat, bring it back, and try whatever. And maybe it works, and

it’s the greatest feeling, or maybe it doesn’t work and it’s the worst feeling, or

maybe it doesn’t work but at least it gives you some new direction or hint or some-

thing. And in a game with no puzzles or pretty easy puzzles you just don’t get that

same rush. But, on the other hand, particularly as time went by, it seemed there were

more and more people playing adventure games who really really disliked very hard

puzzles. It’s very hard to satisfy both audiences. Attempting to satisfy the people

more interested in the casual gaming experience seemed to, over time, dribble the

audience away, because it resulted in a less compelling gameplay experience.

Did you also serve as a programmer on all of your games?

Through Hoboken, I did both design and programming, and since then just the

design. I certainly prefer to avoid programming if possible; doing so was always

just a necessary evil. Of course, it certainly has some great advantages in terms of

efficiency and one hundred percent perfect communication between programmer

and designer. But even if I loved programming, games these days are too complex

for one programmer anyway, so I’d never be able to do all the design and program-

ming myself anymore.

Chapter 10: Interview: Steve Meretzky 209

In adventure games and, in particular, text adventures, limiting what the player

can do is a major part of the game. Players can become frustrated from seeing

“you can’t do that” too often. How hard do you work to eliminate this problem?

Part of this is limiting the geography of the game. The original choice of setting

helps. This is why so many games are set inside a geography with very well-defined

boundaries like a cave, castle, island, zeppelin, et cetera. It’s less frustrating to not

even perceive a boundary than to reach a boundary and be told “There’s nothing

interesting in that direction” or “You’d probably die of thirst if you tried crossing

that desert.”

Part of it is just rolling up your sleeves and putting in as many non-default

responses as possible, based on initial guesses of what people will try, augmented

by suggestions from testers and even more ideas from reading the transcripts of test-

ers’ game sessions. Adding such responses was only limited by time and, more

often, by disk space. This was also a good way to put in hints; a player tries some-

thing which isn’t the “Right Answer” but which is a “Reasonable Thing to Try.” I’d

make the response an explanation of the failure, but perhaps a clue for what to try.

For example:

>GIVE THE SANDWICH TO THE OLD MAN

He looks too tired to eat right now.

And part of it is making the default responses as flexible and fun as possible.

For example, in Hitchhiker’s, the default response for the verb FILL was “Phil

who?” Phil was Zaphod’s alias during the party scene. For another example, in Zork

I the default response to many “impossible” actions was chosen from a table, giving

you a variety of responses. So instead of:

>TAKE ALL

loaf of bread: Taken.

knife: It’s stuck firmly into the countertop.

countertop: You can’t take that!

sink: You can’t take that!

stove: You can’t take that!

oven: You can’t take that!

you’d get:

>TAKE ALL

loaf of bread: Taken.

knife: It’s stuck firmly into the countertop.

countertop: What a concept!

sink: Think again.

stove: Not bloody likely.

oven: Think again.

210 Chapter 10: Interview: Steve Meretzky

Do you have a particular starting point when creating a new game?

Varies from game to game. AMFV started with the game’s theme/message. Sor-

cerer started with the complex time travel, meet your own self puzzle and built from

there. I’ve explained earlier what the seed ideas were for Planetfall and The Space

Bar. Generally, I don’t do all of one thing before moving on to the next. I don’t

write the entire story line, and then start on the geography, and then when that’s

done start writing some puzzles. Instead, I’ll rough out a story line, then design the

core part of the geography, start populating it with characters and puzzles, refine the

story line, add a new scene with resulting geography, add in the two puzzles I

thought of in the meantime, combine two characters into a single character, add a

couple more rooms to that Laboratory section of the game, add a new puzzle to

flesh out the end-game, figure out why Esmerelda ran away from home in the first

place, and so forth.

Why do you think that adventure games are so commercially unviable these

days?

Simply, the cost-revenue model for the average adventure game is so far from

being profitable that almost no publishers will touch them, since almost all publish-

ing decisions these days are being made on a purely commercial rather than creative

basis. It’s just one of the most expensive types of games to make, and the top N

adventure games sell less than the top N games in almost any other category.

Of course, it can be argued that the adventure game isn’t dead, but has simply

evolved into action/adventure games, e.g., Tomb Raider, and platform games, e.g.,

Mario, Crash. Personally, I don’t consider any game that relies on even a relatively

small degree of hand-eye coordination to fit the bill of an adventure game.

I suspect that a major technical innovation could revive the genre, but I don’t

know whether that will be a voice recognition interface, Turing-proof NPCs,

3D-surround-VR environments, or what.

It’s particularly distressing when a well-budgeted game that everyone agrees is

well done doesn’t sell very well. In particular I’m thinking of Grim Fandango.

Yes, Grim Fandango. I don’t know the exact numbers, but I don’t think it broke

a hundred thousand. And that was everyone’s pretty much unanimous choice for

adventure game of the year. It was a wonderful game. I didn’t think from a puzzle

point of view it was that great, but from an art direction point of view it was proba-

bly the best adventure game I’d ever seen.

It seems strange that adventure games used to be among the best-selling games,

and now they don’t sell well at all. Maybe my numbers are off . . .

No, that’s really true. Around the time of the King’s Quest games of the very

late ’80s and early ’90s, they really were the best-selling genre at that time. And the

Chapter 10: Interview: Steve Meretzky 211

Infocom adventure games, from circa ’83 to ’85 were too. There was a point when

we had five of the top ten selling games for a given month.

So what happened to the players of adventure games?

Well, there are certainly genres that exist now that didn’t even exist then. And

there are other genres that may have existed then but have certainly come along

quite a ways. So it may be that the people who were playing then liked an interac-

tive experience, but they would have been playing the sort of games that are popular

today if they could have then. And in 1985 there wasn’t anything like a first-person

shooter, there wasn’t anything like a real-time strategy game.

It might be that there are still quite a few adventure game people out there but

simply that the critical mass of them has dropped a little bit to the point where the

ones who are left can no longer support the same degree of game. An adventure

game that would cost two million dollars to make now would require ten times as

many people to be interested in it as an adventure game that might have cost two

hundred thousand dollars fifteen years ago. And maybe the market has even dou-

bled since then, but it hasn’t gone up ten-fold. So it has dropped below the critical

mass that would make that kind of game economically viable.

What has kept you interested in games for as long as you have been? Have you

ever considered writing a novel or writing for other non-interactive media?

I have often considered writing a novel or screenplay, particularly at the most

discouraging moments in my game writing career: canceled projects, a company

going under, a game selling very poorly. But game writing has always paid the bills,

so other writing projects would have to be a moonlighting thing, and with parenting

and other outside interests there just isn’t a lot of free time for non-paying writing.

But any frustrations and unhappiness with making games has been completely on

the business side; I’ve never found the creative process of making games to be any-

thing less than a blast. It’s still a growing/developing medium, so it’s pretty exciting

to be helping to invent a new “art form.” Because the pay in the industry is rela-

tively low, everyone you work with tends to be really motivated and love what

they’re doing, and it’s just a pretty cool way to earn a living. For example, how

many dads can give their kids T-shirts for a canceled WarCraft adventure game?

Steve Meretzky Gameography

Planetfall, 1983

Sorcerer, 1984

The Hitchhiker’s Guide to the Galaxy, 1984

A Mind Forever Voyaging, 1985

Leather Goddesses of Phobos, 1986

212 Chapter 10: Interview: Steve Meretzky

Stationfall, 1987

Zork Zero: The Revenge of Megaboz, 1988

Spellcasting 101: Sorcerers Get All the Girls, 1990

Spellcasting 201: The Sorcerer’s Appliance, 1991

Spellcasting 301: Spring Break, 1992

Leather Goddesses of Phobos II: Gas Pump Girls Meet the

Pulsating Inconvenience from Planet X, 1992

Superhero League of Hoboken, 1994

Hodj ’n’ Podj, 1995

The Space Bar, 1997

Chapter 10: Interview: Steve Meretzky 213

Chapter 11

Storytelling

“The danger for designers is that they get hooked into their

story, and they forget that storytelling is a linear narrative-type

thing. And the more you flesh out the story the more you

remove the interactivity, and the more you remove the player

from the game. It’s kinda like ‘Oh, the outcome has already

been determined. So what’s the point?’”

— Eugene Jarvis

214

S
trictly speaking, computer games do not need to tell stories. Over the years

there have been plenty of fabulous games that offered very little in the way of

storytelling. Consider Tetris, which had no storytelling whatsoever, or Centi-

pede and San Francisco Rush, where the only story found is in the game’s setting.

But other games, such as Marathon, Command & Conquer, and Thief, have taken a

story and made it work as a key part of the gameplay, creating tales so rich that

players find themselves sucked into the game-world more than if the games had

been story-less. And still other games, such as A Mind Forever Voyaging, Myst, and

the Ultima series, have made the story such an integral part of the game that one can

hardly imagine them otherwise. So games certainly do not need stories, but it seems

that when employed properly, stories can make games that much stronger.

In fact, the dream of interactive stories is what drew me into game development

in the first place. Imagine all of the power of a story in a novel, with its ability to

grab hold and captivate the reader, to make her care about the characters in the

story, to change her perception of the world, and, in some special instances, to

change the way she lives her life. Now imagine how much more powerful that

would be if, instead of reading about the actions of other characters, the reader was

the main character in the story and was able to make choices that would affect the

shape, direction, and outcome of the story. This interactive reader could see the

ramifications of different choices made in different situations, and since it was her

own choices that determined the nature of the story, the interactive story’s draw

would be that much more compelling than a traditional story. The mind boggles at

the possibilities. Of course this dream is still a long way off, with no available game

Chapter 11: Storytelling 215

The story is so
central to Myst
that it is hard to
imagine the
game without it.

close to achieving this ideal. But it does provide a compelling reason to keep exper-

imenting, with the hope of one day achieving a truly interactive story.

Designer’s Story Versus Player’s Story

So what do we mean when we talk about a game’s story? Many game developers

consider a game’s story to be a predetermined series of dramatic events, much like

the story one would find in a novel or a film. These events are static and unchang-

ing, regardless of the player’s actions in the game-world, and the story is typically

conveyed to the player between gameplay sections. For example, in Command &

Conquer, the player is told the story of the conflict between the GDI and Nod forces

between the different missions. The story determines in part where the missions

take place and what the player has to do in them, but typically once the player has

completed a level, the story can proceed in only one direction. The only potential

endings to the story are success and failure, with success coming after the player has

completed all of the predetermined goals in all the levels, and failure coming at any

point where the player lets his forces be overwhelmed by the opposition. Some

games allow some simple branching in their story lines, but each branch is still

predetermined by the game’s designer, and usually the branches are fairly limited

in scope.

But there is an altogether different type of a story associated with a game. If

what I have just described is the designer’s story, we can call this other type of

story the player’s story. Returning to the example of Command & Conquer, each

time the player plays the game, he generates a new story unique to him. Indeed,

each level makes up a mini-story of how the player won or lost that level. For

instance, let us say that the player started out his game on the GDI side, building a

large number of Minigun Infantry, Grenade Infantry, and Humm-Vees. These

forces, however, were nearly wiped out by an early Nod attack, during which the

enemy’s Flamethrower Infantry proved to be too much for the player. The player,

however, was able to exploit a vein of Tiberium he found nearby and build an

Advanced Power Plant and some Barracks. The player then concentrated on build-

ing only Rocket Infantry and Mammoth Tanks. When the Nod Flamethrower

Infantry next attacked, the player was easily able to run them over with his tanks.

A number of the infantry started retreating, and the player followed them back to

their base with his tanks and Rocket Infantry. There the GDI infantry were able to

bombard the Nod structures from a distance, with the Mammoth Tanks taking out

any resistance they encountered. Thereby, the player won the level. This is the

player’s story.

Now, when many game designers talk about storytelling in games, they are

most likely not talking about the player’s story such as the one told above. How-

ever, the player’s story is the most important story to be found in the game, since it

216 Chapter 11: Storytelling

is the story the player will be most involved with, and it is the story in which the

player’s decisions have the most impact. In most cases, once the player has

defeated the level using cunning tactics, he will be much less interested in the

prescripted, full-motion video (FMV) designer’s story that comes up between the

levels, explaining the next level to be played. There are certain advantages to hav-

ing a designer’s story, of course. It can contain interesting characters and situations

and employ traditional storytelling devices such as building to a climax, creating

tension, foreshadowing, and so forth. Unfortunately, the use of these devices is

often at the expense of the interactive nature of the story. On the other hand,

depending on how the player plays the game, the Command & Conquer player’s

story told above may not have much drama or narrative tension to it, and as a result

may be somewhat limp as a storytelling experience.

The ideal for interactive storytelling is to merge the designer’s story and the

player’s story into one, so that the player can have a real impact on a story while the

story retains its dramatic qualities. There are two good examples of the ideal inter-

active storytelling experience. The first is an example Chris Crawford is fond of

using: that of a parent telling a child a story. The parent has in mind a story to tell

including what characters it will involve, what surprises it will contain, roughly

how the story will unfold, and approximately how it will end. But as the child asks

questions about the story, the parent will change the tale accordingly. The parent

may use a book as a guide, but will stray from that guide as necessary. For example,

the story might begin: “As the princess wandered through the dark forest, she was

frightened by many different things she saw, including a large newt, a dark cave,

and an old shack.” As the parent tells the story, the child may ask questions. “What

color was the newt?” “The newt was a strange shade of yellow, a color the princess

had only seen in the royal spiced mustard.” “What about the cave?” “From within

the cave came a terrible smell, reminiscent of the smell of sulfur burning.” “Maybe

there’s an old sorcerer in there, making potions. Does she go into the cave?” “She

did enter the cave, taking each step carefully in order to avoid stumbling in the

dark. And as she went deeper into the cave, she started to see a light, and a voice

shouted, ‘Who is it that enters my cave?’ And as she got closer, the princess saw an

old wizard with tattered robes . . . ” There may not have actually been a sorcerer in

the story as the parent had initially intended to tell it, but as the child asks ques-

tions, instead of answering “you can’t go that way” or “there’s nothing special

about it” as a poorly designed computer game might, the parent adapts the story to

the child, adding detail and introducing new characters and situations as necessary.

The overall story arc and its main protagonists may not change that much, but the

child has had a real role in determining what exactly happens in the story.

Another example of truly interactive storytelling is found in many pen-and-

paper role-playing games, such as Dungeons & Dragons. In a game of D&D, the

Dungeon Master (DM) leads the game, guiding the other players through the

Chapter 11: Storytelling 217

game-world and telling them the story as it happens. The Dungeon Master plans out

in advance the locations the players will be exploring, has some idea of what char-

acters the players will meet in what locations, and probably knows what major

conflicts will be presented. The players, though, are in control of what parts of the

level they investigate, and how they conduct themselves with the different NPCs

they may meet. For instance, the DM probably does not have a script of what the

different NPCs will say when approached. Instead, he knows what their personali-

ties are like, and how they are likely to respond. When a player asks an NPC a

question, the DM is able to come up, on the fly, with a reasonable response. A

clever DM will never have to say, “The NPC does not understand your question.”

As with the parent-child storytelling experience, the DM will be able to keep the

players on track with the overall story he wants to tell, while allowing the players a

considerable amount of freedom in how that story unfolds and perhaps even in how

it resolves.

Of course, the problem in creating a computer version of an interactive story-

telling experience such as the ones described above is that both require a human to

be telling the story, since a modern computer will never be able to dynamically

come up with story developments as well as a human can. So the best a game

designer can do currently is try to re-create such an interactive storytelling experi-

ence, but, in lieu of dynamically generating the story line, anticipate all of the

questions the player might ask, places he might go, and lines of dialog he might

want to say. Of course, this is a Herculean task, and no matter how much anticipa-

tion the designer employs, she will never be able to think of everything a player

might try. At the very least the designer must try to allow for different playing

styles and levels of inquiry into the story-world, instead of pigeonholing the player

into one way of playing the game and exploring its story. If a designer is interested

in truly interactive storytelling, it is her responsibility to make the designer’s story

flexible enough to allow it to become the player’s story as well.

Places for Storytelling

There are a number of ways in which a game can tell a story. Customarily, games

use a number of different storytelling devices to communicate their story, with dif-

ferent games relying on some devices more than others. The type of story you hope

to tell, what technology you will be using, and the gameplay of your game will

determine what storytelling devices will work best for your game.

The simplest distinction one can make is in what context the storytelling takes

place:

218 Chapter 11: Storytelling

TE
AM
FL
Y

Team-Fly®

� Out-of-Game: This is any storytelling that is done on the computer while the

game is running, but when the player is not actually playing the game. This

includes any cut-scenes during which the player loses control of his character,

such as the cut-scenes or mission briefings that occur between levels in

Command & Conquer or brief non-interactive sections in Super Mario 64.

� In-Game: Logically, this is the opposite of the above, and covers any

storytelling that occurs while the player is actually playing the game. This

includes the setting of the game-world, the behavior of the player’s opponents,

any dynamic conversations the player may have, and any interactive

pre-mission planning the player may do.

� External Materials: This includes any storytelling done completely outside of

the computer, such as in an introduction written in the manual or any

paraphernalia that may come with the game, such as a map or a collection of

gems.

A given game may use only one or all three of the above types of storytelling.

Half-Life is an example of a game that included only in-game storytelling; the

player never lost control of her character from the beginning of the game to the end.

The Infocom games are a good example of games that used both in-game and exter-

nal materials to tell their stories. In addition to the conversations and descriptions of

the game-world the player had in the game itself, the Infocom games always came

with extra documents and knickknacks, which served to enhance the player’s

understanding of the game-world, in addition to sometimes being required to com-

plete the game’s puzzles. Command & Conquer used in-game storytelling through

its settings and mission design, while much of the story line was communicated

through the out-of-game, non-interactive cut-scenes. Tekken is an example of a

game that tells its story, as insubstantial as it may be, almost entirely through

out-of-game cut-scenes: one precedes the gameplay and one plays after the player

has defeated the single-player game using a specific character. The settings of the

various arenas have nothing whatsoever to do with the story line, and the characters

themselves exhibit nothing of the personalities described in the scenes either,

though their fighting styles usually relate to their nationalities. Indeed, it is unclear

why the designers of Tekken felt compelled to include a story line at all. Perhaps

they wanted to give the player something to reward them for defeating the game,

and a cut-scene was the only suitable prize they could imagine.

Out-of-Game

Out-of-game storytelling is perhaps the most prevalent form currently in games, and

it comes in a variety of forms. One can attribute the popularity of out-of-game sto-

rytelling to its similarity to storytelling in other media. For example, a cut-scene is

Chapter 11: Storytelling 219

very often like a film and uses established cinematic techniques, while a text brief-

ing for a level is not unlike what one might read in a novel. These are both types of

media that have been around for many more years than computer games, and both

have an established syntax which allows them to tell stories very effectively. In a

way, it is much easier to tell a story through these methods than it is through

gameplay. But as a designer you must ask yourself, are non-interactive cut-scenes

what games are supposed to be about? If your gameplay is any good at all, players

will want to get back to playing instead of sitting through long cut-scenes. Players

play games in order to interact. If they wanted a more passive experience, they

would have gone to a movie theater or gotten a book from the library. Non-inter-

active storytelling may have its place in games, but designers need to be aware that

it must supplement and not detract from an exciting gaming experience.

As I have discussed, there are a number of different methods that can be used to

tell a story outside of the gameplay. A summary of the major methods is as follows:

� Cut-Scenes: What are commonly referred to as cut-scenes use cinematic

techniques to communicate a narrative to the player. These may take place in

2D or 3D, and often involve cuts, pans, the “180 degree rule,” and other

devices that anyone who has watched movies or television will be familiar

with.

� Text: Many games use text to describe the story or to give the player goals for

the upcoming mission. The text may fill the entire screen and then flip to

another screen as necessary, or text may scroll by at a slow enough speed that

the player has time enough to read it.

� Images: Sometimes players are presented with simple images that communicate

some part of the story line. These do not qualify as standard cut-scenes

precisely, since they do not include camera cuts or other cinematic techniques,

though a simple camera pan may be used to sweep across an image that does

not fit on the screen. The image may be a map of an area, an “establishing”

image of the challenges to come, or a recap of those the player has just

accomplished. Images are often mixed with text, sometimes using comic book

techniques but usually without word balloons.

� Audio: Sometimes players are given directives that are spoken dialog or other

audio. This is usually when the budget did not exist to create FMV to go along

with the dialog, or when the dialog is presented over other information the

player is supposed to be looking at, such as maps, dossiers, or other documents.

One of the most important goals to have when working with cut-scenes is to

establish a consistent visual appearance between the cut-scenes and the gameplay.

If at all possible, the same engine should be used for the cut-scenes as for the rest of

the game. In the mid-’90s, as games switched to CD-ROM as the distribution

220 Chapter 11: Storytelling

medium of choice, for the first time games were able to include actual video play-

back in the games, even if these movies often could not fill the entire screen. Thus

came into being the dreaded FMV game, such as The 7th Guest. Typically, these

games presented long FMV clips with mini-games between them, resulting in prod-

ucts that were more movies than games. In these games the vast majority of the

player’s time was spent not actually playing the game but instead watching totally

non-interactive cut-scenes, with these cinematic sections usually amateurish below

what one would find on even the cheapest TV show. This serves to explain why the

genre quickly fell out of favor with players. Other games, such as the aforemen-

tioned Command & Conquer and Dark Forces, used FMV sections between the

levels that made up the actual game. These games were fortunate enough to actu-

ally include viable and compelling gameplay and thereby stood up as games

regardless of the inclusion of FMV. However, the FMV sections of these games

were created using live actors in worlds that looked nothing like the worlds that the

gameplay took place in. Other games, such as MechWarrior 2 and my own Centi-

pede 3D, used super high polygon, pre-rendered 3D environments to handle these

cut-scenes, creating an environment that looked nothing like the ones generated by

the real-time 3D engines used for the gameplay. The result is a disjointed visual

experience for the player, something that breaks whatever suspension of disbelief

the player may have established. The use of cut-scenes is in itself already a very

jarring experience for the player; one minute the player has an active role in the

proceedings, the next he has to be passive, content to sit back and watch instead.

Using cut-scenes that look nothing like the game-world only exacerbates matters.

Chapter 11: Storytelling 221

Cut-scenes in
Karateka are all
handled using
the game
engine, resulting
in a seamless
visual experience
for the player.

Many games have successfully incorporated cut-scenes that use the same

graphics as the in-game visuals, going back to 2D games such as Pac-Man and

Karateka, up to such modern RT3D titles as Legend of Zelda: Ocarina of Time and

Drakan: Order of the Flame. In these games, though the player may lose control of

the game briefly, at least the player has a completely seamless visual experience.

The artists may complain that the cut-scenes do not look as good; after all, they can

only play with the number of polygons that can be rendered in real time. But what

may be lost in terms of visual quality is more than made up for by the overall con-

sistency of the game.

Another strange aspect of cut-scenes in many computer games is their

non-interactive nature, which is indicative of the inability of the designer to under-

stand the capabilities of the computer as an interactive device. Consider spectators

at a movie or a play, or the nationwide audience watching a television show. The

audiences for those productions are unable to interact with the proceedings in any

way: the performance occurs and then it is over. On the other hand, someone read-

ing a book, watching a video, or being told a story is able to experience the medium

at whatever speed he wants. Pages can be reread in a book, videotapes can be

rewound or fast-forwarded, and a child can ask his parent to further explain or

reread part of the story he did not understand. The key difference here is that the

audience of the first set of non-interactive media is a large group of people, while

the audience for the latter set is a single person.

Consider the audience for a computer game. Is it a group or a sole individual?

Obviously, for multi-player games the audience may be more than one, but

multi-player games almost never bother with cut-scenes of any sort. No, the story-

telling games that require cut-scenes are almost all designed as single-player

experiences. Why, then, when the text scrolls by in the mission briefing for a game,

is the user unable to rewind it? Indeed, why is it scrolling at all? Computers are

excellent tools for giving the user control over her experience, and since the player

is usually playing the game herself, who would mind if she read the text at her own

speed, as controlled by a scroll bar or arrows on the keyboard? Similarly for

cut-scenes: why can the user almost never rewind to watch the cut-scene again?

What if she missed a part of the story she wants to hear, or just wants to enjoy the

presentation again? It seems that the out-of-game sections of computer games are

more user-unfriendly than almost any other solo experience medium. It seems

likely that game designers may be thinking that they are movie directors and there-

fore want to create a movie theater-like experience, despite the extremely different

nature of the medium with which they are working.

Some games are smart enough to allow the users to control the playback of

cut-scenes. The Last Express in particular springs to mind, with its unique “egg”

save-game feature that allows the user to go back to any point in his game and

re-experience it. The game prided itself on transpiring in real-time or close to

222 Chapter 11: Storytelling

real-time, and hence the player was able to turn back the hands on a clock to any

particular time he was interested in and the game would return him to that point, a

feature which was essential for understanding the game’s complex story. My own

game Damage Incorporated used extremely interactive mission briefings in order

to make sure the players understood what they had to do on a level. Players could

use the arrow keys to flip back and forth between text and image documents. Dur-

ing these mission briefings there was also spoken dialog which supplemented the

material printed on the screen. Players could pause, rewind, and fast-forward this

spoken dialog as they desired using tape deck controls displayed on the bottom of

the screen. In this way players were able to read the text at whatever speed they

wished and relisten to portions of the dialog that they may have missed.

Unfortunately, the only interaction with the cut-scenes that many games include

is the ability for the player to skip them entirely. This is essential, since many play-

ers will want to skip over the non-interactive sections of the game, as any

playtesting session will reveal. Forcing players to watch cut-scenes is a totally

unnecessary limitation no game should attempt to enforce. As I explained above,

better than complete skipping is to allow players to skip forward and back through

cut-scenes as they desire, watching and rewatching them at their own speed.

If one stops for a moment to consider the nature of out-of-game devices for sto-

rytelling in games, one will be struck by what a strange concept it is to disrupt the

interactive experience with a non-interactive one. For instance, when you go to a

movie, do the theater workers ever stop the film, bring up the lights, and direct the

audience to read a book that they handed out? Sometimes text is shown on the

screen, but never in a way that requires the audience to read more than a few words

Chapter 11: Storytelling 223

The Last Express’
clever save-
game system
allows the player
to turn back
game-time in
order to rewatch
cut-scenes or
play parts of the
game again.

at a time. Instead, films present a consistent media experience for the audience.

Games, on the other hand, still mix media in seemingly unnatural ways, forcing

users who may just want to play a game to have to read a bit of a book, watch a

movie, and only then actually get to play. Surely there is a better way to tell a story,

convey a plot, and introduce characters from within the game itself that is far supe-

rior to out-of-game storytelling, at least in terms of maintaining a fluid experience

for the player.

In-Game

There are numerous powerful techniques for telling a story during gameplay.

Half-Life was universally praised in the gaming press for the strength of its story.

However, if one looks at the game’s story, it is not actually all that compelling, per-

haps even hackneyed. Many other games, even many other first-person shooters,

have contained stories just as compelling. What Half-Life did well, however, was to

tell its story entirely from within the gameplay. The player never loses control of his

character, even if he is locked in an observation room, stuck on a tram car, or

thrown in a garbage compactor. The story is communicated through a combination

of level settings, chatty scientists, announcements over the PA system, and NPC

scripted behaviors. By the game’s end, the player is under the impression that the

story was excellent because of the compelling way in which it was told.

Some of the different techniques one can use to tell a story through gameplay

are as follows:

� Text: A lot can be communicated to the player through text placed around the

game-world. These can be signs explaining directions to locations, pinned-up

notes left by previous inhabitants of a given area, graffiti on the wall, or books

left lying around for the player to read.

� Level Settings: Almost all games use this technique, regardless of whether they

attempt to tell a story or not. Consider the garden setting of Centipede, the

hell-like setting of Doom, or even the art deco real estate setting of the board

game Monopoly. What little story these games have is told entirely through

setting, but setting can also be key to telling more complex game stories. The

player’s exploration of the game-world can lead to discoveries about the type of

people that inhabit a given area, or inhabited it in years past. Instead of reading

in a cut-scene that the land is run-down and decayed, the player can simply see

that truth by navigating the game-world. Setting is a perfect example of

showing a story instead of telling it.

� Dialog: Dialog with NPCs during gameplay is another massively powerful tool

that designers can use to great storytelling effect. This dialog can be spoken

during gameplay through conversations the player has with NPCs, where the

player gets to choose his character’s response to the NPC’s dialog, either

224 Chapter 11: Storytelling

through a multiple choice of responses or by typing in his own response. Dialog

can also happen non-interactively during gameplay, with NPCs, either friendly

or unfriendly, speaking to the player during the game and thereby communicat-

ing more of the game’s story. Dialog can also come from computer terminals,

PA systems, or tape decks, to name just a few devices.

� NPC Behaviors: Of course, the NPCs should not just talk to the player; they

should perform actions that back up the story line. For instance, say that the

player fights two different races of aliens in the game, and according to the

story line the two races bitterly despise each other. If the player is ever battling

both at once, he should be able to trick them into fighting each other. In a

peaceful village, if the player approaches the NPCs with his weapons drawn

perhaps the NPCs will flee from the player. In a more hostile town, the NPCs

might draw their own weapons and threaten to attack the player if he fails to

stand down. NPCs can also be engaged in scripted behaviors that communicate

to the player the nature of the game-world. For instance, say the people of a

town live in fear of the Gestapo-like police force. As the player enters, he may

observe a townsperson receiving a harsh and unjust beating from a member of

the police.

The Marathon games used text expertly to communicate their story line while

never taking the player out of the game. The game featured computer terminals

scattered throughout the levels the player navigated. The player could walk up to

one of these terminals and hit the “action” key to activate it. Then the player’s view

of the game-world would be replaced by a close-up view of the terminal. The

player could then use the arrow keys to flip back and forth between different text

screens which revealed more details about the plot and told the player what her

objective was for the current level. The great thing about these terminals was that

while the player was reading them, though she could no longer see the game-world,

the game-world was still very much active and the player could be attacked by

aliens or drowned by rising water. This sometimes gave the reading of the terminals

a certain urgency, keeping the player’s game-world tension active. Of course, the

player was able to control the text by flipping forward and backward through the

screens, rereading the text at whatever speed she wanted.

My own game Damage Incorporated used a combination of NPC behaviors

and dialog to give the player some sense of character about the teammates who

accompany him through the game’s various missions. The player was able to pick

from among thirteen different marines the four he wanted to accompany him on a

given mission. Each of these marines had a distinct personality and would commu-

nicate this through the dialog he spoke during the missions themselves. This dialog

might include the response to a directive from the player, a comment about the

nature of the mission itself, or a response to the player’s particularly effective

Chapter 11: Storytelling 225

killing of an enemy. Furthermore, different teammates could react differently to

being taken on different missions. Some of the marines were less mentally sound

than others and if taken on too many missions they would become “shell shocked”

and run around the level at random, muttering gibberish all the while. Other

marines would have moral objections to some of the missions on which the team

was sent. As a result, these rogue teammates would rebel against the player and his

other teammates in certain circumstances, shouting their disapproval for the task at

hand as they went on a rampage. Thus, a combination of dialog and NPC behaviors

created a group of teammates with real personalities, almost all of which was com-

municated during the gameplay itself.

One of the big concerns some people have with in-game storytelling is that the

player may miss some of the story. What if the player fails to see the story being

told? Since the player never loses control of the game with in-game storytelling,

this makes it possible for the player to avoid talking to characters, witnessing

scripted NPC behaviors, or reading signs. It is true that locking the player in front

of a non-interactive cut-scene or scrolling text is one way to guarantee that she sees

exactly what the designer wants her to see. But, as I have stated previously, one

needs to remember that games are an interactive form, and that if the player does

not experience every last element of the story, that is the nature of interactivity. If

the player is interested in getting all of the story, it is the player’s responsibility to

seek it out. If the player would prefer to just charge through the game focusing

solely on the gameplay, that is her choice to make. Indeed, having different layers

of the story that can be discovered on playing the game a second time can be a sig-

nificant incentive for replaying the game.

226 Chapter 11: Storytelling

The Marathon
games allow
players to log
onto computer
terminals
scattered
throughout the
levels, where
they can read
more about the
game’s complex
story. Pictured
here: Marathon
2.

Almost everyone has had an English teacher who has emphasized the impor-

tance of showing instead of telling in creative writing. Instead of being told that the

people are wealthy, readers should be able to read the author’s description of an

area and from that, deduce that the region is populated by a prosperous people. For

games, in-game storytelling is the equivalent of showing, while out-of-game

cut-scenes and other methods are telling. For in-game storytelling, players get to

experience the story themselves instead of being told it secondhand. In addition to

maintaining the player’s immersion in the game-world, in-game storytelling shows

the player the story instead of just telling it to him.

External Materials

Many games have used external materials to tell their stories. This was particularly

true in the 1980s when disk space was severely limited and designers could not fit

all of the story they wanted to include onto a single 400K or smaller floppy disk.

Some designers used manuals to communicate the game’s back-story, writing a nar-

rative that would lead the player up to the point where she would start playing the

game. Some games, such as the classic Wasteland, even used “paragraph” books,

where the game would play for a while and then, when the player got to a storytell-

ing juncture, would be instructed “Now read paragraph 47.” Sometimes this

referencing of the manual was used as a form of copy protection, in that the player

would be unable to play the game without having a copy of the manual.

Arcade games also used external materials. Often the names of the game’s char-

acters were written on the side of the cabinet instead of in the game. Some cabinets

even included a few sentences further explaining the game’s setting and the player’s

mission. The artwork featured on the sides of arcade game cabinets used superior

graphics to add a small amount of depth to what meager story lines the games may

have had.

These days storytelling in manuals and other materials is generally frowned

upon, and rightly so. We are certainly no longer presented with the technological

limitations that necessitated storytelling through external materials. Furthermore,

often the stories told in the manuals were not written by the game’s designers or

even with their consultation. Therefore these stories can hardly be considered a part

of the game itself, but rather the marketing department’s attempt to create a

game-world they could hype on the back of the box. I would certainly never use a

manual to convey the story in one of my own games since I believe it detracts from

the continuous experience of playing the game on the computer or console.

That said, some games have used external materials extremely effectively. In

particular, the Infocom games always included materials in the boxes which added

to the player’s gameplay experience in meaningful ways. Often the games referred

to these materials, saying something to the effect of, “The magazine you find is the

Chapter 11: Storytelling 227

same one as came in your game package.” These materials were customarily pre-

pared by or in conjunction with the game’s author, thereby making them valid parts

of the game itself. For more information on how Infocom used its packaged materi-

als to add depth to the story and the motivations for doing so, consult the interview

with Infocom author Steve Meretzky found in Chapter 10.

Frustrated Linear Writers

One of the primary story problems that many computer games have is that their sto-

ries are written by people who wish they were writing in a more linear medium.

Sometimes failed screenwriters or novelists are hired to work on game projects.

These writers often feel disappointed to have to work in games and see their game

work as something they do strictly for the money, while simultaneously seeing

themselves as above gaming as an art form. As a result of their training in linear

writing and distaste for interactive writing in general, these writers use all of the lin-

ear writing techniques they have honed over the years and try to apply them to

games, where they fail miserably.

Sometimes the game developers themselves secretly or not-so-secretly wish

they were working in another medium and make their story writing choices accord-

ingly. After all, for as long as games have existed, film has been a more respected,

popular, and financially rewarding medium to work in, with mammoth cults of per-

sonality surrounding actors, directors, and sometimes even writers. Game designers

can be sucked in by this allure and become envious of filmmakers. These designers

often start emphasizing the cinematic nature of their games, sometimes attempting

to deny that they are games at all by calling them “interactive movies.” The games’

cinematic cut-scenes become longer and longer, with the predetermined story line

dominating the gameplay completely.

And in a way, the mistakes game developers make putting story into their

games are forgivable due to the youth of the medium. For example, when the tech-

nology that enabled filmmaking was introduced, many of the first films that were

made were documents of stage plays. A camera was placed in a fixed position on a

tripod and the actors considered its frame to be their stage, just as if they were

working with a live audience. There were no cuts, pans, or camera movement of

any kind, because the language of film had yet to be invented. As time went on,

however, filmmakers learned that their films could be more than straight transcrip-

tions of stage plays, and they could instead take advantage of the strengths of their

new medium. In some ways, games still suffer from the same problem, where

established mediums, film in particular, are taken and just thrown into games with-

out considering how a story might best be told in a language suited to interactivity.

What results from these frustrated linear writers are projects that try to be both

games and movies, usually with the end result that they do neither very well. Using

228 Chapter 11: Storytelling

TE
AM
FL
Y

Team-Fly®

storytelling that is suited to an interactive experience is significantly harder than

using traditional linear techniques, but the payoff in the quality of your final game

will be more than worth it. There are a number of symptoms that arise in such a sit-

uation, and recognizing these problems as they come up is crucial to preventing

them from ruining your game.

The first problem is forcing the player to experience the story in only one pre-

determined path. The linear writer often feels that there is only one way for the

drama to unfold, and if the player tries to pursue anything else he, or at least his

character, should be killed. The linear writer does not want to allow the player to

discover different ways of navigating through the story space, when there is only

one path that makes for the most powerful narrative. What the linear writer fails to

realize is that games are about letting the player find his own path through the

game-world, regardless of how uninteresting a path that may be. What the path may

lose in drama it makes up for because the player feels ownership of it. It is the

player’s story instead of the designer’s story.

Linear writers also often try to force the player’s character to have a strong per-

sonality. There is a popular misconception in game design that gamers want to have

main characters with strong personalities for them to control, particularly in adven-

ture and action games. But if one looks at the most popular entries in these genres,

one will quickly notice that the player character’s personality is often kept to a min-

imum. Look at Super Mario 64. Though Mario has a fairly distinctive look, what

really is his personality? He does not actually have one, leaving him undefined

enough for the player to imprint her own personality on him. What about Lara Croft

Chapter 11: Storytelling 229

Despite being
perhaps the
most famous
computer game
character in
existence, Mario
has a relatively
undefined
personality.
Pictured here:
Super Mario 64.

in Tomb Raider? Again, a very distinct appearance, a very undefined personality.

And if one looks at the space marine in Doom or Gordon Freeman in Half-Life, one

will find no personality whatsoever.

The reason for this is simple: when players want to play games, they often want

to play themselves. If the character they are controlling has a very strong personal-

ity, there is a distancing effect, reminding the player that the game is largely

predetermined and making him feel like he is not truly in control of what happens

in the game. Particularly frustrating are adventure games that feature strongly char-

acterized player characters who keep speaking irritating lines of dialog. I remember

one adventure game in particular where the player had to control a spoiled brat who

constantly said annoying, idiotic things to himself and to the characters he met.

Who would want to control such a character? The dialog for the character was actu-

ally quite well written and amusing, but not to the player who was forced to go

through the game using that obnoxious character as his game-world surrogate. It

would appear that the game’s writer got carried away with this interesting charac-

terization for the main character without realizing the detrimental effect it would

have on the player’s gaming experience.

I do not mean to suggest that your game cannot have terrific characters in it,

and indeed, without strong characters your game will fail to have much of a story at

all. Instead of trying to imbue the main character with a lot of personality, make the

NPCs the player encounters in the game memorable and interesting. If the player

finds these characters annoying that is totally acceptable; it means that they have

enough personality for the player to feel strongly about them. But the player’s char-

acter should be sufficiently amorphous and unformed that the player can think of

that character in whatever way he sees fit. And fear not, after spending forty or

more hours with that character, the player will come up with his own ideas of what

motivates and drives his game-world surrogate. The character he creates in his

mind will be one whom he likes and with whom he will want to continue to play.

Game Stories

As I have discussed, when writing a story for a game, it is important to stay away

from the conventions of linear media, such as forcing the player to follow only one

narrative and instilling too much character in the player’s game-world surrogate.

Beyond the pitfalls to avoid when creating the game’s story, the game’s scriptwriter

should worry less about the overall plot and more about the situations in which the

player finds himself and characters with which he interacts. Indeed, many film

directors are keenly aware of this technique. For instance, in talking about his film

The Big Sleep, director Howard Hawks said: “Making this picture I realized that

you don’t really have to have an explanation for things. As long as you make good

scenes you have a good picture—it doesn’t really matter if it isn’t much of a story.”

230 Chapter 11: Storytelling

I have played countless games where the overall plot was completely lost on

me; I simply did not care to follow it. Often in these games, I enjoyed the

gameplay, the situations the game placed me in, and the interesting and amusing

characters I met there. Since the characters and situations were interesting, it did

not really matter if I knew who did what to whom and when. All I knew was that I

was having fun playing the game. Often when games try to hit me over the head

with their plot through long cut-scenes which go into minute detail about the rea-

sons for the state of the game-world and the character’s motivations for every last

action, it becomes tedious. Remember that players want to play games. If the story

enhances that experience, that is good, but if the story starts to get in the way of the

gameplay, that is bad. Spelling out too much of the story is also a common failing

of novice writers. Readers, viewers, and players alike are able to figure out much

more than authors give them credit for. It makes sense for the author of the story to

have all of the character’s motivations figured out in detail, with all of the nuances

of the different twists and turns of the plot detailed in her notebook, but does every

last element of this story need to be included in the game? No, what is more impor-

tant is that the story the player is presented with is consistent and could be used to

put together the complete story. Players will not mind if every last plot point is not

explicitly spelled out.

In Chapter 9, “Artificial Intelligence,” I talked about Brian Moriarty’s concept

of “constellation” and how it could help to create more interesting AI. Constellation

is a natural tendency that game storytellers can also use to their advantage. Mori-

arty has described constellation in media as the ability of an audience to fill in the

holes or inconsistencies present in a storytelling experience, regardless of what

form that story may take. For instance, if a storyteller only hints at the true appear-

ance of an evil foe, the image conjured in the mind of an audience member may be

far more frightening than what the storyteller might be able to describe to the audi-

ence. One can also look at the fan base for a TV show such as Star Trek. The

slightest hinting at a bit of story by the writers of the show will lead to endless

speculation among the audience members as to what the implications of that subtle

hint are, and the fans will come up with their own explanation for what it might

mean. This may or may not be the explanation the writer originally intended, but

what is important is that it involves the audience in the work to a much greater

degree, switching them from a passive mode to an active one. Of course, games are

already much more interactive than television, and therefore it makes sense that

game storytellers would not tell the audience every last detail of a plot. This will

involve the players still more in the game as they try to figure out what exactly the

story is all about.

Chapter 11: Storytelling 231

Non-Linearity

Much talk is made of non-linearity in games, and storytelling in particular is a key

area where non-linearity can be used to enhance the player’s gaming experience. I

feel the goal of game storytelling is to create a story in which the player feels he can

play a significant role that may affect the outcome. Non-linearity is an essential tool

for accomplishing that goal. In a way, in-game storytelling is non-linear. In-game

storytelling allows the player to talk to some characters and not to others, to choose

which signs to read and which to ignore, and to explore the game-world in order to

reveal its relevance to the story line, exploration over which the player has control.

With the player empowered to explore the story-space in his own way, some degree

of non-linearity is unavoidably created.

One popular way to add non-linearity to the storytelling experience is through a

branching story. With a branching story, at various points the decisions the player

makes will have a significant effect on how the story progresses. This may mean if

the player succeeds in defeating a certain adversary, the story will progress differ-

ently than if the player fails to kill that foe. In the latter case, it may be that the

player will have to kill that foe later, or that the foe will summon a force to help

him that the player will have to confront. Of course, branching stories increase the

amount of content that will need to be created for a game, at least in terms of game

design and dialog, if not also in art assets. This can sometimes make this technique

unpopular with the cost accountants who see the creation of such assets as wasted

money. What they fail to see is that if the branching story line is implemented prop-

erly, the gameplay payoff will be tremendous, hopefully making the game more

popular.

Another technique that can be used to inject some non-linearity into the game’s

story is to allow the player to determine the order in which different story compo-

nents occur. Suppose there are three sections of the story you need to tell. Perhaps

the order in which the player experiences those components is not so important.

With a little extra work, you may be able to give the player the choice of which sec-

tion to do first, which to do second, and which to do last. If one thinks of this in

terms of the “chapters” of a game’s story, often designers find that, though the first

and final chapters of the narrative must happen respectively at the beginning and

end of the game, the other chapters in the game can happen in any order. Of course,

issues with the difficulty of the sections may arise, since ideally designers want the

difficulty of their games to ramp up continuously. This, however, is more of a game

design question, and one that clever designers will be able to work around.

Of course non-linear storytelling in games goes hand in hand with non-linear

gameplay: one can hardly imagine one without the other. Non-linearity is explored

more in Chapter 7, “The Elements of Gameplay.”

232 Chapter 11: Storytelling

Working with the Gameplay

One of the most important parts of creating a story for a computer game is to match

the story with the gameplay as much as possible. Earlier, in Chapter 3, “Brainstorm-

ing a Game Idea,” I discussed how a game’s development might start with either

technology, gameplay, or, in more rare instances, story. If you are starting your

game development process with gameplay or with technology, these are going to

directly dictate which kind of story you can tell. If you try to fight the gameplay or

technology with a story that is not suitable, you are going to be left with a poorly

told story in a poorly executed game. There are infinitely many stories to be told,

and infinitely many ways to tell a given story. Your job as game designer is to find a

story and a telling of that story that will work with the game design and technology

that you will be using.

For me, stories seem to naturally fall out of gameplay. I seldom think of a story

independently and try to fit it into some gameplay. Instead, I see the constraints of

the world with which I will be working, and start thinking of the most interesting

content possible for that space. I do not see these constraints as a limitation on my

ability to tell a story, but more as guidelines or even sources of inspiration. For

example, in Damage Incorporated, long before the game had a story there was a

technology and a game design in mind. From the game design, which centered

around the player controlling teammates in an FPS environment, sprung the idea for

the different teammates that would accompany the player, and how each one of

them would have a distinct personality. What sort of men would be in the Marine

Corps of the 1990s? How would they react to a combat situation? What would their

Chapter 11: Storytelling 233

Damage
Incorporated’s
story was created
to fit around the
gameplay and
technology.

reaction be when they saw their commander killed? These were the questions that

ended up driving the development of the game’s story. And these questions arose

directly out of the limitations imposed by the game design.

The Dream

One could say that the goal of gameplay is to allow for different player strategies to

lead to variable types of success, to reward player experimentation and exploration,

and to empower players to make their own choices. All of these factors allow play-

ers to craft their own unique stories when playing your game. If you want to tell a

more predetermined story through your game as well, it is important to do every-

thing possible to make the player feel that it is her own unique story. The player

should feel ownership over the actions in her game, and thereby ownership in the

story that is being told.

Marketing people and game reviewers like storytelling in games because they

are a much more easily understood and discussed subject than game design. A story

makes easy copy for either the back of the box or the text of a review, something

that is much easier to describe than gameplay. These days, game reviewers will be

frustrated if your game does not have much of a story, regardless of whether it

needs one or not. Games without stories are considered passé and archaic. The mar-

keting people, and sadly sometimes even the game reviewers, truly will not care if

your story is non-linear or allows for the players to make the story their own.

Indeed, the business and marketing types will love a main character with a strong

234 Chapter 11: Storytelling

Titles like
SimCity allow
players to truly
tell their own
story, with barely
any guidance
from the
designer.

personality since it will better lead to licensing opportunities for action figures and

Saturday morning cartoon shows. Never mind that the character’s strong personal-

ity may alienate players from the game.

But as a game designer your ambitions must be higher than creating entertain-

ing box copy or simplifying the job of game reviewers. Many great games dispense

with traditional storytelling entirely. Civilization and SimCity immediately spring to

mind as indisputably great games which allow players to tell their own story, with

the designer providing only a starting place from which the tale can unfold. Games

do not need prescripted stories at all, it is true. Nonetheless, a truly interactive story,

where the narrative can change radically depending on the player’s choices, while

retaining the emotional resonance and power of a story told in a novel, is a very

compelling idea. It is so compelling that it is hard to imagine any truly ambitious

game designer who would not hope for it to become a reality.

Chapter 11: Storytelling 235

Chapter 12

Game Analysis:
Loom

Designed by Brian Moriarty
Released in 1990

F
or 1990, the year it was released, Loom was a decidedly different type of

adventure game. Though it had many gameplay similarities to graphical

adventure games that had been released previously by LucasArts, Loom

endeavored to reduce the adventure game to its core mechanics from a storytelling

236

standpoint and to cut away all that was extraneous. Looking in the manual, one

finds that the game’s authors were keenly aware that they were creating something

different, as the following excerpt from the “About Loom” section indicates:

Loom is unlike traditional “adventure games” in many ways. Its goal

is to let you participate in the unfolding of a rich, thought-provoking fan-

tasy. It is neither a role-playing game (although it incorporates elements of

role-playing), nor a collection of brain-teasers. Its simple mysteries are

designed to engage your imagination and draw you deeper into the story,

not to frustrate you or increase the amount of time it takes to finish.

Later on in the manual in the “Our Game Design Philosophy” section, one finds

still more references to how unique Loom is:

We believe that you buy our games to be entertained, not to be

whacked over the head every time you make a mistake. So we don’t bring

the game to a screeching halt when you poke your nose into a place you

haven’t visited before. Unlike conventional computer adventures, you

won’t find yourself accidentally stepping off the path, or dying because

you’ve picked up a sharp object.

We think you’d prefer to solve the game’s mysteries by exploring and

discovering, not dying a thousand deaths. We also think you want to

spend your time involved in the story, not typing in synonyms until you

stumble upon the computer’s word for a certain object.

Reading the above, one gets the idea that perhaps Loom was a reaction by the

game’s author, Brian Moriarty, to what he saw in other adventure games as detri-

mental to the player’s enjoyment. It is unclear whether Moriarty wrote these parts

of the manual himself, but it seems likely that they at least represented his feelings

on the subject accurately. Loom was going to retain the positive storytelling ele-

ments of adventure games and remove everything that conflicted with the player’s

enjoyment of the story. It succeeded admirably, resulting in a game that seemed to

earnestly want the player to complete its interesting story.

Prior to coming to LucasArts to work on Loom, Brian Moriarty had worked at

Infocom for a number of years, a company renowned for the unsurpassed quality

and depth of their text adventures. There he had created two text adventures,

Wishbringer and Trinity, and one text-only adventure/role-playing hybrid, Beyond

Zork. While Wishbringer was designed from the start to be an easy-to-play game

for beginners, both Trinity and Beyond Zork are massive and terrifically difficult

games to complete. Loom, then, seems to be a change in direction from those titles,

a return to a game which does not challenge the player merely for the sake of chal-

lenging him, but instead includes only those challenges that are critical to the story.

Furthermore, Loom was Moriarty’s first game to not involve a text parser, an input

Chapter 12: Game Analysis: Loom 237

method that he was all too happy to do away with, if one believes that the senti-

ments expressed in the manual are his own. Again, the simplicity of Loom seems to

be a reaction to the needless complexity of older adventure games, both in general

and Moriarty’s own. In Loom, the story was king, and whatever stood in its way

was removed.

Focused Game Mechanics

Loom seems to be a perfect example of a game that is completely focused in what it

wants to accomplish. Instead of trying to include all of the game mechanics he pos-

sibly could, it appears that Moriarty thought long and hard about what the minimum

game mechanics necessary for the telling of his story were. He then eliminated

everything that did not truly add something to that story. This had the result of

greatly simplifying the game, while at the same time making it considerably more

elegant and easy to navigate.

The game was developed using the SCUMM Story System which all of

LucasArts’ adventure games have used, in one form or another. Credited to Ron

Gilbert and Aric Wilmunder, SCUMM stands for “Scripting Utility for Maniac

Mansion,” so named after the first game to use the system. Indeed, if one looks at

the other LucasArts adventures, one will notice that nearly every one has much

more in the way of gameplay mechanics and user interface than Loom. Both

Maniac Mansion (1987) and The Secret of Monkey Island (1990, the same year as

Loom) include inventories for the player to manipulate, in addition to allowing the

player to click on a variety of verbs that can be used on various objects in the game

238 Chapter 12: Game Analysis: Loom

Loom’s game
mechanics are
focused on
telling the
game’s story. TE

AM
FL
Y

Team-Fly®

world. Both games were created using the SCUMM system, indicating that inven-

tory and verb systems were readily available to Moriarty via SCUMM if he wanted

to use them. Indeed, inventories and verbs were a very common element of nearly

all of the adventure games released prior to Loom. (Many adventures released since

Loom have done away with both verbs and inventories, most notably Myst and its

many imitators.) So Moriarty was making a tremendous break from both the

SCUMM system and tradition when he left these mechanics out. Including an

inventory and verbs could have added a lot of depth to the game if the story was

reconceived to take advantage of them. But as it stands, the game functions per-

fectly without them.

Many other adventure games also feature branching dialog trees. In this sort of

system, when the player’s character is talking to another character, the player is pre-

sented with a list of different sentences her character can say. The player can then

pick from those choices and some level of interactivity is achieved during the con-

versations. Again, The Secret of Monkey Island featured exactly such a system,

used by the game’s creator, Ron Gilbert, to enormous gameplay payoff, particularly

in the classic sword-fighting sequences. But, as with the verbs and inventory, there

are no branching dialog trees to be found in Loom. Instead, when the player talks to

someone, the player just watches the conversation unfold as a non-interactive

cut-scene, unable to control it. On one level, this would appear to remove a degree

of player interaction with the game. But, in the final analysis, the branching conver-

sation tree systems always contain a finite number of branches, and hence most

such systems devolve into the player simply clicking on each of the options, one by

one. (The Secret of Monkey Island is actually one of the few examples of a game

that actually adds depth to the gameplay with branching conversations.) For Loom,

Moriarty went with the cut-scene conversations since they were the most effective

system for conveying his story. Again, Moriarty was focused on his storytelling

goal, and he let no adventure game conventions stand in his way.

User Interface

The interface in Loom is the epitome of simplicity, requiring the player only to use

her mouse and a single button. This, of course, makes the game very easy to learn

and play for anyone at all familiar with a point-and-click system. This is in sharp

contrast to many other adventure games, particularly the text-only adventures that

had their heyday in the 1980s, including those that Moriarty had worked on. Nearly

all of these games include a text parser which, ideally, allows the player to enter

whatever she wants her character to do using natural language. “Get book,” “North-

west,” “Open door with red key,” and “Look at painting,” are all examples of

common commands from such text adventures. The limitation, unfortunately, was

that many text parsers did not feature a complete set of the words in the English

Chapter 12: Game Analysis: Loom 239

language, nor could they properly parse complex sentences. In fact, Infocom, the

company which published Moriarty’s Wishbringer, Trinity, and Beyond Zork, had

the best text parser available by far. Yet still the parser could be challenging to use.

Especially frustrating was when the player knew exactly what he needed to do in

the game, but he could not find the correct words to say it. Not to mention the fact

that, for the system to work, the player is required to spell everything correctly, a

task at which few people excel. At the very best, one could become used to the idio-

syncrasies of a text parser over time, but to a beginner the dominant feeling was one

of frustration.

Indeed, in the excerpt from the manual included earlier, the text parsers of old

are derided. It seems that Moriarty was ready to move on to a more intuitive and

easy-to-learn interface. Of course, one of the primary requirements of any interface

is that it be easy to learn. The challenges the player faces should be in the

game-world itself, not in the controls he has to manipulate in order to affect that

game-world. Maniac Mansion had already used an entirely point-and-click inter-

face, and Loom borrowed a lot from that game’s mechanics, at least in terms of

world navigation. The player could move his character, Bobbin Threadbare,

through the world simply by clicking on the location where he wanted him to go.

This seems quite obvious to modern gamers who have seen countless point-and-

click movement systems in games ranging from Diablo to Grim Fandango to Com-

mand & Conquer. Part of the beauty of the system is its obviousness; once one has

seen it in action, one cannot imagine how else you would direct a character using a

mouse.

240 Chapter 12: Game Analysis: Loom

Loom keeps its
interface as
simple as
possible by
having the player
interact with the
game-world by
using only the
mouse.

However, Maniac Mansion and other graphical adventures had still included

verbs for the player to click on. These verbs were basically a holdover from the text

parsers, where the player would click first on an object and then on a verb in order

to manipulate that object accordingly. Some other graphical adventures had

replaced these verbs with icons which functioned identically to their text counter-

parts. Of course, in many cases there was only one verb/icon which would have any

useful effect on a particular object, hence making the functionality of the icons

largely extraneous. Loom eliminated the verbs entirely to allow the user to simply

double-click on a given object and then have the game figure out what the player

wanted to do with the object. If the player double-clicked on a person, Bobbin

Threadbare would talk to him or her. If it was an object with text on it, Bobbin

would read it. If it was a sheep, he would poke it. The game works with the player

instead of against him, allowing the player to perform only the actions that will be

useful to him. The double-click is an obvious extension of the single click. The sin-

gle click moves Bobbin to that object; a double-click has him attempt to use it.

Obviously, this input system is also identical to how point-and-click is used on the

Macintosh and Windows platforms, so it has the added advantage that players are

likely to understand it before they even start playing. The lesson to be learned here

is that copying input ideas from established standards is almost always better than

making up something new. Whatever slight gain one might achieve with a new

input method is almost always negated by the frustration the player experiences

while trying to learn it.

The Drafts System

While the game may do away with an inventory, verbs, and branching conversa-

tions, it does add a unique and well-designed game mechanic accessible through the

player’s distaff. This system allows the player to cast the equivalent of spells on

various objects in the world. This system is quite different from spell-casting sys-

tems in any other games, and was especially revelatory in 1990. Again, the interface

is entirely point and click, and it is a system which is very easy to learn.

The system is based around the player hearing different tones in different situa-

tions and then repeating those tones on their staff, in a manner reminiscent of a

game of simon says. If the player double-clicks on a particular spinning wheel, a

series of four tones will be played. These tones will also be reflected on the player’s

distaff, which is displayed at the bottom of the screen. Below the distaff are a series

of musical notes that correspond to position on the distaff: c, d, e, f, and so forth, up

to a full octave. When the player hears the tones for the first time, these notes light

up to show the player visually what the different notes are. The player must then

remember this series of tones (usually by writing it down), and then can repeat the

tones in order to cast a particular “draft” or spell on a different object. The player

Chapter 12: Game Analysis: Loom 241

repeats the notes simply by clicking on different locations of the distaff, a beauti-

fully intuitive interface.

If the player plays the game in the expert setting, the learning of drafts becomes

significantly more difficult. The musical notation is no longer present on the screen,

and now the player only hears the notes; they no longer flash on the distaff. This

forces the player to “play it by ear” in order to succeed. This, coupled with the fact

that the tones required for a draft change with every game, gives the game signifi-

cantly more replayability than many other adventure games. The musical nature of

the drafts and of the entire game is a tremendous break from most other games that

can be played with the sound completely off. Instead of just using music for sonic

wallpaper, Loom beautifully makes the music an integral part of the gameplay.

The order of the tones can also be reversed to cause the opposite effect of play-

ing the tones forward. The objects the player double-clicks on to originally learn

the tones all correspond to the drafts they teach the player: double-clicking on a

blade teaches the “sharpen” draft, double-clicking on water dripping out of a flask

teaches the “emptying” draft, double-clicking on a pot full of bubbling dye will

teach the “dye” draft, and so forth. Spinning drafts with the distaff is the primary

method for performing actions on objects in the game. Sometimes the draft learned

is not entirely obvious, and some creative thinking is required of the player in order

to figure out which draft to use where. Drafts that are learned for use in one appli-

cation will turn out to have related but different applications later. For instance, a

draft that at first hatches an egg actually turns out to be quite handy for opening

doors. A draft that heals a human can also be used to heal a rip in the fabric of the

242 Chapter 12: Game Analysis: Loom

If the player
plays Loom on
the expert
setting, the
musical notes
on the distaff
disappear,
making the
game
significantly
harder.

universe. All the connections are subtle yet logical. The manipulation of these

drafts makes up the primary source of puzzles in the game, and they are used in

such a way that the puzzles are never overly convoluted. Loom is one of the few

adventure games where, once a puzzle is completed, the player never feels that the

puzzle was arbitrary or capricious.

Difficulty

Once again, from the comments in the manual, one can infer that Loom was made

from the start to be an easy game to play. One definitely gets the sense that the game

truly wants the player to succeed, and hopes the player will see the end of its lovely

story. Traditionally, adventure games prided themselves on vexing the player, on

making him play the game again and again until, after much suffering, a reward was

doled out.

Loom made a dramatic break from other adventure games by preventing the

player from ever being killed or from ever getting stuck. Many adventure games

included countless ways to die, thereby punishing players who had forgotten to

save their game. Some adventure games would also allow the player to progress in

the game even though she may have forgotten to do something fundamental earlier

in the game. Then the player would get to a location, not have the object needed

there, and have no way of going back to get it. In effect the player was dead, since

she could not progress in the game, but this was a worse kind of death: it was death

masquerading as life, where the player could still interact with the game-world but

had no chance of actually winning the game. Loom set a standard which many sub-

sequent adventure games have emulated: do not be unfair to the player.

Some cries were made by players that Loom was too easy. Indeed, the adven-

ture game enthusiasts who had been hardened on the adventure games that came

before Loom found it very easy to finish. They were used to dying around every

corner and spending hours bashing their head against nearly incomprehensible puz-

zles. Indeed, many adventure gamers were accustomed to not being able to finish

the games at all, at least not without buying a hint book. But the problem with mak-

ing games that only appealed to the veteran enthusiasts was that it made it hard for

any new players to start playing adventure games. If the player was not already

experienced with these twisted and convoluted exercises in masochism, there was a

good chance an adventure game would frustrate that player so much that he would

feel no desire to try another one.

Chapter 12: Game Analysis: Loom 243

Story

With the game mechanics focused in order to emphasize the game’s storytelling

component, the entire game would be for naught if the story Moriarty wished to tell

was not of the highest quality. Fortunately, it is. The story of Bobbin Threadbare,

the chosen “Loom-Child” whose task is to restore the fabric of reality, is one of sim-

ple beauty and great poignancy. On his seventeenth birthday, Bobbin is summoned

before the elders only to watch in amazement as they are transformed into swans.

Dame Hetchel, the weaver who has been as a mother to Bobbin, explains to him the

dire situation: the young weaver must discover what is slowly destroying the Loom

and save it before it is too late. Thus Bobbin’s adventure begins, with his trips to the

various guilds of the land of Loom, drawing to a unique climax complete with a bit-

tersweet ending. Along the way bits of the trademark, wise-cracking LucasArts

humor are included (a style of humor found at its most intense in The Secret of

Monkey Island), though never so much that it dominates the story. Some players

might see the story as strictly aimed at children, but Loom is a children’s game in

the same way The Hobbit is a children’s book, The Dark Crystal is a children’s

movie, or Bone is a children’s comic book. All contain enough sophistication and

intelligence that one does not need to be a child to enjoy them, merely childlike.

The story is ideally suited to the gameplay that Loom includes, with navigation

and the spinning of drafts being the player’s only actions. At the same time the

story never seems contrived for the sake of the gameplay, as many adventure game

stories do. The text in the story is kept to a bare minimum, never going into

244 Chapter 12: Game Analysis: Loom

Much of Loom’s
success rides on
the strength of
its fantastic and
whimsical story.

excessive detail about anything, allowing the player’s imagination to fill in the

holes. It is a story that is told well visually, with the player’s exploration and exper-

imentation with the distaff matching the emotional temperament of the character he

is playing, Bobbin Threadbare. Since Bobbin first acquires the staff at the begin-

ning of the game, it makes logical sense that he would not yet be an expert at it.

Thus the player’s many failed attempts to use the drafts fit perfectly with Bobbin’s

character. This is in contrast to many adventure games where, though the player is

controlling an intelligent, experienced character, the player must complete idiotic

puzzles such as figuring out the character’s password to log onto a computer sys-

tem, when obviously the character being controlled would already know this

information.

One problem with third-person adventure games, games where the player sees

her character in the game instead of just seeing what that character would see, is

that often the character in question has such a strong personality and appearance

that it may be difficult for the player to feel properly immersed in the game. If the

character is too much of a departure from one the player could see herself being,

the player may become frustrated when that character speaks lines of dialog she

would not say herself or performs other stupid actions. Loom works around this

problem by putting Bobbin Threadbare inside a cloak, with the player only ever

seeing his eyes. This keeps the main character anonymous enough that the player

could believe that, in fact, it is herself inside that cloak. At the one point in the

game where Bobbin takes off his hood the game quickly cuts away to a different

scene, almost poking fun at the continued anonymity of the main character. And

Bobbin’s dialog is kept level and anonymous enough that he never says anything

which might annoy the player. Many game developers and publishers speak of cre-

ating strong characters, perhaps ones that can be used for action figures and movie

rights later on. But what often keeps a game enjoyable for the player is a more

anonymous character, one the player can sculpt in her mind into her own idea of a

hero.

Loom as an Adventure Game

For all of its strengths, Loom is still an adventure game, and indeed a fairly linear

one. Adventure games are the genre of computer games most concerned with tradi-

tional storytelling, while at the same time often being the least encouraging of

player creativity. The story being told in an adventure game is the designer’s story,

one that was clearly established ahead of time, and one that allows the player only

to experience it without really being able to change its outcome. The critics of

adventure games are quick to point out that, really, adventure games are not games

at all, but merely a series of puzzles strung together with bits of story between them.

The puzzles, regardless of their form, serve as locked doors between the different

Chapter 12: Game Analysis: Loom 245

parts of the story, and in order to experience the rest of the story, the player must

unlock that door by completing the puzzle. Games, they say, are required to react to

the player, while a puzzle provides a more static challenge, one that, once solved, is

not nearly as much fun to try again. These critics suggest that once the story is expe-

rienced, because of its static nature it is hardly worth experiencing again.

And Loom, for all its beauty and strength of design, still succumbs to some of

the problems of adventure games. During the conversation cut-scenes, the game is

completely linear and the player has no control of the game whatsoever. This might

be more acceptable in smaller doses, but some of the cut-scenes in Loom go on for

a significant amount of time. The game can also sometimes degrade into the player

trying to click everything on the screen, just to see which objects can be manipu-

lated. There is a good chance that, if an object can be manipulated, the player will

need to do something with it to complete the game. This is both good and bad: good

in that it limits the player’s actions to useful ones instead of leading him down a

false path after red herrings and pointless diversions; bad in that it severely limits

the interactiveness of the world. And sometimes the game’s landscape art is drawn

in such a way that it is difficult to figure out where Bobbin can navigate and where

he cannot.

But, truly, these are minor complaints. Is it so bad that Loom is a storytelling

experience with a predetermined story? The game is only as worthwhile to play

again as it is to read a book or see a movie a second time. Of course, repeat reading

and viewing is something many people enjoy, if the work is good enough to warrant

it. Loom may not be as interactive as Civilization, but does every game need to be

that interactive? A game of Civilization may tell an interesting story of the rise of

246 Chapter 12: Game Analysis: Loom

Loom’s
gameplay
centers on the
player solving
simple yet
elegant puzzles.
Once solved, the
puzzles do not
provide much
replay value.

an empire and the advancement of technology, but to me there has never been a

game of Civilization with a story as compelling and touching as Loom’s. Critics

might ask, why not tell Loom’s story as a book or an animated feature? Sure, the

story could work in those forms, but would the player be so drawn in as when he is

allowed to explore and interact with the story-world in question? Through an

adventure game like Loom, the player gains a certain emotional attachment to and

involvement in the events that transpire that is impossible in other media. Perhaps it

is not a game by an exclusionary definition, but that does not make it any less

worthwhile.

Chapter 12: Game Analysis: Loom 247

Chapter 13

Getting the Gameplay
Working

“Those who wish to be must put aside the alienation, get on

with the fascination, the real relation, the underlying theme.”

— Neil Peart

248

TE
AM
FL
Y

Team-Fly®

H
ollywood has a system. It is a well-known system with a well-defined goal,

where the largest unknown is “where is the money coming from?” not

“how will we ever make this film?” Hollywood producers and talent know

how to go from a treatment to a script, through multiple revisions of that script, and

then how to bring together the personnel that will make that script into a film, on

time and on budget (usually). Hollywood as a whole has much less of a handle on

whether the final film will be any good or not, but they do at least know how to get

the film made. Seldom does a film already in production have its script completely

rewritten, its personnel trimmed, or more people added willy-nilly to its cast and

crew. Customarily, films are completed months and months before they are sched-

uled to be released. Granted, sometimes the film may never make it beyond the

script stage or, once completed, may not get released as originally intended. But,

overall, Hollywood has an efficient system for creating films.

On the other hand, computer game developers have no such system. The devel-

opment of a game design is a chaotic, unpredictable process filled with problems

not even the most experienced producer, designer, or programmer can foresee. Cus-

tomarily, development on computer games continues until the absolute last possible

second, with changes made right up to the time the gold master disc is shipped to

the duplicators. For PC games, usually a patch follows shortly thereafter, since the

game was never properly finished in the first place. Why is computer game devel-

opment so unpredictable while film production is so predictable? Granted,

Hollywood has been making movies for a lot longer than the computer game

industry has been making games, which gives them a leg up. But beyond that,

Hollywood is making a much more predictable product. Different movies may

have unique stories and characters, and may even use a variation on cinematic tech-

niques, but a lot of film-making is a known quantity.

Original games, on the other hand, are a totally new animal every time. Part of

the problem is the shifting technology targets, where programmers must learn about

new consoles, operating systems, and 3D accelerator cards for each project, and the

fact that so many games feel the need to have a cutting-edge graphics engine. But

purely from a design standpoint, a truly original game is far more unique compared

with other contemporary games than a movie is from other films being made at the

same time. Consider games like Civilization, The Sims, or Doom. The gameplay

contained in these games was radically different from anything that came before

them. Granted, many games are far less experimental and innovative than the

games I just listed, and games that have followed more of a formula have had a

much better success rate in terms of coming out on time and on budget. This

includes titles such as the Infocom adventure games, the Sierra adventure titles, the

annual revisions of sports games, or the new versions of arcade driving games.

However, these are games which, though perhaps including new content in terms of

Chapter 13: Getting the Gameplay Working 249

new stories and graphics, offer gameplay that is very much the same as the previous

year’s offerings. When a game tries to implement a new form of gameplay, even if

it is only a variation on a proven theme, all hope of predictability in its develop-

ment is thrown to the four winds.

Only really good designers have any hope of predicting what is going to be fun

or not in a game, and even the most experienced designers will tell you that they

use a lot of prototyping, experimentation, and general floundering around until they

come up with the gameplay they want. These talented veteran designers do not

have crystal balls; they only have an improved chance of anticipating what will

make for compelling gameplay. They do not truly “know” more than anyone else.

The closest thing game development has to a reliable system for developing an

original game is to get some small part of the gameplay working first, before mov-

ing ahead to build the rest of the game. This may be called a prototype, a demo, a

proof-of-concept, a level, or simply the current build of the game. This is not

merely a demo to show off the game’s technology. Instead, it is something that

shows off the game’s gameplay, which includes all of the features described in the

game’s focus, as discussed in Chapter 5. This demo should be something any mem-

ber of the development team can pick up, play, and say, “Yes, this is fun, I want to

play this.” By concentrating on getting a small piece of the game fully functional

and enjoyable, the developer can get a much better sense of whether the final game

is going to be any fun or not. If the gameplay just does not turn out as anticipated,

the prototype provides an early enough warning that the game needs to either be

redirected in a more promising direction or, in the worst cases, aborted entirely.

250 Chapter 13: Getting the Gameplay Working

Doom offered
gameplay so
different from
any game that
came before it
that the game’s
development
was something
of a bold
experiment.

The Organic Process

In the games I work on, I prefer to keep the development process as organic as pos-

sible and I try not to plan anything out too thoroughly. This may be the opposite of

the approach many development studios prefer, but I find it to be the most effective

method for developing the best game possible. Due to the highly unpredictable

nature of game design, which I discussed above, a more organic process leaves me

room and time to experiment with how the gameplay will work. Instead of writing a

mammoth document, I can first try to get some portion of the game to be fun before

I start adding detail and length to the game. Adding too much content to the game

too early can be very wasteful, if not actually restrictive. This obtrusive detail can

take the form of an elaborate design document, a script for the game’s dialog,

detailed maps of the various areas the player will encounter, or even fully built lev-

els for the game. It makes no sense whatsoever to create these elements of the game

until you have a firm grasp on what the gameplay will be, and have a working pro-

totype that proves the gameplay to be fun.

Too Much Too Soon

The problem with creating scripts, documents, or levels without a prototype is that

these assets will make assumptions about how the gameplay will function, assump-

tions which may turn out to be incorrect once the gameplay is actually functional. If

a designer builds an elaborate game design on principles which turn out to be

flawed, that entire game design will probably need to be reworked or, more likely,

thrown away. But if people have devoted large amounts of time to creating these

flawed assets, they are going to be understandably reluctant to throw them away. If

a designer gets too attached to those ideas, even if they later prove to be unwork-

able, he may try to cling to them. After all, a lot of work went into planning the

game in advance with a long design document, how can it all just be thrown away?

Cannot the assets be reworked to be usable? If you are not bold enough to throw

away your inappropriate content, in the end you run the risk of producing a game

that is patched together after the fact instead of built from the start with a clear

sense of direction.

When I set about working on my first published game, Odyssey: The Legend of

Nemesis, admittedly I had little idea of what I was doing. I had inherited a game

engine and some portion of the game’s mechanics from the previous developer. At

the time, the project was very meagerly funded, and as a result, the publisher only

requested a meager amount of documentation about where the game was going. I

drew up a six-page document which described, in brief, all of the adventures the

player would go on. First of all, none of these documents were very detailed, with

just one page per major island in the game. That left me lots of room to maneuver.

Chapter 13: Getting the Gameplay Working 251

Second, by the time I had implemented the first two islands, I had learned enough

about how the game truly worked that I decided to throw away the last three islands

and design them over again. Since I had only written brief outlines of the gameplay

in the first place, I did not actually lose much work.

Another interesting aspect of Odyssey’s creation was that I developed the game

entirely using place-holder art. Along with the game’s engine, I had inherited a fair

amount of art from another project, and kept using that as much as possible. Since

the project was underfunded, I did not have an artist to work with during most of

the game’s development, so this decision was made more out of necessity than fore-

sight. However, it did mean that by the time I had the money to hire artists to finish

the project, all of the game’s design was done and fully playable, and as a result the

artists created almost no art for the game that went unused. Using the place-holder

art had not hindered the game’s development in the slightest. I concentrated first on

getting all of the gameplay working, and then was able to focus on the visuals.

Since I was not constrained by the thought of losing already created art assets if I

changed the design, I was able to take the design in whatever direction seemed

most appropriate while I was working on it.

On Centipede 3D, a significant amount of work was done before the gameplay

was actually fun, and almost all of that work had to be thrown out as a result. The

original idea for the gameplay had little to do with how the original Centipede func-

tioned from a gameplay standpoint, and featured a more meandering, less-directed

style of gameplay. Using this original gameplay conception, six levels were actually

252 Chapter 13: Getting the Gameplay Working

Keeping the
development
documentation
light and using
place-holder art
kept Odyssey’s
development
extremely
organic.

built and numerous other levels were planned out on paper. For various reasons, the

gameplay simply was not much fun, and we began to look at what could be done

about that problem. In the end, we made the enemy AI function more like the origi-

nal game’s enemies and adjusted the gameplay accordingly. When we tried it we

were not sure if it would work, but that gameplay style turned out to work quite

well. Unfortunately, much of the level design work that had been done was lost. All

of the levels that had been designed on paper were thrown away because they were

incompatible with this new style of gameplay. Of the six levels that had been actu-

ally built, three had to be discarded in order to support the new gameplay, while the

others had to be changed significantly in order to play well.

Looking back, if we had focused on making the gameplay fun before making a

large number of levels, we could have avoided a lot of extra work and wasted

effort. With the gameplay functional, we were able to draw up documents describ-

ing how the rest of the game would function. For the most part, we were able to

hold to those documents throughout the remainder of the development process,

with only minor changes necessary. Of course it would have been catastrophic to

the project if we had been unable or unwilling to throw away the work we had

already done. If we had tried to keep all of the levels without changing them signif-

icantly, the game would have shown it and those levels would have been greatly

inferior to the ones made with the proper gameplay in mind. If we had been foolish

enough to stick to the initial design completely, the entire game would have suf-

fered and the end product would not have been as fun as it turned out to be.

Keep It Simple

Early in development, it makes sense to work with only your focus instead of a long

design document. The focus is short enough that it can easily be completely rewrit-

ten if your game changes direction. Yet, at the same time, the focus will give you a

clear direction for what you are trying to achieve with the gameplay you are

attempting to implement. In the prototyping stage, the focus may change many,

many times as you shift the game’s goals to match what you find to be working out

in terms of gameplay. When your prototyping is done, you will have a solid focus

that you can reasonably hope to follow for the rest of the game’s development.

Unfortunately, you may not always have the option of keeping the game design

process organic. If you are working at an established company, you may have a

fully staffed team working on your project from the very beginning, and those peo-

ple need to be kept busy making art, building levels, or coding up systems, even

though there may not yet be a functional and fun gameplay prototype. It does not

take a large team to get the initial gameplay working, and indeed such a large team

may only get in your way as you try to keep them busy while experimenting with

how the gameplay will work. You may also have demands from whomever is

Chapter 13: Getting the Gameplay Working 253

funding your project’s development, whether it is your employer or the publisher.

Whoever is paying the bills may want to see a complete design document or script

up-front, before a prototype of the game has been developed. You may be forced to

abandon those documents later as the gameplay turns out to work differently than

you had anticipated. Obviously, crafting these documents prematurely can be quite

wasteful, yet you are forever beholden to whomever is providing the funding for

your project. In some ways, if at all possible, it may make sense to self-fund the

project until you have a fully functional prototype. Work on it “under the radar” if

you are at a large company, or work on the gameplay prototype before you try to

find a publisher. Besides, a playable demo will make the game easier to sell to a

publisher or a green-light committee. Nothing proves to the financiers that your

game is moving in the right direction better than a compelling prototype.

Building the Game

The best way to build your game is incrementally. Instead of working a little bit on

all the different components of the game, you should try to complete one system

before moving on to the next. Work on the most basic and essential systems first,

and then build the systems that depend on that system. This allows you to imple-

ment a system, test it out, see if it “feels” right, and only then move on to the next

system. That way, if you must change the underlying system to get it to work prop-

erly, your subsequent systems can be changed accordingly. It can often lead to

disaster when you have a number of programmers concurrently working on coding

up a variety of systems that work together. If one system has to change, other sys-

tems may need to be radically reworked. Better to build a solid foundation before

trying to build on top of it. Programmers often enjoy working on their own isolated

part of the code without fully considering how it will have to interface with the rest

of the project. It is important for your programming team to be constantly focused

on the big picture of making the game playable and fun.

Core Technology

Of course, all computer games rely on an underlying technology which has very lit-

tle to do with the gameplay, usually referred to as the game’s engine. Certainly you

need to make sure that this underlying technology functions at a certain level before

any work can be done on the gameplay. However, you do not need the engine to be

perfect or feature complete before you can start building your prototype. Indeed, on

a project with a cutting-edge engine, waiting until the engine is truly finished may

be too late to spend enough time refining the game itself. The peril of working with

unknown technology is designing around projections of the capabilities of the tech-

nology. If you design your game thinking you will be able to have ten enemies on

254 Chapter 13: Getting the Gameplay Working

the screen at once and your engine turns out to be only able to handle three, you will

need to radically alter your design to accommodate this restriction. It should be no

surprise that the best-designed games are often ones that did not use the most cut-

ting-edge technology available when they were released.

If the technology is simply not ready, I know a number of game designers who

start off prototyping their game using technology from a previous project. It is rare

that technology will actually make or break a game design, though it may make or

break the game itself. But technology, as unpredictable as it may sometimes be, is

still more of a known quantity than game design, so it makes sense not to worry

about it when you are first prototyping your game. Since the first few areas you cre-

ate will probably be thrown away later anyway, it is not that wasteful to get them

working using a technology that you will eventually throw away as well.

Incremental Steps

Once your technology is to a point where you can start developing the gameplay as

I mentioned earlier, try to break down the game design into the most fundamental

tasks that need to be accomplished and then the tasks which build on those. For

example, suppose you are building an action game in which the player navigates a

humanoid character around the game-world fighting insurance agents with a fly-

swatter while collecting kiwi fruits. Getting the player’s navigation system working

is a logical first task to tackle. First, get the character moving forward and backward

and turning, allowing for basic navigation of the world. Work on this movement

until it feels pretty good, until you find yourself enjoying playing the game in this

simple, navigation-only way. Now you can build on that by adding more movement

options, such as strafing, crouching, and jumping. As you add each new movement

type, make sure that it does not break any of the previous types of movement and

that they all work well together. Only once that is firmly in place should you try

adding the ability for the player to use the flyswatter. With the flyswatter fun to use,

at least in some limited way, it makes sense to add the insurance agents into the

game. The AI’s functionality can be broken down into building blocks just like the

player’s movement was. First, get the AI agents in the world so that the player can

whack them with the flyswatter. Next, get the agents moving around the game-

world before finally adding the ability for them to do their “audit” or “excessive

paperwork” attack. Finally, you can add the kiwis to the world and the ability for the

player to pick them up and launch them with his flyswatter. What is essential in this

step-by-step process is that at each step along the way the game is still playable and

fun. When you add something to the game that breaks a previous portion or simply

makes it less fun, you must address this problem immediately. Now is the time to

alter your design as necessary, before the game swings into full production.

Chapter 13: Getting the Gameplay Working 255

Throughout the project’s development, I think it is important to always keep a

version of your game playable. Often programming teams will go for a long time

coding up various pieces of the game without having a functional version that

someone can sit down and play. It is very easy to lose sight of your gameplay goals

when your game spends a lot of time in an unplayable state. Certainly the game can

be broken in many ways, with various components that do not yet work as they are

supposed to and with place-holder art used in many locations. But as long as you

always have a playable game, team members are able to pick it up and play it, and

see what they are working on and how it impacts the game. And if anything some-

one adds or changes makes this playable version of the game less fun, you can

immediately discover this problem and rectify it.

A Fully Functional Area

Once you have many of the elements of your game mechanics working and you are

happy with them, the next step is to make an entire section of the game that func-

tions just like you want it to play in the final game. In many game genres this means

one particular level of the game. You may think you have all of the components of

your gameplay functional, but once you actually try to make an entire area playable

you will quickly discover what you forgot to implement or failed to anticipate. Con-

centrate on getting this one level as close to a final state as possible before moving

on to the creation of other levels. If you are observant you will learn many lessons

about how level design must work for your particular game through the creation of

this one level, lessons which will help to eliminate the element of guesswork from

the creation of the other levels in the game. Once you are done with this level, it

will no longer be the best you can do; you will have learned a lot, and subsequent

levels you create will be better thought out from the beginning. Though you do not

need to throw away this prototype level yet, keep in mind that you should probably

scrap it before the game ships.

One example of this is from the development of my game Damage Incorpo-

rated. The very first level I created for the single-player game was done before I

fully understood the game mechanics or the level creation tools I would be using.

As a result it was far from fun to play and was quickly thrown away. The second

level I made, though certainly not the best in the game, was good enough to make

the final cut. The game also included death-match style networking, which used a

completely different set of levels. Due to time constraints, I spent significantly less

time balancing the network play than I would have liked. In particular, the first

level I created for the network game, “My Mind is Numb, My Throat is Dry,”

ended up not being that much fun to play. It had a number of cool areas but they did

not flow together very well and a number of sections in the level were unfair and

unbalanced death traps. One of my playtesters even suggested it would be best to

256 Chapter 13: Getting the Gameplay Working

throw it away and start a new level from scratch. Unfortunately, I did not have the

time to make a replacement and it ended up shipping with the game. Fortunately

there were seven other network levels that were significantly more fun to play.

Nonetheless, it would have been better if I had completely scrapped my first

attempt at a network level and made a new one instead.

Something you must be conscious of as you are building the first fully playable

section of your game is how difficult the game is to play. Often difficulty can be

adjusted and tweaked later in the development process, during playtesting and bal-

ancing. However, games also have a fundamental difficulty which is more intrinsic

to their nature and which cannot be easily adjusted late in the development cycle.

As you are working on getting your gameplay prototype working, try to look at it

honestly in terms of how difficult it will be for novice players to get into. Bring in

some friends or coworkers and have them play the game. Observe how easily they

manage to pick up the game. It is much simpler to make a game harder than to

make it easier. If you find that your game is turning out to be harder to play than

you had hoped, now is the time to alter the game design in order to make the game

easier to play, before it is too late.

Going Through Changes

A big part of the organic process of game design is being able to throw away your

own work and, potentially, that of the rest of your team. This includes art, code, lev-

els, and even general design itself; all of the game’s content may need to change as

Chapter 13: Getting the Gameplay Working 257

The first network
level made for
Damage
Incorporated,
pictured here,
was also the
worst one in the
game. It would
have been better
to scrap it and
construct a new
one.

your gameplay changes. A particular asset may not be flawed in and of itself, but if

it does not gel properly with the way the gameplay is working out, you may need to

get rid of that asset and start from scratch. Many developers are unwilling to do this,

and it shows in their games. Either their games are shackled to an initial design doc-

ument which turned out not to work as well in practice as it did in theory, or their

games retain a hodgepodge of components from before their direction was finalized.

Once a designer decides that the game’s direction needs to change, all of the assets

of the game must be assessed to see if they can fit with that new direction. If they

cannot, they must be reworked or remade.

As I have discussed, my project Centipede 3D changed course significantly in

the middle of development, resulting in us having to throw away a large amount of

work. Fortunately, no one on the team was unhappy to do so, since we all realized it

was in the best interests of the project. With other projects I have worked on, I have

been more stubborn and ignored the pleadings of coworkers and friends when they

said something needed to be reworked or changed. I was reluctant to throw away

perfectly good work, even though it no longer fit with the game. Sometimes the

first step in fixing the problems with your game design is admitting that you have a

problem.

Of course, you have to be careful not to go too far in the other direction by dis-

carding content that does not need to be thrown away. As you work on a project,

you are likely to become overly familiar with some of the content you have created,

and familiarity can breed contempt. For example, after working with a level for a

long time, a designer is likely to become sick of looking at the same geometry day

after day. The designer may then feel the need to rework that level, not because it

really needs it, but simply because it will be something new. This is wasted effort,

since for the player playing the game for the first time, the level will be new and

exciting. Changing your game’s content just for the sake of changing it can lead to

extra debugging time, delays in shipping your project, and general frustration for

team members who do not know why perfectly good work is being thrown away

and redone.

First impressions are very important, especially in game design. Always try to

remember how you first felt when you played a level or tried to pull off a particular

move. Was it too hard or too easy? Was it intuitive or confusing? Another big prob-

lem with working on a project for a long time is that the designers can grow

accustomed to flaws in the design. Maybe the controls are unintuitive or a particu-

lar enemy attacks the player in an arbitrary and unfair way. As they play the game

repeatedly, designers will learn to overcome and avoid these problems in the game

design, giving them the false impression that nothing is wrong with the game.

Playtesting is an essential tool for revealing the weaknesses in the game design that

the development team has grown accustomed to, as I will discuss in Chapter 23,

“Playtesting.” However, before you get to the playtesting stage, try to always

258 Chapter 13: Getting the Gameplay Working

TE
AM
FL
Y

Team-Fly®

remember what your first impression of a particular aspect of the game was. Ask

yourself if the problems you saw back then have been fixed or if they are still there,

creating frustration for others who experience the game for the first time. It is best

to fix these problems as soon as you observe them because, if you put them off, you

are likely to forget about them.

Programming

This chapter is written from the vantage point of someone who is a designer and a

programmer, as I have been on all of my projects. Being in such a position has

many unique advantages, especially in terms of being able to experiment with

gameplay. A designer/programmer is able to have an idea for some gameplay and

then instantly be able to attempt to implement it exactly how she wants it. A

designer who does not program is forced to first communicate her idea for the

gameplay to the programmer and hope that he understands the design. Often the

communication will break down and the designer will not get exactly what she

wanted: the feature in question may have an inferior implementation than what the

designer had in mind. As a result, either the game is weaker or the designer must go

back to the programmer and try to explain to him how a particular feature is actually

supposed to work. Since game design is such an iterative and experimental process,

there must be a constant circle of feedback between the designer and the program-

mer. Obviously, this process is greatly simplified if the designer and programmer

are the same person.

I often find that, as a designer who programs, I can try out ideas much more

easily. In fact, many of the ideas I have I would feel bad trying to get someone else

to work on, since I lack the confidence in them myself to waste someone else’s time

with them. But in the end some of these strange ideas turn out to work quite well in

the game, and if I had never been able to experiment with the code myself, the

ideas might never have been attempted.

A designer/programmer will also often be able to better understand the technol-

ogy involved in a project, and be able to see what is easily accomplished and what

is not. Often a designer who is not a programmer will suggest gameplay that is very

difficult to implement in the engine. It may be that a different, though equally func-

tional, type of gameplay will work better with the game’s technology, and if the

designer/programmer notices that, he will be able to greatly simplify the game’s

development. Say a designer wants a certain sword to have a particular behavior to

communicate to the player that it is enchanted. The designer may request that the

sword physically appear to bend somewhat within the player character’s hand. The

programmer assigned to set up this functionality curses the designer, knowing this

is a practically impossible task given the constraints of the engine they are using.

The designer does not realize that creating a fancy particle system around the sword

Chapter 13: Getting the Gameplay Working 259

is much easier to do, though he would be perfectly happy with that solution. As a

result, the programmer, fearing to resist the designer’s request, spends a lot of time

on a challenging implementation, when a much simpler one would have satisfied

the designer had he understood the technology better. Understanding the feasibility

of ideas is a skill which comes with understanding how game programming funda-

mentally works, and how the engine you are working with is architected. Even if

you are not actively programming on the project you are developing, you can better

understand what can be easily accomplished with the technology and what feature

will suck away resources for months without adding that much to the game.

Another problem arises when the designer and programmer have a different

idea of what the gameplay for the project should be. I have heard one designer refer

to this as the “pocket veto.” A designer may come to a programmer with an expla-

nation of how gameplay for a particular section of the game should work, and if the

programmer does not agree, he can simply not implement what the designer has

requested. He may even pretend that the designer’s request is very hard or actually

impossible to implement when it is not. A designer who cannot program will be

beholden to the whims of often-temperamental programmers, which can be eter-

nally frustrating.

I am of the opinion that it is worth learning to program if you want to be a

designer. In fact, that is why I originally pursued programming. It is out of the

scope of this book to actually teach you to program, and there are certainly plenty

of books available to help you learn what you will need to work on games. Much of

effective programming is a matter of discipline. And you do not even need to be a

terribly good programmer to have it help your design out immensely. Indeed,

almost all the designer/programmers I know will insist that they are not very good

programmers, but that they are persistent enough to get what they want out of their

games. As I have mentioned, knowing how to program will give you a better sense

of what is easy to do in a game and what is hard. Furthermore, if you want your

game design to turn out a particular way, often the only way to ensure that it turns

out that way is to program it yourself.

If you are not going to be programming on your project, it is essential that you

have a lead programmer with a good sense of gameplay, someone whose opinion

you can trust. Indeed, you will be well advised to only have programmers on your

team who have a good sense of what makes games fun. In the end, there are an infi-

nite number of small decisions that programmers make which will have a profound

impact on the gameplay, details that no designer can anticipate. These little details

have an enormous impact on the final game, determining how the game “feels” to

play. Often, unmotivated or disinterested lead programmers can be found to be

behind games that seem like good ideas in theory but just do not turn out to be any

fun. Many projects have gone from promising starts to dissatisfying final products

as the result of programmers who merely implement various features from a

260 Chapter 13: Getting the Gameplay Working

specification and never take a moment to look at the whole game and see if it is

any fun.

This book includes interviews with six people who are indisputably some of

the most talented game designers in the history of the industry. It is interesting to

note that of those six, all were programmers at one point in their careers and pro-

grammed in some capacity on their most respected games. Indeed, back in the early

days of the computer game industry, the development process was of a small

enough scale that one person was doing all the work, so there was no need to sepa-

rate the role of designer and programmer. Nonetheless, three of the interview

subjects still serve as the lead programmer on their own projects. This is not to say

that one cannot be a great designer without being a programmer, but I think design-

ers who are able to program have a leg up on those who cannot, an advantage

which allows them to make better games.

When is It Fun?

Getting your gameplay working is one of the most essential parts of game design,

yet it is also one of the most difficult to try to explain or teach. A lot of the process

involves understanding what is fun about a game in a way that no book can ever

explain. Indeed, a game’s design changes so often during the implementation stage

that I do not believe a designer who is not actively working on the game during that

period can truly be considered to have designed it. If this so-called designer simply

typed up a 200-page design document and handed it to the lead programmer to

implement while the designer frolicked in Bora Bora, the lead programmer was then

responsible for making the fundamental decisions which made the game fun or dull,

stimulating or insipid, enjoyable or tedious. When the designer is AWOL during the

implementation process, the lead programmer is the one who is actually designing

the game.

So much of implementing your game design relies on personal “gut” reactions

that it is no wonder people have great difficulty designing games for people other

than themselves. This is why so many games that are aimed at the “mass market”

but which are designed by people who are hard-core gamers turn out to be so terri-

ble. The hard-core gamer doing the design wishes he was working on Grim

Fandango but instead is stuck working on Advanced Squirrel Hunting. Even if he

can overcome his contempt for the project itself, he will probably have no idea

what the audience who may be interested in playing Advanced Squirrel Hunting

wants in its games. Often features will be added to a game at the behest of market-

ing, over the protests of the development team. These features are always the worst

in the game, not necessarily because they are bad ideas, but because the develop-

ment team does not understand why they need to be added to the game or how they

might improve the gameplaying experience. In the end, it is very hard to design a

Chapter 13: Getting the Gameplay Working 261

good game that you yourself do not enjoy playing. If you do not enjoy playing it, it

is unlikely that anyone else will either, even if they technically fall into the demo-

graphic you were so carefully targeting.

The first step in designing a game is to get some portion of the gameplay work-

ing and playable. Once you have a prototype that you can play and which you find

to be compelling and fun in the right amounts, you should step back and make sure

that you have a firm grasp on what makes it fun and how that can be extended to

the rest of the game. With that prototype as a model, you can now move on to make

the rest of the content for the game, replicating the fundamental nature of the game-

play while keeping the additional content new and interesting. Now that you know

that your game design is a good one, it may finally make sense to craft a thorough

design document that explains that gameplay and explores what variations on it

may be used for the rest of the game. This will provide a valuable guideline for the

rest of the team in fleshing out the game. In some ways, once the prototype is work-

ing, the truly creative and challenging part of game design is done, and the rest of

the game’s development is simply repeating it effectively.

262 Chapter 13: Getting the Gameplay Working

Game
developers do
their best work
when working
on games they
care about and
enjoy. The
excellent Grim
Fandango
appears to be a
perfect example.

Chapter 14

Interview:
Chris Crawford

Today, Chris Crawford is probably best known for his contributions to the

dialog of game design, including his founding of the Computer Game

Developer’s Conference, publishing the Journal of Computer Game
Design, and writing the book The Art of Computer Game Design. In par-

ticular, The Art of Computer Game Design, though written in 1983,

remains the best work ever published on the subject, and served as the

inspiration for this book. The brilliance of Crawford’s games cannot be

denied either, including such undisputed classics as Eastern Front (1941),
Balance of Power, and Crawford’s personal favorite, Trust & Betrayal: The
Legacy of Siboot. For most of the ’90s Crawford devoted himself to his

labor of love, the interactive storytelling system called the Erasmatron, a

tool which shows great promise for transforming interactive stories from

mostly pre-written affairs into truly dynamic experiences.

263

What initially attracted you to making a computer play a game?

That actually started back in 1966, when I was a high school sophomore, and a

friend of mine named David Zeuch introduced me to the Avalon Hill board

wargames. We played those, and I thought they were a lot of fun. I played them into

college, though I didn’t have a lot of free time during my college years. When I was

in graduate school, I ran into a fellow who worked at the computer center, and he

was trying to get Blitzkrieg, an Avalon Hill game, running on the computer. I told

him he was crazy. I said, “That can’t be done, forget it.” But that conversation

planted a seed. I thought about it, and about a year later I decided I was going to

attempt it. So I went to work and it turned out to be nowhere near as difficult as I

had feared. So I ended up putting together a little program on an IBM 1130 in

FORTRAN. It actually ran a computer game, a little tactical armored simulation.

The debut of that game came early in 1976 when I showed it off at a little wargame

convention that we held. Everybody played it and thought it was a great deal of fun.

So then I bought myself a KIM-1 and redid the whole thing around that system.

That design was unmatched for many years, because you had genuine hidden move-

ment. I had built little tiny terminals, as I called them, and each player had his own

little map and little pieces, and a screen to divide the two players. Two guys played

this wargame, each one unaware of the position of the other. It was a lot of fun, and

that was 1977 or ’78.

What made you at first think it would be impossible?

The difficulties of organizing the artificial intelligence for it. I thought, “That’s

just going to be impossible.” And the hex-grid motion, I figured that was probably

computable, and in fact it turns out it’s not that difficult. But I figured that doing

armored tactical planning on the computer, at the time, seemed ridiculous. Now, you

have to remember that was twenty-five years ago, and given the state of AI back

then, I was really on rather solid ground thinking it impossible. But as it happens I

solved that problem, marginally, within a year.

What made you think it would be worthwhile to put games on the computer?

I was driven by one thing and that was “blind” play. I was very concerned that,

no matter how you looked at it, with board games you could always see what the

other guy was up to. And that always really bothered me, because it was horribly

unrealistic. It just didn’t seem right, and I thought the games would be much more

interesting blind. And, in fact, when we did them, they were immensely powerful

games, far more interesting than the conventional games. And as soon as I saw that,

I knew that this was the way to go. And board-play technology has never been able

to match that simple aspect of it. It was so much fun sneaking up behind your oppo-

nent, and, as they say, sending 20 kilograms up his tail pipe. It was really impressive

stuff, very heady times.

264 Chapter 14: Interview: Chris Crawford

So from that early work, how did you come to work at Atari?

Well, actually a bit more transpired first. I got a Commodore Pet and pro-

grammed that in BASIC with some assembly language routines to handle the

hex-grid stuff. I had shown my tactical armored game at some wargame conven-

tions and everyone had been very impressed. So then I actually made Tanktics into a

commercial product and sold it on the Commodore Pet for fifteen bucks. And then I

did another game called Legionnaire, also on the Commodore Pet. And based on

that I got a job at Atari, doing game design there. Actually, I was one of the few job

candidates they had ever had who had any experience designing computer games.

It’s hard to appreciate just how tiny everything was. The very notion of a computer

game was, itself, very esoteric.

What was the atmosphere like at Atari then?

It was heady. Again, it’s very difficult for people nowadays to appreciate how

different things were just twenty years ago. I remember a conversation with Dennis

Koble. We met one morning in the parking lot as we were coming into work, and

we were chatting on the way in. And I remember saying, “You know, some day

game design will be a developed profession.” And he said, “Yeah, maybe someday

we’ll be like rock stars!” And we both laughed at how absurd that thought was.

There were, in the world, a couple dozen game designers, most of them at Atari.

And everybody knew each other, at least everyone at Atari, and it was all very cozy.

And many of them did not consider themselves to be game designers.

For example, I remember a meeting where the department manager said, “All

right everybody, we need to print up new business cards for everybody, and we need

to select what kind of title you want.” And there was something of a debate among

the staff whether they wanted to be listed as “Game Designer” or “Programmer.” I

remember people saying, “Gee, you know, if we put our titles down as Game

Designer, we may not be able to get another job.” And I think we ended up going

with “Game Programmer.” But game design was nowhere near the thing it is today,

it was just a very obscure thing. I remember telling people when they’d ask me,

“What do you do?” And I’d say, “I design games for Atari.” And they’d say, “Wow.

That’s really strange. How do you do that?” It was a very exotic answer back then.

Were you able to do whatever you wanted in terms of game design?

It depended on what you were doing. If you were doing a VCS [Atari 2600]

game, then you talked your games over with your supervisor, but there was consid-

erable freedom. The feeling was, “We need plenty of games anyway, and we really

need the creativity here, so just follow your nose, see what works, see if you can

come up with anything interesting.” And in general the supervisor gave you a lot of

latitude, unless you were doing a straight rip-off of somebody else’s design. So in

that area we had lots of freedom. But once you got your design complete, there

Chapter 14: Interview: Chris Crawford 265

would be a design review where all of the other designers would look it over and

make their comments. This wasn’t a marketing thing, it was a design level review.

Everybody wanted to program the computer [the Atari 800] because it was so

much more powerful than the VCS. So at the time I started, in 1979, the policy was

that you had to prove yourself by doing a game on the VCS first. And only then

could you go to the computer. Well, I mumbled and grumbled; I didn’t like that idea

at all. But I learned the VCS, and I did a game on it. However, another policy they

had was that all games had to be done in 2K of ROM. They were just coming out

with the 4K ROMs, but at the time those were rather expensive. And so the feeling

was, “You can’t do a 4K ROM. You’ve got to prove yourself, prove that you’re a

worthy designer if we’re going to give you all that space. We’ve got to know you

can use it well.” So I had to do a 2K game.

And I did one called Wizard, which I think was rather clever and worked in 2K.

Although I got it done in record time, I finished it just as Atari was starting to get its

4K games out. Everybody started realizing that the 4K games were not just a little

better, but immensely superior to the 2K games. So there was a feeling that anything

that was marketed is going to be compared against the 4K games, and my design as

a 2K game just couldn’t compare with a 4K game. So the other designers ended up

saying, “This is a very nice design, for 2K, but it just doesn’t cut it.” They wanted it

redesigned for 4K. I could have redesigned it for 4K and gotten it published, but my

feeling was, “OK, look. I’ve done my game on the VCS, now I’d like to move on to

the computer. So let’s not screw around here.” So I argued that, “Look, this was

designed as a 2K game, we’re not going to simply add features to it. If you want a

4K game, we start over; that’s the only way to do it right.” And mumble-mumble, I

was able to sneak past it and be allowed to go straight to the Atari 800. So that game

was never published. And I had no regrets.

So your biggest commercial success while at Atari was Eastern Front (1941). But I

understand that you had trouble convincing people that a wargame would be suc-

cessful. Were you confident a lot of people would like it?

No no, I didn’t really care. My feeling was, this is the game I wanted to design,

so I did it in my spare time. This was nights and weekends. Meanwhile, I was doing

plenty of other stuff at work. In October or November of 1980 I was promoted away

from game design. I was basically the first hardware evangelist. I did for the Atari

what Guy Kawasaki did for the Macintosh. And, actually, I was successful at that. I

did a very good job of attracting people to work on the Atari, because it was so

much better than the Apple and all it needed was a good technical salesman. So I

traveled the country giving these seminars, handing out goodies, and so forth. And I

generated a lot of excitement among the programmer community, and the Atari

really took off. There was this explosion of software about a year after I started that

task. I take primary credit for that.

266 Chapter 14: Interview: Chris Crawford

So anyway, I started that task in October or November of 1980, and as part of

that I was putting out these software demos to show off the various features of the

Atari. And I told myself, “I’m finally going to take the time to teach myself this

scrolling feature that everybody knows is in there, but nobody has actually gotten

around to using.” So I sat down and started messing around with it, and within a

couple of weeks I had a very nice demo up and running. I built a big scrolling map

and I thought, “Boy, this is pretty neat.” And by the standards of the day this was

revolutionary. It went way way way beyond anything else, just mind-blowing. And I

remember taking that to S.S.I. which, at the time, was the top wargame company

working on the Apple. And I showed it to the fellow there, and he was very unen-

thusiastic. He said, “Whoop-de-do, this will never make a good wargame.” I think it

was some kind of prejudice against Atari, that “Atari is not a real computer.” I was

kind of disjointed, and I thought, “Jeez, what a narrow-minded attitude.” So I

decided, “I’ll do it myself.” I did this game in the classic way that many games are

done nowadays: I started off with a cute technical feature and said, “How can I

show off this wonderful graphics trick?” So I said, “Let’s build a game around the

scrolling.” I went to work and built Eastern Front. I had it working by June of ’81,

but the gameplay was awful. It took me about two months to finish up the

gameplay. We released it through APX [the Atari Program Exchange] in August of

1981 and it was a huge success. It was generally considered to be the second defini-

tive Atari game, the first being Star Raiders of course.

So you actually made the fancy graphical effects first, and then built the game

around that?

That’s a phase every designer has to go through. You start off designing around

cute techie tricks, and as you mature as a designer you put that behind you.

So you ended up releasing the source code for Eastern Front (1941). What moti-

vated you to do that?

It was an extremely unconventional act. My feeling was, this is a fast-moving

field. I’m good. I’ll have new, wonderful technological discoveries by the time other

people start using this. I’ll be on to something else. I didn’t feel any sense of posses-

siveness: “This is mine, I don’t want anybody else to know.” My feeling was and

continues to be that we all profit more from the general advance of the industry. But

I’m not an intellectual property anarchist. I do believe people have rights to claim

certain things as theirs. I just feel that this should be done with great restraint, and

only in situations where there is something very big which took a lot of work. I felt

this was just a little techie stunt, no big deal. So I gave it away.

It’s funny. There were a number of technologies that I gave away that nobody

really used. The scrolling one was a good example: there were a couple of attempts

to use it, but they were all half-hearted. Then the other thing, I never could get

Chapter 14: Interview: Chris Crawford 267

anybody to learn a wonderful graphics trick that was shown to me by Ed Logg, and

I sort of picked it up and ran with it. I did a number of extensions which took it well

beyond what he showed me. But it was a wonderful thing for doing dissolves, a

variety of transitions, and it was beautiful. Very clever code. You applied this to a

bitmap and, wow, you could get fantastic things happening. And I used that a num-

ber of times and nobody else ever seemed to bother to use it. But I think lots of

people did look at the Eastern Front source code as a way of realizing that games

aren’t that hard to write.

So did your evangelism work take away from the amount of time you were able to

spend developing games?

Well, I was software evangelist for only a year. I was then asked by Alan Kay to

join his research team. In fact, I was the first guy he invited. For about three months

the Atari Research Division consisted of Alan Kay, myself, Alan’s administrative

assistant, Wanda Royce, and my employee, Larry Summers. And the only place

they could put us back then was in the executive suites, there was a spare room

there. And there were Larry and I doing programming in the executive suites. Ray

Kassar, the Atari president, was a very stuffy, straight-laced guy. And he really

resented our being up there. I mean, it really bothered him. So we got a new build-

ing real quick.

I’m curious about another game you did during your Atari days, Gossip. Was

that game ever released?

Yes, it was released, but it was released just as Atari was going down in flames,

so nobody had any opportunity to see it. Gossip was an immensely important game

in that I tackled interpersonal relationships. I had realized very early that computer

games had an emotional sterility about them, and I spent a long time thinking about

that. I finally decided that the crucial factor was the absence of characters, of peo-

ple. And I remember writing an essay, way back then, entitled “People not Things,”

arguing that computer games were very thing oriented, and that we had to focus our

energies on people. So I attempted to design something around people and interper-

sonal interaction. And Gossip is what I came up with. A very simple design, but

way ahead of its time in terms of its goals.

So what was the gameplay like?

It was solely about what I call circumferential relationships affecting radial rela-

tionships. Basically the idea was that you had a group of eight people, and your goal

was to be popular. This was just before the high school prom, and you wanted to be

elected king or queen of the prom, and so you were doing your politics. And the

way you did this was by calling people up. It had a really cute interface. There were

eight people sitting in two rows of four; they looked like panelists on a game show.

268 Chapter 14: Interview: Chris Crawford

TE
AM
FL
Y

Team-Fly®

You were the one in the upper left corner. And you would use the joystick to select

one of the other seven players, and then you pushed the button and the telephone

would ring at that person’s station. He’d pick up the phone. Then you would use the

joystick to point at another person. And then, once you’d selected that other person,

you’d push the joystick up or down to show a facial expression ranging from a big

smile and nodding your head up and down all the way to a big frown and shaking

your head from side to side. These were expressions of how much you liked or dis-

liked this person. So you’d point to someone and say, “I like them this much,” and

then your interlocutor would say, “Well, I like them this much.” Then your interloc-

utor would tell you things about what other people were saying. “This person likes

him this much, and that person likes him that much.” And the idea was, you would

try to read the social clustering and decide which clique are you going to join so as

to ingratiate yourself to everyone else. To some extent this involved a certain

amount of deception. You’d tell everyone, “Oh, I like you very much” and you’d

say, “Oh, if you hate him, then I hate him too.” But you could get caught at it, and

that would really hurt; you did have to be quite careful in all of this. It was a very

interesting little game.

What was the mind-set like at Atari during the video game crash?

There was a sense of catastrophe. It turns out that it was solely a matter of

momentum. That is, all that really happened was that Atari went bust. Atari did a lot

of things really wrong, and those are what led to its going bust. It’s just that in going

bust, it discredited an entire industry, and so many companies that hadn’t done any-

thing wrong and were perfectly healthy, they went bust too. It was just a matter of

an industry collapsing because its lead company was greatly discredited. It was kind

of silly in many ways. Everyone just convinced themselves that bust was upon us

and everyone decided, “Oh, we’re all going to die, so let’s just die.” The underlying

forces had not changed by much.

So things were able to pick up. Unfortunately, the recovery surprised everybody

by its shape. The initial collapse discredited video games, but not really computer

games as much. Unfortunately, at the time, most computer games were just copies

of video games. Hence, many computer game companies that were deriving all of

their sales from video games collapsed. It was really bad for a while there. I

couldn’t get a job, I couldn’t get anything. There were two new things for me:

Balance of Power and the Macintosh. I had some serious discussions with the peo-

ple at Amiga, as to whether I wanted to do software evangelism for them. And

really this boiled down to a choice between platforms. Which platform am I going

to run with, the Mac or the Amiga? I gave that a lot of thought, because I realized

you hitch your star to a platform. I chose the Macintosh, which turned out to be the

right decision.

Chapter 14: Interview: Chris Crawford 269

I went to work on

Balance of Power.

My big hope then

was that we could

maybe rebuild the

industry along more

rational lines. And,

you know, there was

a real chance there.

That was the crucial

moment of truth for

the computer games

industry, the period

from ’85 through ’87.

And it took the wrong turn. Actually, 1990 was when the fate of the industry was

sealed. And if anything sealed it, it was Chris Roberts’ Wing Commander. But we

had a real opening there for a while; it looked like we might pull it off.

How do you think Wing Commander sealed the fate of the industry?

The big question for the industry in 1985 was what, if anything, will sell?

Nobody seemed to know for sure, but there were a few strands. The fact that Bal-

ance of Power was a huge hit suggested to people that perhaps serious games might

have a future, or at least games that weren’t video games. And there was a lot of

excitement about exploring some of those ideas. The other games that were a big

success back then were the whole series of Infocom games, which continued to do

well right through the crash.

Because they were clearly different from video games.

Yes. And you put those two together, and it pointed strongly in one direction. So

there was a lot of effort in that direction. The industry was still torn because it was

so much easier to design the video games, and they did seem to sell to a group of

people who weren’t affected by the crash. We really teetered on that fence. Which

way are we going to go? Video games, or a broad range of game possibilities? What

sealed it was Wing Commander, for two reasons. The main thing that Wing Com-

mander did that doomed the industry was that it bought market share. That is, Wing

Commander was a hugely expensive program to write. It’s funny, Chris Roberts has

denied that it cost much, but that’s because of some creative internal accounting.

Back in those days, around 1990, a typical budget for a game would be $100,000 to

$200,000. There were some done cheaper, but $300,000 was a very expensive

game. Wing Commander probably cost about $1,000,000. By the standards of the

270 Chapter 14: Interview: Chris Crawford

Balance of Power

day that was considered absurd. And in fact, I’ve been told by an Origin insider that

Wing Commander by itself never paid back its investment, but that the follow-ups

and add-ons did. But what they were really doing was spending so much money that

it would only work if it became the top hit. It did. The problem then was, they’ve

raised the bar for the whole industry, we all have to produce $1,000,000 games, and

unfortunately they can only work if each one is the number one game. And you can

only have one number one game. So that, in turn, forced the industry to become

much more conservative. We’ve got these huge expenses, we simply can’t make

money turning out a number twenty game. Anything less than being in the top ten

will lose money. So very quickly it became a hit-driven business. That was already

starting in the late ’80s, but Wing Commander sealed it. So once it became a

hit-driven industry, the whole marketing strategy, economics, and everything

changed, in my opinion, much for the worse. The other thing was that Wing Com-

mander also seemed to reestablish or reconfirm the role of the action game as the

wave of the future. And basically that’s where the industry solidified, and the

cement has now set.

It was right before the crash that you wrote The Art of Computer Game Design,

wasn’t it?

Yes, actually I started that as soon as I joined Atari Research. It’s funny, one of

my goals at Atari Research was, “Let’s really sharpen up the whole field of game

design.” So I, in essence, tried to create a computer game developer’s conference

within Atari. I tried to set up a Friday afternoon seminar. And some politics got in

the way. I sent out invitations to all the designers throughout Atari, and some

pig-headed guy who was running the software group at coin-op was furious that I

didn’t route it through him. I didn’t follow the hierarchy properly, and he therefore

sent out a memo forbidding any of his employees to go. That’s one of the reasons

why Atari collapsed; there was a lot of pig-headed ego crap going on. So the semi-

nars never really came off. I therefore decided, “OK, I’ll write these ideas down.” I

started working on the book. I finished it in 1982, but Ray Kassar, the CEO, was

also pig-headed and insisted that he personally approve the manuscript before we

sent it out to a publisher. So I sent it to him, and he sat on it for a year.

Do you still look back on the book positively?

I certainly have come a long ways. Had I known that fifteen years later people

would still be reading it and deriving some benefit from it, I would have been flab-

bergasted, and I simply would not have believed it. I still get e-mails referring to it.

There’s no question it’s still providing people with some benefit. And that says

some very bad things about the whole games industry and the games community,

how little thinking there is going on. It’s shameful.

Chapter 14: Interview: Chris Crawford 271

There’s really no other book like it at all.

Yes, all the other attempts just turn out to be programming books. It is shameful

that no one has gone beyond that book.

Ever since you published that book, you have been very concerned with sharing

your thoughts about game design with the community. I’m curious why that is.

There are two very separate reasons. First, sharpening my own thinking through

writing, which I do a great deal of. And second, communicating ideas to others.

There is some overlap. Most of the time I write for myself. I have reams and reams

of little design essays on particular designs, where I muse with myself on design

issues. However, I will sometimes write an essay solely for public consumption, put

it up on the web or something, and that is done with a very different purpose. But I

often write with both purposes.

So did your writings about game design lead to your establishing the Computer

Game Developer’s Conference?

I had started off by founding the Journal of Computer Game Design. That

turned out to be quite a success; it rose up to one hundred to one hundred fifty sub-

scribers rather quickly. And by the time it reached that level, I realized that it really

would be possible to have a conference, there were enough people out there. So I

decided to have a little miniature conference at my home. I just put a little notice in

the Journal, saying, “I’m going to put together a conference, it’s going to be at this

date. And anybody who wants to come, contact me.” We ended up having

twenty-six people show up to this conference, one day long, and we all sat in the big

room upstairs and talked about game design. It was a very exciting experience!

Everybody agreed, this is great, this is wonderful, we’ve got to do this again. They

all turned to me and said, “Chris, do it again.” I said OK. I thought about it for a

while and then I decided it would be really good if I broadened participation in this

by recruiting some other people to help me. I decided the only way they were going

to be really involved was if they had a sense of ownership. If I brought them in as

assistants to me, it would never really work. So I decided to create a corporation

with a board of directors, and I invited five other people to be on the board. And to

give them a sense of ownership, even though I owned the whole thing free and clear

and had gotten it rolling with my own money, I basically just gave away ownership.

Everybody had an equal share in the conference. We set up the conference, and it

was a huge success, and it just grew and grew every year.

Did you foresee it growing to be the mammoth event it is now?

No, and to some extent that reflects a violation of my initial intentions. We had

some clear disputes within the board: is this a show, like E3, or is this an academic

conference, like AAAI? My feeling was that the core of this is the exchange of

272 Chapter 14: Interview: Chris Crawford

ideas among developers. We can have a show, but it’s got to be a side show. It’s

always tucked away in a corner. This conference is designed around people sharing

ideas, and that’s why I came up with the idea of the round tables. Unfortunately, it is

now a show, and the conference is now a secondary activity.

So after Atari you became an independent game developer. Why did you do that

instead of opting to return to a big company?

Well, at first it was forced on me. But then, once I got going, I was working on

Balance of Power and it was an independent project. It was more inertia than any-

thing else.

Do you prefer being independent?

Yes, I am very much a solitary worker. I am very concerned with my efficiency

and how much I get done. When you’re working with other people, you spend a lot

of time just holding their hand, explaining things to them, helping them out, rather

than actually getting anything done. I felt I had a lot of ideas, and if I really wanted

to explore them I had to explore them alone.

So what originally started you working on Balance of Power?

It was a sort of a

culmination. My

interest in wargames

arose because I was

part of the Vietnam

generation. While a

lot of people wanted

to resist the war, I

wanted to understand

war so that I could

ultimately do some-

thing about it. I felt

that protesting in the

streets was very ad

hoc, a very temporary

solution, and not very

effective either. I was asking questions like, how do wars get started? All through

the early ’70s and early ’80s, I was very much a student of warfare, learning every-

thing I could about military history. Finally, by 1984, I felt I had figured that out

well enough that I could design a game around some of those concepts. I would say

that the emotional support for the game was the Bob Dylan song “Blowin’ in the

Wind.” You know, “How many times must the cannonballs fly before they’re

Chapter 14: Interview: Chris Crawford 273

Balance of Power II: The 1990 Edition

forever banned?” That was the thing that gave me the emotional inspiration to con-

tinue with the project even though there were many points where it looked

impossible. I was taking a completely different approach to design and exploring

new territory and there were many times when it looked hopeless. It took a lot of

emotional toil to get over those problems and carry on.

But you thought the concept was compelling enough to be worth it?

Yes. I really wanted to do an un-wargame. We have plenty of wargames.

And in Balance of Power when you get to the point of having a war you have lost.

Yes, that was very much the point of the game. I don’t know if you remember,

but if there was a war, the screen would go black, and it would say, “We do not

reward failure.” That was very much a surprise to many people.

At any time were you concerned that the game was too different?

I did not expect it to become a hit, but I felt it was important to do. This was

exactly the same thing that happened with Eastern Front. I did Eastern Front for

myself and then, lo and behold, everybody loved it. Well, that’s very nice. I did Bal-

ance of Power for myself and, gee, everybody loved it. But I also did other games

for myself that were dismal failures, commercially speaking.

How did you go about balancing realism with the gameplay in Balance of Power?

People talk about realism versus playability as if it’s a dilemma. I see it more as

a matter of sharpening things. An artist, painting a portrait, will deliberately accen-

tuate certain components of the face that he feels bring out the character of the

subject. They don’t see that as realism versus playability, they see that as art. In the

same way I felt that I needed to sharpen up, editorially and artistically, those ele-

ments that I thought clearly showed the issues at stake. So I certainly made the

world a much more dangerous place. I took out a lot of the boring complexities,

simplified it down, and sharpened it up to a game about pure, direct geopolitical

rivalry between the two superpowers. And that’s all it was, clearly showing that

conflict.

I’ve read that Trust & Betrayal: The Legacy of Siboot is your favorite of your

games. Why is that?

Every game I have done has been original, with the exception of the second

Balance of Power, which I did at the urgent request of my publisher. With that one

exception everything I have done has been a new design. But with Siboot I went

much further out than with any other game, that is, in terms of just how far I took

the design beyond the conventions of game design. Siboot was easily the most

advanced. I explored ideas with Siboot that people still have not even come close to.

274 Chapter 14: Interview: Chris Crawford

We were talking about Gossip as in some ways ahead of other games. Siboot went

way, way beyond Gossip. The other thing about Siboot was it wasn’t just one good

idea. There were at least three major ideas in Siboot, each one of them worthy of a

game all by itself.

And then there

were lots of other lit-

tle ideas. Here’s an

example of a little

idea. There’s now a

user interface con-

cept called “tool

tips.” If you put the

cursor over some-

thing and leave it

there for a few sec-

onds, it pops up some

descriptive text. I

anticipated that and

came up with some-

thing vaguely similar,

where you could click and hold on a button to see its functionality. That was four

years before tool tips were first noted as a user interface item in the PC world. That

wasn’t a major idea on my part, I considered it to be just a minor little thing, but at

the time, nobody had anything like that.

So what were the three major innovations?

First, the language, use of language as the primary interface element. You talk

to the other creatures. I see this as completely different than the text parser

approach, because I really don’t think that’s linguistic communication, that’s some-

thing very different. Second, it used an inverse parser. Actually, the core concept

behind the parser was patented by Texas Instruments in 1979. I didn’t know that at

the time. However, my implementation was different enough that we were never

concerned with any patent infringement issues. TI’s approach was more menu

driven. Mine, in the end, boiled down to being functionally similar to a menu, but

technically it’s called a palette. So I didn’t invent that concept, but I developed its

implementation and showed very clearly how to do that kind of thing. That was a

major innovation, and I’m sad to say that nobody seems to have run with that con-

cept. The third major game innovation was the use of non-transitive combat

relationships, which has been used in some games since then. That was basically

just an extension of the rock-scissors-paper idea. That basic concept of non-

transitive relationships has enormous potential for development; you can build

Chapter 14: Interview: Chris Crawford 275

Trust & Betrayal: The Legacy of Siboot

whole games out of extensions of that. And there’s no reason why non-transitivity

has to be applied to three components. You can have a ring that has twelve compo-

nents and then the implications of victory or defeat in the non-transitive ring can be

interpreted many, many ways. It’s a huge area of game design to explore. This

would be easy to implement. It’s just that nobody is thinking along lines that

unconventional.

Do you think the unconventionality of the project hurt Siboot’s popularity?

Well, yes and no. Actually, it was only sold on the Mac. There was never a PC

version done. I think we sold about four thousand copies on the Mac, which by the

standards of the day was disappointing but not horrible. The general rule back then

was that you’d sell five to ten times as many on the PC as you’d sell on the Mac. So

we’re talking twenty to forty thousand copies if there’d been a PC port. But the pub-

lisher opted against doing so.

So, as with Gossip, was your goal to put people in the games?

Yes. And I took that concept of “people not things” much, much further with

Siboot than with Gossip. Another innovation was the interstitial stories that pop up.

They weren’t irrelevant, they actually did tie into the overall game.

So you did Balance of Power II solely at the insistence of the publisher?

Yes. I had done

Siboot, and they had

published it, and it

was obvious that it

wasn’t going to make

money for them.

They were obviously

disappointed. They’d

been asking about a

sequel. They pressed

me hard this time,

and I felt I owed

them one. So I did

the Balance of Power

sequel.

276 Chapter 14: Interview: Chris Crawford

Balance of Power II: The 1990 Edition

So you didn’t have great hopes to better the original?

No, and in fact I felt that Balance of Power II was little more than a clean-up of

B.o.P. I. It’s funny, though. By the standards of the industry, it was a major new ver-

sion and deserved to be called “Second Edition.” But by my standards it was just

tidying up, adding some bells and whistles, but in terms of gameplay it didn’t do

much.

So where did the idea for Guns & Butter come from?

At about the same time, the three best game designers in the world, independ-

ently, all got the same idea. Each of us said, “I’m going to do a conquer the world

game, an Empire game.” (Those three were Sid Meier, Dan Bunten, and myself.) It

is interesting how each of us took a completely different route. We all know how

Sid took his, and it was an immense success. Sid, Dan, and I got together at one

point to discuss how the three of us approached our designs. Sid had a very clear

notion: he was going to make it fun. He didn’t give a damn about anything else, it

was going to be fun. He said, “I have absolutely no reservation about fiddling with

realism or anything, so long as I can make it more fun.”

My approach was to make it educational, and Dan’s approach was to make it

social. Dan came up with this wonderful little game, Global Conquest, where you

really interacted with the other people playing. I think that game was an undiscov-

ered jewel. It bombed even worse than Guns & Butter. He had endless trouble with

Electronic Arts, I don’t see why he stuck with them, because they kept wanting him

to put shoot-’em-up elements into his games, especially M.U.L.E. I consider

M.U.L.E. to be, probably, the greatest game design ever done. That is, in terms of

the platform he had

to work with, and the

design expertise of

those times, M.U.L.E.

was definitely the

greatest ever done.

And it is a brilliant

game, it is loads of

fun, and it has never

been ported onto a

modern machine.

That’s a tragedy. And

the reason why is that

Electronic Arts

insisted that the play-

ers be able to go

shoot each other up.

Chapter 14: Interview: Chris Crawford 277

Guns & Butter

Dan refused, just said flat out, “That will not happen.” And Global Conquest was

the same way. It was not so much about shooting as about teamwork.

My conquer-the-world game, Guns & Butter, was really more about macro-

economics. In fact, during development, it was called Macro-Economic Conquest. I

think it’s reasonably successful as a game to teach about how history really devel-

ops, but that’s all. It was certainly one of my poorest games, no question. It really

didn’t have that much creativity. There were some cute ideas, but where that game

had cute ideas, Siboot had thunderclaps of genius. For example, Guns & Butter had

this nifty little algorithm for generating continents. I also developed a wonderful

algorithm for giving names to states and provinces, and I’m very proud of that algo-

rithm; it’s very clever. But this is mere cleverness, not creative genius.

Guns & Butter has some interesting ideas about balancing complex systems. But

you think it did not work?

No, it didn’t work, largely because I completely blew the handling of trade and

alliances. That was a disaster. I think if I’d given that game another six months it

probably would have worked out just fine, but I rushed it.

Balance of the Planet seems to be an extremely educationally oriented game. Was

that your intent?

Oh, absolutely. I

had no intent whatso-

ever to make

something that was

fun. My feeling was,

“OK, there are all of

those shoot-’em-ups

and so forth, and I’m

not going to try to

compete with those

things. I’m going to

do a game that taps

into another area of

humanity. So I’m

going to do pure sim-

ulation, and I’m

going to make that simulation very realistic and very educational as well.” We knew

Earth Day 1990 was coming up, and we thought, “We’re going to release this thing

in time for Earth Day.” And I felt that would be one of my contributions. Again,

Vietnam generation, Earth Day, and all that jazz. Balance of Power was about the

Vietnam War, and Balance of the Planet was about Earth Day.

278 Chapter 14: Interview: Chris Crawford

Balance of the Planet

TE
AM
FL
Y

Team-Fly®

Will Wright’s SimEarth came out just shortly after Balance of the Planet. It’s

interesting to compare the two. Of course his is more of a toy, and yours is much

more goal oriented.

SimEarth was not one of Will’s better efforts. He’s done brilliant stuff, but I

think he didn’t have a clear purpose with SimEarth. It was kind of, “OK, here’s

this planet, and here are these geological processes, and here are these life

forms, and . . . ” There was no design focus to it. He seems to have said, “Let’s take

SimCity and do it to the whole Earth.” That kind of extrapolatory approach to design

never works well. And it didn’t work well for him. It was certainly more successful

than Balance of the Planet, because it was a lot better looking and had plenty of

cute features. But it was not as educational as Balance of the Planet.

SimEarth had a lot of interesting systems in it but it was difficult to understand

what was going on.

It was more that all of the different systems, they sort of didn’t add up to

anything. He had all of these simplifications, but they weren’t purposeful simplifi-

cations. They were simplifications to make the internal systems accessible, but they

didn’t really add up to anything. The model for the way living systems develop did-

n’t seem to make any sense to me, even though it was easy to see its results.

I’ve heard Balance of the Planet criticized for not being a lot of fun. Do you see

fun as the sine qua non of game design?

That’s exactly the problem. Many people do see fun as the sine qua non. That’s

one way that the game design industry has gone down the wrong path. Basically,

computer games and video games are now one, and in fact they’re all video games

in the sense of cute

shoot-’em-ups, lots of

graphics,

splendiferousness,

and emphasis on fun

in the childish sense.

I see no reason why

computer games

needed to constrain

themselves in this

fashion. It’s rather

like somebody say-

ing, “I went to go see

the movie Das Boot,

but it wasn’t any fun,

so it’s a crummy

Chapter 14: Interview: Chris Crawford 279

Balance of the Planet

movie.” Well, I’m sorry, but Das Boot was not meant to be fun. I think we could

agree that Saving Private Ryan is not a fun movie, but it is a damn good one. And

the same thing goes for Schindler’s List. And, sure, there are plenty of fun movies.

Star Wars was lots of fun. But Hollywood doesn’t constrain itself the way the games

industry does. I suppose that was the whole thrust of my efforts all through the ’80s

and into the early ’90s, to help the games industry become a broad-based entertain-

ment industry, rather than a kiddie, fun industry. I failed at that. It is now most

definitely not an entertainment industry, and never will be. They’ve painted them-

selves into a corner from which they can never extricate themselves. It’s rather like

comics. It’s a shame to see the medium of comics used brilliantly by people like

Spiegelman and McCloud, yet it is relegated to the comic book stores where the

kids chewing bubble gum come. Not enough adults take graphic novels seriously.

Some progress is evident, but it’s a slow, slow process. I’m not sure they’ll ever pull

themselves out of that dump.

So you think the games industry has reached that same point of stagnation?

Yes. Only they’re not even trying to get out; they haven’t even realized yet that

there’s a problem.

So I guess that’s what led to your leaving the games industry and starting work

on the Erasmatron.

Well, there were two factors in that. Yes, I had been steadily drifting away from

the games industry. The hallmark of that was the “Dragon Speech” I gave. That lec-

ture was . . . I’ll just tell you how it ended. In the lecture, I’d been talking about “the

dragon” as the metaphor for this artistic goal. And, right at the end of the speech, in

essence I stopped talking with the audience and had a conversation directly with the

dragon. I said, “And now that I have finally devoted myself heart and soul to the

task of pursuing the dragon, all of a sudden, there he is, I can see him brightly and

clearly.” I began talking to the dragon, and that was intense. I can’t remember it

exactly, but I said something like, “You’re mighty, you’re powerful, you’re beauti-

ful, but you’re oh so ugly. Yes, yes, you frighten me” and then I screamed, “You

hurt me! I’ve felt your claws ripping through my soul!” I wasn’t lecturing any more,

this was much more acting. I let out that line “you hurt me” with great passion, and

it frightened the audience. They weren’t used to that level of passion in the technical

lectures that they were familiar with. And then I said, “I’m not good enough to face

you, I’m not experienced enough, so I’m going to do it now. I’ve got to go face to

face with you, eyeball to eyeball, and I’m going to do it now, here.” I reached over

and I pulled out a sword and I kind of hunkered down and shouted in a battle cry,

“For truth, for beauty, for art, charge!” I went galloping down the center aisle of the

lecture hall, and I never came back.

280 Chapter 14: Interview: Chris Crawford

This was at the Computer Game Developer’s Conference?

Yes. A lot of people thought, “Well, Chris gave his swan song, he’ll never come

back.” But in fact I came back the next year, and I had every intention of continuing

to lend my expertise. “I’m going off in this other direction, but you guys need my

help, and I will still be there.” Unfortunately, a whole ugly incident with the confer-

ence board members put an end to that. What was so hurtful was not just the

behavior of the board members, but also the attitude of the community, which was,

“Hey, this is Silicon Valley, you just gotta fight to get yours. If they play hardball,

what’s the big deal?” My reaction was, “I just don’t want to be a part of this nasty

community.” It was so bitter an experience, that moving to Oregon was an impera-

tive. I had to get out of Silicon Valley. And it’s funny, every time I go down there

now, I can see the Silicon Valley greed all around me. It really bothers me.

So that drove you into working on the Erasmatron?

I had been evolving in that direction. But what made it a negative move was A,

the industry was editorially going in directions I did not like, and B, the industry

was going in moral and social directions that I did not like.

So how did the Erasmatron project come about?

I set out to do interactive storytelling. I said, “I’m going to go back, and I’m

going to do my King Arthur game now.” Because I had done a King Arthur game at

Atari that I was proud of, that had a lot of good ideas, but I felt it did not do justice

to the legends, so I felt that I owed something to those legends. I started all over to

do a completely new approach. That led me up to the storytelling engine. However,

everything was hand-coded and it was enormously difficult. We had gone the

rounds to all the big companies trying to interest them in it and nobody was

interested.

Just about that time, I ran into a lady named Edith Bjornson, who was with the

Markle Foundation. She suggested that I take the technology in a different direction,

as an enabling technology to permit non-technical people to create their own

story-worlds. I very much liked the idea. So Markle funded me, and the fundamen-

tal strategy of the project was expressed in the slogan “Unleash a tidal wave of

creativity.” Thus, I was building three pieces of software. The Erasmatron, which is

the editing software for the engine, the engine, which actually ran everything, and

finally the front end, which delivered it to the user. It was a huge project and I had

to do it in two years. Unfortunately the problem turned out to be much bigger than I

anticipated. What I got working after two years was nice, and indeed technically

adequate, but I don’t think it was commercially adequate.

Chapter 14: Interview: Chris Crawford 281

How do you mean?

It takes too much effort to create a sufficiently entertaining end result. Laura

Mixon worked on Shattertown Sky for nearly eighteen months. But Shattertown just

didn’t work. It was not entertaining, it was not even finished. There were places

where it would just stop. Yet she worked longer and harder on it than she was

expected to. There wasn’t any failure on her part. The failure on my part was under-

estimating the magnitude of the task. I thought that a year would be sufficient. Well,

first, she didn’t get fully operational software for at least six months. And second,

the tool she had was so weak that she spent a lot of time doing busy work. The con-

clusion was that the Erasmatron needed to be souped-up, and there were a few

embellishments to the engine that came out of that. But they were actually compara-

tively minor. Most of the work I have been doing since that, on the Erasmatron 2,

has been to make the whole process of creating a story-world easier.

So you haven’t concluded that making a story-world is just an inherently hard

task? You’ve found ways to make it easier?

Well, there’s no question in my mind that creating a story-world with

Erasmatron 2 is immensely easier than with Erasmatron 1. Erasmatron 2 dramati-

cally cleans up the process of creating a story-world, cutting the time required

roughly in half. You see, with Erasmatron 1, we were shooting in the dark. I had no

idea of what the process of creation would look like. I don’t feel bad that

Erasmatron 1 was a bad design, in fact it was much better than the original design

document. I’d made quite a few improvements, but they weren’t enough. I think

that, using Erasmatron 2, people can create excellent story-worlds with an adequate

commitment of time, which I consider to be at least six months and probably a year,

but I haven’t proved that. That is what’s stopping the whole project: I need proof.

Is that something you’re hoping to provide with the Le Morte D’Arthur project?

I don’t know. I’ve had some kind of writer’s block with that project and I don’t

understand why. I think one factor is a sense of demoralization. I’ve put nine years

into this project, and so far it’s been a failure. With the exception of the Markle

funding, nobody’s interested. There are always a few pots bubbling. Right now

there are three separate groups who have expressed interest in this. So it’s not as if I

ever reach a point where I can say “it’s dead.” There’s always something going on,

and there’s always the hope that it will go somewhere, but these things never go

anywhere. I’m definitely getting discouraged.

What would an ideal Erasmatron storytelling experience be like?

I’ll describe it in two ways, tactical and strategic. Tactical being what the audi-

ence experiences moment to moment, and strategic being the overall experience.

Tactically, the audience will see a static image on the screen representing whatever

282 Chapter 14: Interview: Chris Crawford

has just happened. It will show the face of the person who just did whatever hap-

pened, as well as anybody else who’s on the same stage. It will have some text

explaining what has happened. The other thing I want to use is something like a

comics technique. That is, comics show action between frames very well. So it

might require two frames. But I want to use the artistic styles that have developed in

the comics. In Scott McCloud’s book, Understanding Comics, he has that triangle

that represents the amount of abstraction.

With the smiley face in one corner and the photo-realistic face in the other.

Right. My guess is we would want to move on that triangle far away from the

photo-realism corner. We’d want to be somewhere much closer to abstraction and

representation. So I think we’re talking about a more abstract type of display. And

then there will be your menu of choices, expressed as complete sentences. This is

what the player is permitted to say or do. Strategically, the big difference is that all

story-worlds have a very meandering character to them. “Barroom Brawl” doesn’t,

because it’s a single scene. “Corporate Meeting” is a single scene and even it mean-

ders a bit. We have figured out how to cope with that problem. I had thought that

plot points would do enough, but Laura and I have now come up with a scheme. I

don’t want to describe this as a new discovery; rather this is a concept that has been

slowly brewing for several years now. We’re putting flesh on its bones and I think it

will work.

The idea is that there is something like a core plot that is beyond the control of

the player. However, the player does control lots of interactions that will not just

influence but ultimately determine the final outcome of the plot. For example, con-

sider a murder mystery, such as Shattertown. Basically at some point, time is going

to run out, and either the clans are going to go to war or Sky will unmask the mur-

derer or Sky will get caught by the murderer. That ending has been established, and

events will force that ending. The thing is, what ending you get depends critically

on all the things you have done up to that point. Same way with Le Morte D’Arthur.

The basic design says, very clearly, that the end game is going to have Mordred

revolt. No matter what happens, Mordred is going to revolt at some point. And

when he does, all the other actors are going to choose up sides. Some of them will

go with Mordred, and some will stay with you. There will be a big battle, and the

side with the bigger battalions wins. The decision to go with Mordred or stay with

you will be based on all the things you’ve done up to that point.

I’ve come up with another concept for Le Morte D’Arthur that I’m tempted to

go with, which would incorporate some of the elements of the current Le Morte

D’Arthur. In this one, you’re not playing as Arthur, you’re playing as Merlin, and

you’re a transplant from the future. Your task is to modernize Arthurian society and

thereby prevent the Dark Ages from happening. You’re trying to build up this soci-

ety and get it operating on a more efficient basis and teach them a little bit about

Chapter 14: Interview: Chris Crawford 283

sanitation and education and so forth. Along the way all the nobles are developing

their resentments against you, and they try various plots to discredit or kill you.

And, once again, Mordred revolts. The end result feels more purposeful, less

meandering.

So the player is led in a direction more than in the current version.

We’re not asking you to be creative or come up with new social innovations,

we’ll simply present you at various points with opportunities to initiate new innova-

tions, to say, “All right, do you think it’s time to teach these people sanitation, or do

you think it’s time to teach them how to use the stirrup?” And each one takes time.

And there’s still this steady plot that develops as you help this society pull itself up

by its bootstraps. But there’s still an awful lot of interaction going on. What we’re

developing here is a concept of “semi-plot” or “pseudo-plot” or a “skeletal plot”

that can proceed in the way that a plot is supposed to. You still have a plot, but it

doesn’t hijack the whole story and dominate it as it does in a conventional story.

So the player has more involvement than they would reading a book, but not total

freedom either.

Yes. The idea is that you want to use dramatic constraints, not artificial con-

straints. This is a drama. It’s got to evolve by certain rules. We’re going to apply

those rules here. It should not incur resentment on the player’s part that he can’t

pick his nose while talking to Arthur. That’s not dramatically reasonable. Some

argue that, if you don’t give the player full freedom to be creative, it just doesn’t

work. I disagree with that entirely. So long as you give him all dramatically reason-

able options, or even most of them, you’re doing fine.

So you’re quick not to call your Erasmatron system a game of any kind. Why is

that?

The differentiation is two-fold. The first reason is marketing. Right now, com-

puter games mean Quake, Command & Conquer, or something like that. The

associations with that term are all about shoot-’em-ups, resource management, and

those associations are very clearly defined in the public’s mind. If I call this a game,

they’re going to apply associations that are misleading. Moreover, the term “game,”

if you look it up in the dictionary, has more column inches than most words. I com-

pared it with words like “do” and “eat” and “have” and I found that it’s bigger.

Because that word is a semantic imperialist, it just goes everywhere. It can be used

for many many different meanings, all completely different. But then there’s sort of

a switcheroo that happens. You can apply the word “game” to a whole bunch of

products and activities, but then as soon as people associate it with a computer they

say “computer game!” and all the semantic meaning collapses down to this little

bitty point. Maybe I should call it a web game, get the whole thing on the web. Or if

284 Chapter 14: Interview: Chris Crawford

I do it on the Mac maybe I can call it an iGame. But I don’t dare call it a computer

game or a video game.

Why do you think facial expressions are so important for storytelling?

Because facial

expression is one of

the fundamental

forms of human com-

munication. It’s

funny, other people

think graphics where

I’m thinking commu-

nication. What goes

on between user and

computer is primarily

a matter of communi-

cation. I am deeply

desirous of

optimizing that com-

munication. That

means designing the

computer display to most closely match the receptive powers of the human mind.

And the two things that we are very good at are facial recognition and linguistic

comprehension. Accordingly, those are the two things that computers should

emphasize. Computer games have neither and that appalls me. Facial expression

and linguistic comprehension are the two most important areas of development for

the time being. Nowadays you can get excellent 3D facial models, although the

expressions on them are still crappy. This is largely because the people who design

them aren’t artists, they’re engineers, and they’ve come up with these anatomically

correct heads. Every cartoonist in the world knows that you never ever, draw a face

the way it really is. For this type of thing we’ve got to use cartoon faces and not

real faces.

When I was playing with the Erasmaganza, sometimes it would present me with

three different actions to choose from, and I wouldn’t want to do any of them. In

that way, it feels a bit like an old adventure game with a branching dialog tree. Do

you see that as a problem?

The real issue is not “Gee, you only get three things.” The real issue here is that

you’re not permitted to say dramatically reasonable things, and that’s a flaw in the

design of the story-world. Both of the demo story-worlds have that problem,

because they’re very tiny story-worlds. If you want to get away from that you must

Chapter 14: Interview: Chris Crawford 285

The Corporate Meeting story-world in the Erasmatron

have a much larger story-world. “Brawl” has about fifty or sixty verbs and “Meet-

ing” has about a hundred. I used to think that five hundred verbs was the threshold

for entertainment value. I now think it’s more like a thousand verbs. But “Meeting”

just doesn’t give you very many options because it’s so tiny.

As to whether the user will ever be satisfied with the finite number of options

he’s given, I don’t see a problem there at all. Certainly you’re not permitted nuance

in such an arrangement. But you should have all dramatically reasonable options.

Besides, if we gave you some system where you could apply nuance so that you

could say, “I’m going to say this with a slightly sarcastic tone of voice,” the infra-

structures for that would be ghastly. It would make the game very tedious. So I feel

that the only way to do this effectively is to confine it to a menu structure. In fact,

there are some games that have implemented nuance as their primary modality of

interaction. In these games you’re interacting with someone and you’ve got these

sliders: one is for forcefulness, one is for humor, and another is for charm. But that’s

all you get. You respond to someone with this much forcefulness, this much charm,

and that much humor. I’ve been tempted for quite some time to build something like

that into the Erasmatron. But the problem is, first, coming up with some generality,

and second, keeping the interface clean and usable. Right now, with the simple

menu you need merely look, see, and press. I think that’s important for a mass

medium. The sliders for tone are for game aficionados.

The system that Siboot uses to construct sentences with icons and the inverse

parser is an interesting one. Why did you opt not to use a system like that for the

Erasmatron?

Because the vast

number of sentences

in Siboot are self-

completing. In

Siboot, you could

click on just one

icon and often the

rest of the sentence

would fill itself in

because that’s the

only option avail-

able. The way to do

that nowadays, by

the way, is with

pop-up menus. I

could do this with

the Erasmatron. For

286 Chapter 14: Interview: Chris Crawford

Trust & Betrayal: The Legacy of Siboot

example, suppose you had a conventional menu item that said, “I’ll give you my

horse in return for that six-gun.” The words “horse” and “six-gun” could be in

pop-up menus providing other options for the trade. This would require some

expansion of the Erasmatron system, but nothing very serious. The only reason I

haven’t done it yet is my unwillingness to add complexity. I believe that the system

has all the complexity it needs and then some. It’s always easy to add complexity to

the design, but I’m thinking in terms of simplification.

Have you had a chance to play The Sims? It seems that a lot of people succeed in

using that game as a sort of tool for interactive storytelling.

The Sims is not an attempt to produce interactive storytelling. I had some e-mail

with Will Wright about The Sims, and he acknowledges that it isn’t an interactive

storytelling platform, but he pointed out that many people use it that way. The Sims

is exactly what it claims to be, a simulation, not a drama. No drama simulates the

real world. In Shakespeare’s play, in the middle of Henry V’s speech to the soldiers

at Agincourt, he doesn’t say, “Just a minute, guys, I have to take a pee.” However,

in The Sims, he does. Once, when I was playing The Sims, a little girl couldn’t get to

sleep because there were spooks coming and frightening her. The spooks are a very

nice touch, by the way. They kept her awake all night long, and she wandered all

around until she fell asleep, because a sim who stays up too long is overcome with

drowsiness. She happened to fall asleep on the floor of her parents’ bedroom. Morn-

ing came, mommy woke up, stretched, got up out of bed, and walked to the

bathroom, stepping over the inert body of her daughter! This is a good simulation of

the physical processes of daily living. It is an atrocious simulation of the emotional

processes of daily living.

Will built an excellent physical simulator. But it has no people content. It’s a

direct violation of my “people not things” argument in that it focuses on the things

aspect of life, on all the mechanical details. Going to the bathroom is a major mod-

ule in that program, whereas emotional processes simply aren’t there. I don’t want

to criticize a brilliant product: Will set out with a clear goal and he achieved it, and

that’s wonderful. But he didn’t set out to do what I’m doing and, lo and behold, he

didn’t achieve it. I refuse to criticize The Sims, because as a design it is magnificent.

It has a clear purpose and it achieves that purpose brilliantly. It’s just a different

product, and it’s not interactive storytelling.

So what makes you want to pursue interactive storytelling?

It’s a hell of a lot more relevant. Furthermore, I think it’s a hell of a lot more

interesting than game design. The design problems of computer games nowadays

bore me, because they’re not very involved problems. They tend to be very small

models, quite easy to calculate. I continue to be appalled at the low level of intelli-

gence in a lot of these games. The computer opponent is really stupid, and that’s

Chapter 14: Interview: Chris Crawford 287

about the only element that still interests me. I might like to do a game with some

really good AI, where the computer opponent can really outsmart you, and I don’t

mean that in the sense of chess, I mean that in something complicated like a

wargame. But wargames themselves are obvious. I feel that I have mastered that

form and so why should I continue to indulge in it? There are so many other, more

important tasks, such as interactive storytelling. This is a challenge! Something I

can really sink my teeth into. Unfortunately, it appears I have sunk my teeth into the

tail of a tiger.

Do you ever fear that you will always be dissatisfied with the Erasmatron?

I consider this to be my life’s work, this is the culmination of everything I’ve

been leading up to. I have no doubts that if I continue working on this I can con-

tinue to improve this technology. I have major doubts as to its commercial

feasibility right now. That is, I’m quite certain that twenty years from now people

will realize that interactive storytelling is a commercially wonderful thing and, golly

gee, we ought to do it. I believe we can make products that people will find far more

entertaining than computer games, because they’ll be about drama instead of

resource management. Unfortunately, I don’t think people quite see that yet. Cer-

tainly the games industry does not and will not. They will feel that The Sims

represents the correct step in that direction. They can continue to get more polygons

in the faces and have them dance better and so forth. But in terms of dramatic reso-

lution, they haven’t even begun.

Maybe it would be good if they go down that path, leaving the real problem

area free for me and the other people who are serious about interactive storytelling.

There are indications of a hankering for dramatic content. For example, Sony calls

the chip in the PlayStation2 “The Emotion Engine.” Well that’s bull, total bull. It’s a

graphics processor and has nothing to do with emotional modeling. But it shows

that they would sure like to have some honest emotional content. They’re just not

willing to make the product-level commitment. Then there’s the twin factors of the

Internet and Hollywood. Between them, there’s a strong desire to establish an iden-

tity untainted by computer games. So between the Internet and the Hollywood

people I think that we really ought to get interactive storytelling. There are lots of

indications in that direction. Six years ago, when I went hat in hand to almost all the

majors in Hollywood trying to get them interested, and I struck out, that was

because they had all just recovered from the experience of getting burned by having

their own games divisions. So nowadays they’re starting over with web-based

things that have a completely different outlook, and they might be interested.

288 Chapter 14: Interview: Chris Crawford

TE
AM
FL
Y

Team-Fly®

I wonder if you have an answer to the critics who say that telling a story interac-

tively is somehow at odds with the fundamental structure of storytelling.

Obviously, you don’t find this to be an issue.

Not at all, and in fact I’m surprised at the shallowness of that argument. The

easy refutation is the example of grandpa sitting down with his little granddaughter

to tell her a story: “Once upon a time, there was a girl who had a horse.” And the lit-

tle girl says, “Was it a white horse?” And grandpa does not say, “Shut up, kid, you

are ruining my carefully constructed plot!” He says, “Oh yes, it was very white,

white as snow.” He develops his story and the little girl interacts with him. He

embraces her participation and incorporates it into the story, which makes the story

that much better. This kind of storytelling has been around since the dawn of human

existence. We’ve long since proven that, yes, you can have the audience intervene in

the story without damaging it.

In your games work, you created both the content and the technology, whereas

with the Erasmatron you’re focusing on creating just the technology which will

allow other people to create the content. Why did you shift your efforts in that

direction?

There are lots of people who could provide artistic content, but I’m the only

person who can provide the tool. I therefore have a moral obligation to concentrate

on the talent that is unique to me. However, there are still some other things I want

to do. There’s so much going on, I have to very carefully allocate my time, and a lot

of good projects are sitting on the back burner.

So as a result you don’t get much chance to work on Le Morte D’Arthur.

Right, I have to just let it burble around in my subconscious for a while longer.

And it may never come out, I don’t know.

So what’s next for the Erasmatron technology?

Well, the basic technology is, I feel, ready to go commercially right now. We

still need to build a front end and so forth, but we are ready to begin the commer-

cialization process immediately. My next primary task is to commercialize this

technology. I’m not sure how to proceed on that point.

Would you ever be interested in working on a more traditional game again?

At this point I would be interested and willing to consult with people on various

game designs. That is, I wouldn’t mind going in and looking at a project and identi-

fying fundamental design problems in it, or assisting. But I don’t think I would want

to accept responsibility for creating a commercial product for the games industry at

this time. I’m happy to help somebody else do it. But that’s such a political and

Chapter 14: Interview: Chris Crawford 289

nasty process, and less and less time is spent on the creative aspects and more on the

political aspects that don’t interest me.

Chris Crawford Gameography

Tanktics, 1978

Legionnaire, 1979

Energy Czar, 1981

SCRAM, 1981

Tanktics (updated for Atari 800), 1981

Eastern Front (1941), 1981

Legionnaire (updated for Atari 800), 1982

Gossip, 1983

Excalibur, 1983

Balance of Power, 1985

Patton vs. Rommel, 1986

Trust & Betrayal: The Legacy of Siboot, 1987

Balance of Power II, 1988

The Global Dilemma: Guns & Butter, 1990

Balance of the Planet, 1990

Patton Strikes Back, 1991

290 Chapter 14: Interview: Chris Crawford

Chapter 15

Game Development
Documentation

“Omit needless words. Vigorous writing is concise. A sentence should

contain no unnecessary words, a paragraph no unnecessary sentences,

for the same reason that a drawing should have no unnecessary lines

and a machine no unnecessary parts. This requires not that the writer

make all his sentences short, or that he avoid all detail and treat his sub-

jects only in outline, but that every word should tell.”

— William Strunk in his book The Elements of Style

291

M
any a game designer will proclaim himself better than development docu-

ments, and will make them only to suit the managers who demand their

creation. Game design, these obstinate designers may insist, is something

one cannot write down on a piece of a paper. And these designers are partly correct;

writing quality development documentation is very difficult. Much of the develop-

ment documentation you may come across seems to have been written merely for

the sake of it, perhaps to placate a publisher who demands to see something on

paper. Nonetheless, documentation does have a legitimate place in the creation of

modern computer games, and it is the designer’s job to make sure those documents

are created and used effectively.

The necessity of game development documentation is a side effect of the

increasing size of game development teams. In the early days of game develop-

ment, when a development team consisted of one multi-talented individual,

documenting the functionality of the game was less important. If that one person

was able to establish and implement a vision for the project’s gameplay, it did not

especially matter if she wrote it down or not.

As development teams grew from one to five, from five to ten, from ten to

twenty, from twenty to thirty, and onward and upward, maintaining the project’s

focus became more and more of an issue. As members of the team became increas-

ingly specialized in certain areas, a reference document they could turn to in order

to see how a given system was supposed to function and how their work fit into the

project became necessary. And so, points of reference came to be used, such as the

design document, the art bible, the technical design document, and numerous other

reference works for guiding the creation of a game’s content. Development docu-

ments can be a key way of “holding the reins tightly” on a project, to make sure it

does not spin out of control because of the impractical ambitions of team members.

Writing down ideas and story components is a helpful way to quickly realize when

a game is being overdesigned and if there is no way the project will ever be done on

time.

Good documents have benefits not just for the production side of game devel-

opment, but also for improving the game design itself. Chris Crawford has written

more about game design than probably anyone else, as a visit to his web site

(www.erasmatazz.com) will reveal. Crawford uses documents to refine and sharpen

his own ideas and to track how a project evolves over the course of its develop-

ment. Personally, I use a steno pad to keep all of my thoughts for a given project. I

find that I can later go back and review these notes to see how I arrived at the

design I did, and to recall good ideas I had but that I have long since forgotten.

Of course, it is entirely possible to go too far in the other direction, to spend all

of your time working on the documentation and none of it actually developing the

game. And having a massive amount of repetitive documents is certainly not

292 Chapter 15: Game Development Documentation

beneficial, especially if the team feels as though they are adrift in a sea of docu-

mentation, with none of it actually practical to their work. It is also possible to

make games without any sort of documentation, but if one hopes to work at a

development house that makes commercially viable, professional computer games,

getting used to working with documentation is an absolute necessity.

Document Your Game

As a game designer, you will be primarily concerned with what is commonly called

the design document, which I will explore in Chapter 17. However, there are many

other pieces of documentation used in the creation of modern computer games.

Even though you may not work with all of these documents, it is important nonethe-

less to understand what each of them is supposed to contain and how the different

documents are interrelated. So before delving into the nature of design documents, a

survey of the different types of documents is appropriate. Different people at differ-

ent companies or in different situations will invariably call the documents listed

below by a variety of different names, so you should be aware that the naming con-

vention I employ here is not universal, but the types of documents used are quite

common throughout the game development industry.

Concept Document or Pitch Document or Proposal

These are usually the first formal documents created for a given game. Often they

are written in order to sell the idea of a game to a publisher (if the author works at a

developer that does not publish its own work) or to upper management (at a com-

pany which publishes internally developed projects). In short, this document is

shown to the green-light committee, the money, the suits, the decision makers, or

whatever one may call them, in order to convince them to spend a lot of money on

the idea, thereby funding its development. Concept documents are usually short in

length, customarily no longer than ten pages, and usually include plenty of concept

art. Concept documents are commonly written by committee, typically involving

the game’s producer, lead designer, lead programmer, whatever marketing people

may be on hand, and the lead artists who contribute a variety of sketches, concep-

tual pieces, and screen mock-ups. Concept documents discuss all aspects of the

game idea in question, including how it might be positioned in the marketplace,

budgets and development timelines, what technology will be used, what the art style

of the game will be, mini-bios of the team who hope to work on the game, and some

broad description of the gameplay. These documents are not much use in the game’s

actual development, though they can be a springboard for creation of other docu-

ments, such as the design document or the art bible. Since concept documents do

Chapter 15: Game Development Documentation 293

not apply very much to the game’s actual development, I will not go into further

detail about them.

Design Document

In other parts of the software development industry, the equivalent of the design

document is often called the functional specification. Indeed, some game developers

refer to the design document as the functional specification. I prefer “design docu-

ment” because it is the more widely used term and because it better represents the

contents of the document. The design document’s goal is to fully describe and detail

the gameplay of the game. For large team projects, the design document serves as a

vital reference work for how the different aspects of the game need to function,

with, ideally, team members referring to it throughout the game’s development. Pro-

ducers will often use the design document as a springboard from which to schedule

the project. A well-written and complete document can also be of vital importance

when a game is subsequently converted to another platform by a different develop-

ment team. The document can serve as an ideal reference tool for this new team to

understand how the game is supposed to function as they start porting it to a new

system.

Whereas a functional specification for, say, a spreadsheet application can be

extremely detailed and complete, a design document for a game is necessarily less

complete because of the more organic, dynamic, and iterative nature of game devel-

opment, as I discussed in Chapter 13, “Getting the Gameplay Working.” As a

designer working on a large team project, the design document will be the primary

specification with which you will need to be concerned. The guts of a design docu-

ment are the detailing of game mechanics: what the player is able to do in the

game-world, how they do it, and how that leads to a compelling gameplay experi-

ence. Design documents typically also include the main components of whatever

story the game may tell and a detailing of the different levels or worlds the player

will encounter in the game. Also included will be lists of the different characters,

items, and objects the player will interact with in the game-world. One can think of

the important aspects of the design document as not dissimilar from what a journal-

ist looks for in a news story: what the player does (which actions the player can

perform), where he does it (the game’s setting), when he does it (at what time and

in what order the player must perform different actions), why he does it (the

player’s motivations), and how he does it (what commands are used to control the

game).

The design document can also be defined by what it does not include. Most of

the content contained in the other documents listed in this chapter should not be

found in the design document, including the bulk of the information found in the

script, the technical design document, and the art bible. In particular, a design

294 Chapter 15: Game Development Documentation

document should not spend any time describing the game’s development from a

technical standpoint. Platform, system requirements, code structure, artificial intel-

ligence algorithms, and the like are all topics that should be covered in the technical

design document and therefore avoided in the design document. The design docu-

ment should describe how the game will function, not how that functionality will be

implemented.

Similarly, discussions about the marketing of the game, explorations of how it

will be positioned compared to other games in the marketplace, and sales projec-

tions are all inappropriate in the design document. In addition, schedules, budgets,

and other project management information should be left out. This information

should certainly be recorded in some documents, such as the pitch document or

project schedule, but it should be strictly excluded from the design document. I

would think that such an exclusion would be obvious to anyone undertaking a

design document, but I have seen many design documents that spent half their

pages considering how the game will be sold. The design document needs to

describe how the game functions so that someone working on the development

team can see exactly what she needs to create. Including materials which are more

about the business side of the game’s development will only get in the way of more

appropriate information.

The design document and its creation are discussed in more detail in Chapter

17, “The Design Document.”

Flowcharts

Flowcharts may often be included as part of the design document or as separate

documents. In my experience, flowcharts are not actually all that useful in the game

design process, though they may be handy for communicating to the other members

of the team or the publisher how the gameplay is supposed to progress. In game

development, flowcharts have two primary uses. The first is to track the player’s

navigation of out-of-game menu options, such as those the player uses to start a new

game or load a saved one. Flowcharts can also be used to chart the areas the player

progresses to and from in the game, particularly in level-based games. Flowcharts

can be either handmade or developed using various flowchart creation tools, such as

Visio. Primarily, I have found that flowcharts impress the publisher, while the devel-

opment team seldom refers to them.

Story Bible

For games that tell stories, some amount of that story must be included in the design

document. Certainly a summary of the game’s overall story is essential, and a thor-

ough description of the game-flow will need to include parts of the story, but the

design document cannot include it all. This is especially true if the game being

Chapter 15: Game Development Documentation 295

developed involves a complex story line with a variety of characters and locations,

or if the game takes place in a universe with a specific history. A story bible may be

the best place to document this information. Often the author of a game’s story will

have in her mind a vision for the universe and its inhabitants beyond the scope of

the game, such as where game characters come from and what their motivations are,

and how the game-world came to be in the state it is in when the player encounters

it. What the player experiences may be only the tip of the proverbial iceberg, with

the story’s author having in mind ten times more detail about the game-world than

is actually communicated to the player through the gameplay. Other aspects of the

universe may only be hinted at. By having a complete plan for the game’s back-

story, even if the player does not directly learn all of it, the story’s writer will have a

much better chance at keeping the game’s narrative consistent and plausible.

A story bible, then, is a good place to document a game’s potentially extensive

back-story. Separating this information from the design document proper avoids

burdening it with a lot of information that is less central to the game’s creation.

Weighing down a design document with a lot of back-story is an easy way to give it

perceived depth and completeness, but can hide the fact that the specification fails

to fully cover game mechanics and other more vital information. Nonetheless, the

back-story is still important, and hence the value of its documentation in the story

bible. Once a story bible has been created, when an artist wishes to learn more

about the character he is modeling, he can turn to the bible and find out about that

character’s childhood. He can make his art better by making it fit with the back-

story. When a voice actor wonders how she should play that same character, if she

has read the story bible she will be working from the same information base as the

artist. Properly used, a story bible can add to a game’s consistency.

Should there ever be a sequel or spin-off made from the game, the game’s story

bible becomes all the more useful when the development team for the derivative

project tries to understand what sort of new story line can be crafted. Since the

story bible included more content than was actually used in the original project, it

will provide the new team with plenty of unexplored areas of the game’s universe.

If the story bible is followed properly, the new game will fit in perfect continuity

with the original. As that team creates the new game, the bible can be expanded and

updated, so that future projects will be just as consistent.

The format for a story bible is fairly open, and the bible’s author should make

the format best fit the information she is planning to include. Often the story bible

consists of a number of different historical narratives of varying lengths. One narra-

tive might describe the history of the game-world, detailing the major events that

have led the world to the state it is in when the player starts his game. Similarly, the

document could include narratives for the different major characters the player

encounters in the game. Topics discussed would include the character’s childhood,

how he rose to whatever position he has in the game, and what motivates the

296 Chapter 15: Game Development Documentation

character to act as he does. By having a sense of the character’s background, when

it comes time to write the game’s script, the game’s writer will be better equipped

to create compelling and believable dialog for the different characters. Of less

importance but perhaps still appropriate for the story bible are the histories of the

various major items or locations the player finds in the world. A powerful sword

might have a colorful history, which NPCs may hint at when they talk of the object

to the player. A particular shrine might have a colorful history all its own. However,

the author should always be careful to try to keep in mind how much information is

actually going to be useful to the game’s creation, and should not feel obligated to

fully explain the lineage of every last character and object in the game. Include only

the information which you think will be important to the game’s creation.

The writing style of the story bible should be in more of a prose style than the

bullet-point style of the design document itself. A team member using a story bible

is more likely to want to sit down and read a few pages at once, and will appreciate

bible content that reads and flows nicely. Breaking the document down by charac-

ter, item, or major event is still useful to the reader, so using a good quantity of

appropriately titled headings is a good idea. You may also wish to include various

diagrams in the document to supplement the written content, such as timelines,

event flowcharts, or character-relationship trees. These charts can prove useful in

allowing the reader to understand a particularly complex game-world.

On the other hand, even with a complex game-world, you may not need a story

bible at all. If the author of the game’s script is able to keep track of characters and

their motivations in his head, and if the likelihood of a sequel worked on by another

team is low, the creation of a complex story bible may not be a good use of any-

one’s time. It all depends on the working style of the team, particularly the lead

designer and scriptwriter, who may or may not be the same person. Certainly many

great authors have managed to write novels far more complex than your game is

likely to be without keeping more than a few scribbled notes to themselves, if that.

Many complex films have only had a script to go on for their stories, with the actors

responsible for interpreting their characters’ motivations based only on the lines

they are supposed to speak. It may be that the script’s author created a story bible

for her own personal use, and never saw fit to share it with anyone else. The story

bible is a tool which can help in the creation of the game’s story, but it may not be a

tool that every script writer or game designer feels the need to use.

Script

If a game has a story, it is quite likely that at some point the player will be asked to

listen to narration, hear characters talking, or read information about upcoming mis-

sions. This dialog and the accompanying descriptions of the situations during which

the dialog occurs (stage directions) should be contained within the game’s script. A

Chapter 15: Game Development Documentation 297

game’s script may be written by a variety of people: a designer, an artist, the game’s

producer, or someone whose only role on the project is to write the script, someone

who was specifically hired for his dialog writing skills.

The script may take on different forms depending on what type of game events

the dialog will accompany. For instance, if the game has film-style cut-scenes, the

script may closely resemble a movie script, with descriptions of the action the

player witnesses and rough indications of what the camera is looking at for any

given instant. Or the script for these cut-scenes may be more like that of a play,

focusing primarily on the dialog. For in-game conversations, the script will focus

primarily on the dialog, since the player is still in control of the game and thereby

in control of what direction the game’s camera is pointing. But a script for the

in-game dialog might include descriptions or “stage directions” for the accompany-

ing character animations, to assist the artist in creating the appropriate artwork to

accompany the dialog.

For instance, here is an excerpt of a script that could be used for a cut-scene in

an adventure game:

When the PLAYER approaches ROGET and BARTLET after resur-

recting the TREE OF PLENTY, ROGET will be visibly thrilled at the

player’s arrival. He immediately bursts into effusive praise for the

player’s accomplishments:

ROGET: That’s just the solution we have been praying for! You have

saved our great Tree, and nothing we can do could ever thank you enough.

Please accept this token of our appreciation . . .

ROGET tosses a BAG OF FLIMFLAMS at the player’s feet. BARTLET

steps forward:

BARTLET: [Apologetically.] We know it’s not much, but . . .

ROGET: [Interrupting.] It’s all we have!

BARTLET: [Cowering.] Please do not hate us for our poverty. . .

The non-linear nature of games demands that the script be organized and pre-

sented differently from a play, movie, or television script. If the player has

branching conversations with NPCs, as he might in an RPG or an adventure game,

the script will need to take on a special form conducive to the non-linear nature of

the interchange. Here a script might use a small amount of pseudocode, using

IF-THEN-ELSE or SWITCH-type syntax to communicate when the player would

hear different pieces of dialog.

Returning to our adventure game example, here is one possible layout for a

more non-linear conversation. This game uses the old “keyword” conversation sys-

tem, where the player types in a word and the character being talked to may or may

298 Chapter 15: Game Development Documentation

TE
AM
FL
Y

Team-Fly®

not have information about that subject:

IF the player asks about “FLIMFLAM”:

ROGET: A FlimFlam is a drop of dew, fallen from the morning sky,

carefully wrapped in a baby leaf from the Tree of Plenty. It has special

curative properties for Humanoids, when rubbed on the back of the

neck.

IF the player asks about “TREE” OR “PLENTY”:

ROGET: The Tree of Plenty has been my people’s source of life since

before any of us can remember. Without the shade it provides, my

people grow exhausted in the noon-day sun. Without its leaves we

have nothing to eat. Without its strength my people are weak.

DEFAULT, if the player asks about anything else:

ROGET: I do not know of what you speak, stranger. We are not the

most intelligent of peoples; we are not as wise as a great traveler, such

as yourself.

In-game dialog may be randomly varied between a number of expressions

which communicate the same information, but say it differently. Simple OR state-

ments between different lines of dialog can communicate to the reader of the script

that the game will randomly choose between several different lines of dialog.

Once again returning to our adventure game, here we have a sample of dialog

that the player might hear during actual gameplay:

When the player bumps into ROGET, he says:

“Oh, excuse me, begging your pardon.”

OR

“Oh dear, I seem to be blocking your way.”

OR

“My mother always said I was born to get in her way.”

There is no industry-standard syntax that dictates the form of an interactive

script. It is up to the designer, producer, and scriptwriter to come up with a form

that best documents the dialog they will need to use in their game.

The game’s script is also where one might find the text of what the character

reads in a mission briefing or in a book they might find. Any text that is contained

in the game, from signs and posters on the walls to the commands issued to the

player from an off-screen commander, is all contained in the game’s script.

As games try to incorporate more and more story, scripts documenting all of the

dialog they include have become necessary. The most important thing to remember

Chapter 15: Game Development Documentation 299

when working on the script for your game is that people are usually playing your

game not for the dialog, but for the gameplay. If they had wanted to watch a movie,

they would have done so. Instead they booted up your game. They may enjoy hear-

ing some clever dialog while they are playing, but they are usually not so interested

in listening to long, drawn-out cut-scenes that delve into endless back-story. If the

gameplay is any good at all, players are going to want to get back to it as quickly as

possible. If players find themselves more captivated by the dialog in your game

than in the gameplay, you need to wonder why you are bothering to make a game at

all.

Art Bible

The art bible is often composed primarily of concept sketches and other resources

that artists can refer to as they are working on creating various visual assets for the

game. Sometimes text accompanies these images, whether in the form of handwrit-

ten notes on concept sketches or text descriptions describing the parameters artists

should follow when coming up with new elements for the game. The art bible is

usually not compiled or written by the designer, but instead by the lead artist work-

ing with his team. Of course, the information contained in the art bible needs to

correspond and be consistent with the story and characters described in the game’s

other documents, including the design document, script, and story bible. Therefore,

when constructing the art bible, the artist will work closely with the designers, writ-

ers, and producers to make sure their work is going to fit with the overall vision for

the game.

The art bible is the place where the look and feel of the game is comprehen-

sively established in detail. Descriptions of the art style to be employed in the game

(art deco, animé, Warner Bros. cell animation, Lovecraftian, and so forth) will be

found in the bible accompanied by sketches which communicate the game’s style

better than words ever could. It is important to keep the descriptions of the

game-world’s art style in this document instead of in the design document, to allow

each document to stand on its own as a comprehensive reference tool. Of course,

designers on a project should read over and be familiar with the art bible, if for no

other reason than to make sure it is on track with the rest of the game. An art bible

may also contain technical guidelines that artists need to follow to create assets that

will work with the game’s engine, as detailed in the technical design document.

This may include polygon limitations to be followed or the duration and number of

frames involved in different animations.

Storyboards

Storyboards are an established film and television device for sketching or mocking-

up shots before they are actually filmed. Storyboards may be included as part of the

300 Chapter 15: Game Development Documentation

art bible or can stand alone as their own separate document. Storyboards are most

handy for mapping out non-interactive cut-scenes, which are quite cinematic in

nature and are thereby well suited to storyboarding. This allows members of the

development team to provide feedback and corrections on those cut-scenes before

someone goes to the trouble of filming or rendering them. Storyboards can also be

used as concept sketches or mock-ups for how the game-world will appear to the

player if the game’s engine is not yet ready to be used. Such storyboards can be use-

ful both for making the entire team understand at an early stage where the game is

heading, as well as convincing financiers to fund the project’s development.

Technical Design Document

A technical design document is the sister specification to the design document.

Whereas the design document focuses on how the game will function, the technical

design document discusses how that functionality will be implemented. Sometimes

called the technical specification, the technical design document is customarily writ-

ten by the lead programmer on a project, and is used as a point of reference by the

programming team. Here is where the code’s structure is laid out and analyzed. The

technical design document is where programmers on the project can turn to figure

out how they should implement a specific system. The document may include the

overall code structure, what major classes will be used, descriptions of the rendering

architecture, details of how the AI will function, and any amount of other imple-

mentation-side information. Pseudocode is appropriate, though not required, in the

technical design document. Though the technical design document may be a good

idea, many projects manage to have perfectly successful development cycles with-

out a technical design document ever being created. Indeed, none of the projects I

have worked on has had one, nor do I know anyone who has actually worked on a

project which did.

As I have mentioned, the technical design document is used primarily by the

programming team. Nonetheless, a designer with any sort of programming experi-

ence would do well to look over the technical design document for her project,

since it may contain general descriptions of how AI and other algorithms will func-

tion, along with other information critical to the gameplay. Just as looking through

the art bible is important for a designer to do, reading through the technical design

document, even if she cannot understand all of it, will give the designer a chance to

make sure the programming team is on the right track.

Schedules and Business/Marketing Documents

I include these in my list of game development documents in order to emphasize

that schedules, budgets, and marketing projection information does not belong in

the design document. On many occasions, I’ve read design documents which had

Chapter 15: Game Development Documentation 301

whole sections about how the game might be sold. Indeed, some so-called design

documents are little more than dressed-up marketing plans. Such business-oriented

information is inappropriate in the design document, nor does it belong in any of the

other documents I have discussed here, except for the concept document. The

design document is about the game’s functional design, not how it will be adver-

tised or sold at retail. It is best to separate out such marketing plans and business

data into distinct documents, where it can best be reviewed by the people concerned

with such information.

When working on a project with a large budget and which hopes to at least

recoup its capital investment, it is important to have well-thought-out marketing

projections, budgets, schedules, and any number of other documents that will assist

press relations people, sales representatives, and advertising artists when they are

working on your project. The lead designer on a project should offer her services to

help in the creation and maintenance of these documents in whatever way she can,

though the writing of these documents usually falls on people more attuned to sell-

ing and managing rather than creating. Often it is the responsibility of the game’s

producer to develop and maintain these documents. Still, it is the designer’s moral

responsibility to make sure that the people funding the project know what sort of a

game they are getting. This makes them less likely to become upset down the road

when the game is done and it fails to match the advertisements and box art they

have already spent large amounts of money creating. And when the suits are happy

with your game, they are far less likely to demand changes or, even worse, cancel

it. If the business people are really happy with the finished product, they are much

more likely to be enthusiastic about promoting and selling the game, which can

only mean more people will end up playing it.

No Standard Documentation

Different companies may have different standards for what documentation they cre-

ate in order to assist and guide a game’s development. Though they may have

different names for the documents than those I have used above, I think the catego-

ries I have delineated cover the vast majority of documents that companies will

create. Some teams may split the design document into two separate documents,

one containing only gameplay information and the other containing only story and

level progression descriptions. Some development teams may create only a design

document, having no need for a story bible. Some programming teams may find that

they do not need a technical design document. Some art directors may make it

through a game’s development without a formal art bible. Some teams working on

multimillion-dollar projects may even get through a project without any documenta-

tion at all, though this is increasingly unheard of as publishers demand

documentation so that they have some idea of exactly what game they are financing.

302 Chapter 15: Game Development Documentation

Furthermore, publishers like to have some tangible proof that the development team

has a good idea of what they are doing. Usually, how much documentation a pub-

lisher requires is inversely proportional to how trusted and experienced you and

your team are as developers. The newer and more unproven your team, the more

assurances the people funding your project will want to make sure you are not

throwing their money away.

The Benefits of Documentation

Beyond making the suits happy, good documentation really can help make your

game better, regardless of whether you are developing it alone in your basement or

with a team of thirty other developers. As a game designer, you should be involved

and interested in the creation of all of the documentation described above. As a lead

or senior designer, the creation and maintenance of the design document, story

bible, and script are all your responsibility. Each of these documents may be written

by an individual or worked on collectively by a number of people. For example, you

may not actually write the script yourself if there is a writer available more qualified

to compose compelling dialog. Yet as the lead designer, you must still be concerned

that the story, script, and gameplay all fit together appropriately. Making sure that

all of the various documents are consistent with one another and are in line with the

vision and focus of the project is something the designer needs to take very

seriously.

Chapter 15: Game Development Documentation 303

Chapter 16

Game Analysis:
Myth: The Fallen Lords

Designed by Jason Jones
Released in 1997

D
esigner/programmer Jason Jones’ games have always exploited technology

in ways no one else has quite managed. His first title, Minotaur, was a net-

work-only game before such things were fashionable (1992). It created a

uniquely stimulating game by using networked human opponents who could not see

304

each other’s screens. Pathways into Darkness took simple 3D technology and

applied it to an action/adventure hybrid to create an immersive, story-driven world.

Marathon and Marathon 2 improved that 3D technology and applied it to an action

game setting, but with a more thought-provoking game-world than was found in

other first-person shooters of its day. Most recently, Myth went off in entirely new

gameplay directions, immersing players in epic battles of strategic combat as no

other game had. What is most important to note, however, is that in none of these

games does the technology come to dominate the gameplay, as is so often the case

when a game uses cutting-edge technology. Instead, in Jones’ games, technology

and game design work together to accentuate each other’s strengths and create

uniquely compelling experiences.

Use of Technology

Myth is a good example of taking an established genre and then adding new ele-

ments to it in order to transmogrify it into something new and unique. The original

genre in question here is real-time strategy games such as WarCraft and Command

& Conquer, titles which had risen to tremendous popularity a year or so before

development on Myth began. The games were popular and seemed simple enough to

develop from a technological standpoint that suddenly every publisher had to have

one. A sea of clone games soon flooded the market. Most of these games attempted

to function nearly identically to WarCraft and Command & Conquer, with minor

Chapter 16: Game Analysis: Myth: The Fallen Lords 305

All the way back
to his second
game, Pathways
into Darkness,
Jason Jones’
games have
exploited
technology to
create new
gameplay
experiences.

improvements such as way-point systems for unit movement and production queu-

ing. These changes were far from revolutionary, however, and as a result, these

games failed to offer any compelling reason for the public to purchase them. Conse-

quently, they disappeared without a trace.

In a way, Myth was a part of the real-time strategy bandwagon, but Jones was

too smart to just clone the success of RTS games. Instead, it would appear, he

examined the games differently and questioned how they could be altered and

improved on a more fundamental level. What if, instead of the 2D graphics technol-

ogy that all of the games to date had used, a game used a truly 3D engine? With the

sole exception of his first game, Minotaur, Jones’ games to date had all been 3D, so

it made sense for him to continue to use that technology for his new project. The

3D component would not be added merely for visual flair, however. As with id

Software’s Wolfenstein 3D, which years earlier had taken a relatively simple action

game and, by incorporating 3D technology, dramatically changed the nature of the

game design itself, Myth took strategy gameplay and molded it to suit the new tech-

nology. The result was an entirely new game design, not merely another clone.

However, it appears that the 3D technology used was not completely dictating

the game’s design direction. The 3D engine developed is one uniquely suited to

modeling outdoor environments, and hence supporting RTS gameplay. Instead of

taking the technology from his previous game, Marathon 2, and trying to make that

work with a real-time strategy game, Jones wisely started over with a whole new

engine. Marathon 2 had used a Doom-style BSP engine, a technology suited for

simple indoor, non-organic environments, but not so conducive to the needs of RTS

games, which require wide-open, outdoor environments to play well. So a new ter-

rain engine was created that was uniquely suited to the gameplay requirements of a

3D RTS project.

With the 3D technology in place, certain game design changes could be made

to the fundamental RTS form as established by WarCraft and Command & Con-

quer. In Myth the elevation of terrain the combat took place on would have a dra-

matic effect on how well the player’s units fared. Place the archers at the top of a

hill for maximum effectiveness. Place them in a gully and watch them get slaugh-

tered. Myth also uses a simple but effective physics system which serves to

emphasize the 3D nature of the landscape. When the player sends a dwarf scurrying

up a hill to throw one of his Molotov cocktails at an enemy atop that hill, he should

be prepared for the bottle to possibly roll back down the hill before detonating.

Should the projectile hit its intended target, the player can marvel as the ground at

the explosion point ripples in a visually interesting way, altering the landscape for

the rest of the game. Of course, if the target is killed, the player can expect the body

parts of that destroyed enemy to roll back down the hill toward the dwarf.

306 Chapter 16: Game Analysis: Myth: The Fallen Lords

Another significant improvement that results from the 3D engine is the ability

of the player to see the battlefield at a level of detail not possible in a top-down or

isometric 2D game. The player can rotate the camera in order to see past objects

that might obstruct her view, or merely to find the perfect angle for a given battle.

Furthermore, the player can easily zoom in and out on the action. The zooming in

has little gameplay benefit, and is almost exclusively useful for the visceral thrill of

seeing a battle close-up, immersing the player in the action in a way 2D RTS titles

simply cannot. The angle of view is significantly different as well, being at a much

lower angle relative to the battlefield than any strategy game that proceeded it. The

camera’s position was no doubt chosen partly for aesthetic reasons and partly for

gameplay considerations. Regardless of the motivations, the result of Myth’s

close-up view of the battle is a decidedly more intimate experience for the player,

where the individual units become more important and more real than they ever do

in an RTS game with a more removed perspective. Thus, the intimacy of a first-

person shooter such as Marathon is married to the tactical gameplay of a strategy

game, resulting in an entirely new type of gameplay experience.

The 3D engine employed by Myth is not all that sophisticated, especially by the

standards of just three years later. The characters on the landscape, for instance, are

simple sprites instead of being fully 3D polygonal beasts. This was no doubt impor-

tant so that a great number of units could be on the screen at once. What fun would

an RTS game be if one could only have three units on the screen at any one time?

Even today, rendering a large number of fully 3D, humanoid creatures on the screen

at once would bring most PCs to a crawl.

Chapter 16: Game Analysis: Myth: The Fallen Lords 307

Using its 3D
terrain engine,
Myth added new
gameplay
elements to the
real-time
strategy genre.

In Myth, every bit of technology is used to its greatest gameplay effect, as is

typical of projects run by designer/programmers such as Jones. This hybrid devel-

oper understands what the technology can do perfectly while also understanding

what would be compelling in terms of gameplay, making for very economical game

development. Thus, when the technology does something that can enhance the

gameplay, the designer/programmer instantly notices it and is able to exploit it to its

maximum effect. This differs greatly from so many projects where programmers

implement complicated functionality that is never used because the designers never

fully understand it.

Of course, adapting gameplay from 2D to 3D is not without its drawbacks. For

instance, despite being able to zoom in and out in Myth, one is never able to zoom

out from the action quite as much as one would like. This is in part because of the

precedent set by other RTS games, which, because of their 2D engines, can have a

much more distant viewpoint, a viewpoint that lends itself to tracking and moving

large numbers of units. A patch was released for Myth shortly after its publication

which allowed players to zoom the camera out farther, but with the side effect of

decreasing their frame rate, since more landscape and hence more polygons are

now in view. Of course, the engine could probably support viewing the landscape

from still farther away, but the amount of polygons on the screen would quickly

become prohibitive, decreasing the game’s overall speed unacceptably. Thus, the

limitations of a 3D engine come to limit the gameplay choices the designer can

make. Another gameplay drawback that results from the technology is the often

confusing camera. Though the camera is able to rotate to view whatever side of the

action is desired, this camera rotation can often become jarring and disorienting,

causing the player to lose track of where different locations and units are on the

map. For a novice, a casual gamer, or anyone without a good sense of direction, the

camera’s movement would probably be altogether unmanageable.

Game Focus

Myth is also a good example of a well-focused game design. As mentioned previ-

ously, Myth came out several years after the success of two other RTS titles,

Command & Conquer and WarCraft. In both of those games, the player builds

structures which exploit the terrain’s natural resources in order to create additional

units. The player is then able to direct these units against his opponent in a combi-

nation of ways. Thus, those trend-setting RTS games are a mixture of gameplay—

part resource management and building, part combat. Many of the subsequent RTS

titles, both the successes and the failures, copied this general model, dividing the

player’s efforts between unit creation, resource exploitation, and strategic unit

deployment.

308 Chapter 16: Game Analysis: Myth: The Fallen Lords

TE
AM
FL
Y

Team-Fly®

But Myth does not feature any resources to be mined or structures to be built.

Instead the player is focused entirely on the tactical side of the game, on the combat

experience. The player starts out on a level with a given quantity of units, and for

most of the levels in the game those are the only units she gets for that entire level.

In some levels, additional units are acquired later in the level, but those levels are

the exceptions rather than the norm. Myth does away with everything except for the

combat elements of RTS games, which gives its gameplay a unique focus.

This tactical emphasis has several ramifications on the overall game design.

First, by not needing to worry about developing a resource exploitation system,

Jones was able to focus on making the combat model as good as it could be. This

resulted in more sophisticated and detailed combat than was found in any other

RTS game at the time. In Myth, unit facing, formation, and placement matter more

than they had in other strategy titles. Because the developers did not have to worry

about how the player would use resources, more time could be spent on the physics

system and other technologies that would enhance the combat experience. For

example, this attention to detail meant that archers needed to worry about finding a

clear shot through the trees, how the weather would effect the trajectory of their

arrows, and how their vertical placement on the landscape would impact the dis-

tance they could shoot.

The lack of ability for the player to build additional units also affects the care

he will take in using the units with which he starts a level. In WarCraft one can

make a very substantial blunder early on in a level and still be able to win by wise

resource usage and unit creation. In Myth, such an error is often fatal, with the lev-

els becoming less and less forgiving as the game progresses. The player’s only

Chapter 16: Game Analysis: Myth: The Fallen Lords 309

Myth’s gameplay
is entirely
focused on
tactical combat,
leaving out the
resource
management
found in many
other RTS
games.

recourse when his plan of attack fails is to reload the level. This makes for a very

different kind of gameplay than is found in WarCraft. In Myth, the player must

think through his actions fully instead of just trying whatever first pops into his

head. The units the player has are much more precious and, as a result, the player

starts caring for their welfare. Since more can be made easily, the units in WarCraft

may seem like just so much cannon fodder. Conversely, in Myth a particular unit

may be crucial to finishing a level, and there is no way to bring him back once he is

killed.

Storytelling

Despite its exemplary game design, a large component of Myth is its storytelling,

which is conducted using a number of well-integrated devices. First are the

cut-scenes which appear sporadically throughout the game, outlining major plot

points and setting up certain levels. These are often used more as “teasers” than to

really advance the story significantly. Second are the mission briefings which pre-

cede each level. These contain a large amount of detail about the progression of the

war between the Light and the Dark (the game’s two opposing forces). They also

give meaning to the level the player is about to play, making the mission objective

more than just some arbitrary task picked by the level designer.

Third, and most interesting, are the in-game storytelling devices that are used.

Of course, the levels are set in locations that match the needs of the story line,

whether it be a frostbitten, barren mountain area or a smoldering lava pit. The bat-

tles and missions contained in the level match up with the story as explained by the

mission briefings. But the player can also see and hear exchanges within the game

between different characters. For instance, a townsperson may advise the player of

the location of a traitor. Your troops may provide advice such as, “We’d better get

back to the bridge!” Though the player never loses control of his units, the game is

able to trigger these bits of dialog at different key points in the levels. In one mis-

sion, as the player’s troops approach an insurmountable mass of Myrmidons, the

Avatara the player has been guarding steps forward and proclaims, “Let me handle

this.” He begins a conversation with the Fetch leading the opposing forces and the

story line unfolds right there in the game-world during game-time.

In contrast to the majority of games which use storytelling as little more than an

add-on to an already existing group of levels, Myth makes the story line, levels, and

gameplay dependent on each other, strengthening each as a result. Players enjoy

games because they enjoy the gameplay, not because the games are accompanied

by long, non-interactive cut-scenes. Yet players do enjoy having stories in their

games, since they can give the gameplay meaning. The best way to communicate a

deep story is by making it integral to the gameplay and by revealing a little bit of it

here and a little bit of it there during actual game-time, something Myth does

310 Chapter 16: Game Analysis: Myth: The Fallen Lords

expertly. Of course, the fact that Myth’s story line is top-notch, the script is well

written, and the voice acting is professional certainly helps. Telling a story line

through gameplay will not do a game a bit of good if the plot is hackneyed, the dia-

log is contrived, or the voice acting is amateurish.

Hard-Core Gaming

Myth is a game design by hard-core gamers for hard-core gamers and makes no

apologies about it. Far from trying to capture the “mainstream” or “casual” gamer

market that so many companies have tried to court, Myth is a game that would

quickly frighten away anyone who is not already familiar with other RTS games and

who does not have the quick-clicking skills required by Myth. There is nothing

wrong with this, of course, and it is pleasing to see a game which has the artistic

conviction to know its audience and to stick to it. Indeed, since the game’s develop-

ers are among the ranks of the hard-core gamers, it only makes sense that they will

best know how to make a game that this audience will like. Often, when a group of

hard-core gamers try to make a game that the mythical casual gamer will enjoy, they

end up making a game they themselves do not like very much, and that the casual

gamer does not care much about either. It is very hard for an artist to make art that

appeals to sensibilities which are at odds with her own, the end result often being

works that are without appeal to any group or demographic.

But Myth did not have this problem; its developers created a game which no

casual gamer would ever be able to pick up. One reason for this is the incredibly

sophisticated and challenging set of controls. For instance, consider the control of

Chapter 16: Game Analysis: Myth: The Fallen Lords 311

Myth tells a
compelling story
through a
combination of
mission
briefings, level
design, and
gameplay.

the 3D rotating camera. As opposed to other RTS games at the time, where the

camera could only move horizontally along with the terrain, Myth’s camera can

move horizontally, zoom in or zoom out, rotate around a point, or orbit around a

point. Even experienced game players find it somewhat challenging to get used to

this system. However, once one masters the camera’s movements, one finds that

they are expertly designed and provide all of the freedom one could reasonably

expect given the technology the game uses. The game is also littered with special

keys for different actions, such as formations, special actions, and alternate attacks.

Again, these commands, once mastered, provide the player with a large degree of

control over how her units move and attack, but do take some time to learn. Indeed,

these keys make the game impossible to play with only the mouse, something

almost all other RTS games focus on. The “gesture-clicking” is another interesting

feature, used for pointing units in a certain direction when they reach a given loca-

tion. The system for gesture-clicking is quite powerful yet nearly impossible to

learn without being taught in person or by practicing a great deal. Nonetheless, for

the hard-core players who are willing to put in the time to learn the controls, the

end result is an extremely enjoyable game-playing experience.

Myth is also an inherently hard game. Even for players experienced at RTS

titles, the game will prove to be extraordinarily difficult from the get-go. Custom-

arily, games include a few simple levels toward the beginning of the game, in order

to give the player a fighting chance while they are still learning the controls. Myth

does not. Immediately, players are presented with barely accomplishable goals,

where one mistake may make the level virtually unwinnable. The loss of a particu-

lar unit will often cause the seasoned player to conclude that the level is now too

hard to beat, so why bother? They will just restart the level instead. The sad thing is

that, despite their great difficulty, the levels toward the beginning of the game are

the easy levels, with the levels becoming exponentially harder from there. How-

ever, this is the sort of challenge that truly hard-core game players thrive on. It is

not that the challenges are unfair, arbitrary, or unpredictable, at least not always. In

most cases, players can beat the levels on their first time through; it is just extraor-

dinarily difficult to do so.

Myth is the kind of game that many publishers would demand be simplified so

that non-hard-core gamers would not be frightened off by its complex controls or

sadistic level of difficulty. But if the game were simplified significantly, would it

still be as compelling as it is now? Probably not. For whatever small number of

casual gamers might be gained, large numbers of hard-core gamers would be lost.

312 Chapter 16: Game Analysis: Myth: The Fallen Lords

Multi-Player

As with the Marathon games before it, Bungie created Myth to excel both as a

single-player game and as a multi-player experience. What is most notable

about this is that Bungie manages to do both so well. Many games are criticized

for emphasizing one over the other. Quake and Quake II, for instance, were both

praised for their solid network play while being lambasted for their lackluster sin-

gle-player games. Many other games seem to add multi-player support as an

afterthought, hoping to get another bullet point on the back of the box. Centipede

3D is a good example of this, where multi-player was added late in the project as a

marketing consideration, and almost no design time was spent making it any fun.

Bungie’s well-publicized strategy for making a game that excels in both the sin-

gle- and multi-player arenas is worth noting. After they have established the core

engine technology for their game, getting the networking functional is the next step.

Once it works, the entire team starts playing network games, and keeps playing

them until they are fun. At this point no work has begun on the single-player game,

and the team is entirely focused on enhancing the network play experience. Only

after the networking game’s core design is completed does the team start work on

the single-player game. However, this is not to say that the single-player game is

rushed. This merely means that the entire team knows what “works” and makes the

game fun before any solo levels are even created, resulting in less reworking on

those levels and leading to more entertaining levels in the final product.

It is because the team has spent so much time playing the multi-player game

that the net games have the depth to hold up over time. If the team were creating a

shallow experience they would quickly grow tired of it. Myth’s multi-player allows

players many different game types with a variety of goals, all of which require dif-

ferent playing styles. The interesting pre-game unit trading system allows players to

think up their own “killer” team, much like a player of Magic: The Gathering

spends time developing the perfect deck of cards. Team play, where multiple people

control one set of allied units and go up against another team, opens up many possi-

bilities for strategies too complex for a single person to pull off. It is because of the

time Bungie’s development team spent playing the multi-player game that it has the

impressive staying power it does.

Chapter 16: Game Analysis: Myth: The Fallen Lords 313

Overall

Myth is also littered with little design touches that add a certain luster to the solid

foundation of the core design. Whereas missions in other RTS games exist as sepa-

rate, self-contained play-spaces, in Myth the missions become a part of the whole

due to the use of “veteran” units. These units, if they survive a given battle, will be

available for the player to use on the next level, and their skills will be noticeably

stronger than the greenhorn units. This makes the player treat those units with spe-

cial care, expending the greenhorns on more dangerous exploration. Another nice

touch is the ability of the units to leave footprints in the terrain, which adds an inter-

esting element to tracking down enemies on snow-covered levels. The variety of

missions available provides a much more diverse set of goals than many other RTS

games, causing the player to modify his gameplay style drastically from level to

level.

Of course, Myth is not without its problems, even if one can accept the chal-

lenging controls and staggeringly difficult levels. Clicking around the overhead

map sometimes causes the camera to rotate in ways the player does not expect, pos-

sibly throwing off his orientation in the world. The overhead map is actually

translucent and drawn over the play-field, which can sometimes cause players to

click in it by accident. The desire to see more of the play-field at once is a valid

one, even if it is a limitation of the technology. Nevertheless, these are truly minor

flaws in an overwhelmingly impressive design. Myth represents how a great game

can grow out of the marriage of technology and gameplay. This is not a shotgun

314 Chapter 16: Game Analysis: Myth: The Fallen Lords

Myth’s
developers paid
a lot of attention
to detail, which
helped to create
a deep
gameplay
experience.

wedding, however, but instead one where the bride and groom have carefully

thought out how they can happily live together, enhancing each other’s strengths,

thus creating something new and exciting in the process.

Chapter 16: Game Analysis: Myth: The Fallen Lords 315

Chapter 17

The Design
Document

“It wasn’t until Ultima IV: Quest of the Avatar, that Ultimas really started hav-

ing compelling, purposeful stories, and it was the first game in the series to

have a social commentary subtext. Not only did I want to build worlds that

were large, epic, and meaningful, I also wanted to add a subtext to each

game which might not necessarily be obvious in the actions your characters

took in the game, but one which ultimately would give the game a more last-

ing meaning. So in Ultima IV you had to prove yourself to be a good person,

one who could be an example to the people of Britannia. The game acted

like a ’Big Brother,’ requiring gamers to behave in a ’heroic’ fashion in order

to win the game. I thought that design was pretty cool, since gamers were

accustomed to pretending to be the hero yet they would beat up all the

townsfolk in order to become powerful enough to beat up the character who

was supposed to be the big bad guy, even though he generally didn’t do

anything bad in the game.”

— Richard Garriott

316

F
or some years, while I was still an aspiring professional designer, I wanted

someone to tell me what the official format for a design document was. I

knew that Hollywood screenplays had a very precise format, and I figured

there must be something comparably rigorous for design documents. What sort of

information is it supposed to include? How should it be laid out? What format

should it use? Only recently, after numerous years as a professional, did I figure out

the big secret, and it is one that I am happy to pass on to you in this book. Yes, here

my years of experience in the gaming industry will impart on you the precious

information.

There is no format! Everyone who writes a game design document just makes

up their own format! Have you ever heard of anything so incredible? Whenever I

have asked people what format I should be using for a particular document, they

invariably answer “well, you know, the standard format.” No one really knows

what this mythical “standard” format is, yet all refer to it. In the end, as long as it

communicates the nature of the game effectively and in sufficient detail, whatever

you hand over to the people who will review your document will be regarded as the

“standard” format. There is definitely a certain type and quantity of information

that belongs in a design document and which must be included for it to be useful,

but there is no standardized form you must use in documenting that data.

Certainly within some companies, especially large ones, there may be an

agreed-upon format that all of the in-house designers must use for their documents.

Your design document will end up standing out if it diverges too much from other

design documents in the industry. It makes sense for you to get your hands on every

official design document you can, just as you might seek out practice exams before

taking major standardized tests. Optimally, you will be able to obtain some docu-

ments that were used for games that were actually published. Or, at least, you will

want to review documents written by designers who have completed and shipped

games. This is hard to do, since gaming companies are fanatical about protecting

their intellectual property and do not want to reveal how chaotic their internal

development may be, but see what you can find. The Atomic Sam design document

included at the end of this book is a good one with which to start.

A design document is all about communicating a vision for a game, for map-

ping out as much information as possible about how that game will function, what

the player will experience, and how the player will interact with the game-world.

Organizing and structuring all of this information into appropriate sections is one of

the key challenges in writing a good design document. Again, many companies

may prefer their documents in a format different from what I describe here, and you

should certainly organize your data in the form desired by the people for whom you

are writing. If the development team is familiar with navigating design documents

written in a specific format, you should mold your data to fit that format.

Chapter 17: The Design Document 317

Remember, the design document is not the end result of your efforts; the game is.

As such, the format of the design document is relatively unimportant. As long as

the format allows for the effective communication of the pertinent information, the

design document will be a success.

The Writing Style

Before we delve into which sections your design document should contain and what

areas it should cover, it is worth discussing the style you should employ when writ-

ing your document. The design document is meant to be a reference tool and, as

such, you want to make it as easy for people to search and refer to as possible. A big

part of this will be maintaining a good Table of Contents, as we will discuss in a

moment. In writing the text of your document, you will want to break it up with lots

of titles, headings, sub-headings, and so forth. This will make it easier for the reader

to skim over the document and zoom in on the information he is seeking. Breaking

your information into lists, either numbered or bulleted, wherever possible will fur-

ther allow readers to easily realize what different attributes a given part of the game

will need to include. It is actually more difficult to write in a bullet-point style, as it

requires you to constantly be shifting indentations around and bold-facing titles

instead of just including all your ideas in a single narrative paragraph. You may find

it easiest to write out your document first, and then go back and format it properly.

That way you get all the content down, and when you go back to edit the document,

you can simultaneously properly format it. Though writing in a bullet-point style

may involve more work for you, the end result is a more useful document to the

members of your team. Furthermore, the managers and executives will appreciate it,

since it makes the document that much easier to skim.

Some designers use special writing tools for composing their document. These

might be applications better suited to writing text with lots of headings, subhead-

ings, bulleted lists, and so forth. These various applications may allow for the

auto-formatting and indenting of text, which could save you a lot of the time you

would spend in a regular word processor dragging around indentation markers and

tab stops. That said, I have never used such a tool, nor have I ever worked with

someone who did. The primary problem with these tools is that once your docu-

ment is done, you will need to pass it around electronically for everyone to read.

Chances are slim everyone will have this unique formatting tool. Instead they will

have a regular word processor. This will be read by everyone from the other mem-

bers of your development team to the people in management to the executives at

your publisher. You cannot expect all of these people to have installed whatever

eclectic design document authoring tool you have chosen. If the tool you use pro-

vides an exporter to a standard word processor file format such as Rich Text Format

(.rtf), that will usually solve this problem, but make sure the exporter actually

318 Chapter 17: The Design Document

TE
AM
FL
Y

Team-Fly®

exports a document that matches the one you have composed. Still, I have always

been quite content using standard word processors for my own needs, and have not

felt the need for a more capable tool.

Though there is a great temptation to do whatever is necessary to “bulk up”

your document in order to make it seem more thorough and complete, you want to

avoid repeating information as much as possible. This is challenging as you talk

about an element of gameplay that directly relies on another system which you dis-

cussed ten pages back. Instead of redescribing the system, refer your reader to the

system’s original definition. This is important since, as you find yourself updating

the document over the course of the project’s development, you will need to change

data in only one place instead of several. Often, if the same gameplay mechanism is

described in detail in more than one place, when it comes time to make a change,

only one of the descriptions will get updated. This leaves the other description

out-of-date, thus resulting in an internally inconsistent document. Nothing is more

frustrating to the reader than to find contradictory information in the design docu-

ment. Inconsistent information in a specification can also throw up a red flag for

producers, who will begin to question your competency to develop a game when

you cannot seem to keep your facts straight.

Many people like to read design documents on their computer, as it allows them

to search for words and navigate the document more easily than with a large heap

of paper on their desk. For these people, it makes sense to include hyperlinks wher-

ever appropriate. Most modern word processors make it easy to create links from

one part of your document to another, allowing the reader to quickly navigate to

another relevant section. This can be quite helpful as you try to avoid repeating any

Chapter 17: The Design Document 319

Though
comparisons to
existing games,
such as the
oft-cited Super
Mario 64, may
be appropriate
in the design
document, the
designer should
be careful to fully
explain what she
means by the
comparison.

more of your design than is absolutely necessary. Instead of repeating, include a

hyperlink to the pertinent location so that the reader can jump there if they need to

remember how a specific system functions.

As you write your document, you want to write as well as you possibly can, but

keep in mind that the design document is supposed to be a reference document for

the creation of an entertaining game, not an entertaining document in and of itself.

You want your writing to communicate the information necessary in as concise and

succinct a manner possible. Do not spend a lot of time worrying about making the

document stimulating reading. No one is looking for excitement when reading the

bulk of a design document; they are looking for information. I usually try to make

the Introduction and Story Overview the most readable sections of the document,

where someone could actually sit down and read through those sections and be

interested while doing so. But for the rest of the document, you will be successful if

you simply manage to include all of the information necessary. Spending a lot of

time dressing it up with fancy verbiage will do nothing to improve your game. Sim-

ilarly, though you should try to write as correctly as possible, do not spend too

much time worrying about editing the document for grammatical mistakes. If the

readers of the document, the members of your team, are able to read it and get the

information they need, they will be happy. They really will not care if you used a

gerund correctly or not.

As you write your document, it will be awfully tempting to compare elements

of your design to other games, certainly ones the readers are likely to have played.

Though in Chapter 5 I discouraged you from using such comparisons in your focus,

in the design document comparisons can actually be useful, but with a caveat: you

must fully explain your system, even if it is “just like the mechanic found in Super

Mario 64.” A comparison to a popular game can provide the reader with a starting

point to understanding a complex game system you are describing. If they can

remember that game, they will instantly have some idea of what you are talking

about. Of course, to prevent any confusion, you must still include a thorough

description of that aspect of your design. Comparisons are almost always not useful

enough to replace a thorough explanation of how a system is supposed to work.

Therefore, do not rely on a comparison as a crutch to save you the trouble of docu-

menting some gameplay. Nonetheless, having started with the comparison, your

readers will have a better chance of understanding exactly what you are driving at

when you go on to fully describe and document the system.

320 Chapter 17: The Design Document

The Sections

The game design documents I write typically break down into the following major

sections. Within each of these, there will be further subdivisions, and not every

game may require that all of these sections be used.

� Table of Contents

� Introduction/Overview

� Game Mechanics

� Artificial Intelligence

� Game Elements

� Story Overview

� Game Progression

� System Menus

Table of Contents

The reader may laugh to think that I list this as an important part of the document.

Of course a document over fifty pages in length and containing multiple sections

will have a table of contents—why even mention it? What bears emphasis, however,

is the nature of the Table of Contents. Since creating an index is a time- consuming

task for a large body of text such as a design document, it is unlikely you will have

time to make one. In the absence of an index, the Table of Contents ends up as the

tool people use to navigate your document. When a member of the development

team needs to find a specific piece of information in your document, she will be

inclined to look first in the Table of Contents to try to find where that information is

most likely to be. So the more detailed and inclusive your Table of Contents, the

more likely she will be able to quickly find the information she needs.

No simple novel-style table of contents will do in the design document—in

other words, no listing of only eight separate sections with the reader left to navi-

gate the pages within the sections on his own. The Table of Contents must include

sub-sections, sub-sub-sections, and perhaps even sub-sub-sub-sections. We have

already discussed how you will need to use bolded headings throughout your docu-

ment to make it easy to navigate. In addition, any commercial word processor will

allow you to turn these headings into entries in a table of contents. These entries

will then automatically update for you as those headings move around within the

document. Most word processors even allow someone reading the document on his

computer to click on an entry in the table of contents and be taken directly to the

appropriate part of the document. Making a detailed Table of Contents for your

design document is crucial to making it useful.

Chapter 17: The Design Document 321

Introduction/Overview or Executive Summary

It is a good idea to have a single-page overview of your game’s design at the begin-

ning of your document. This summary is not very useful to developers actively

toiling away on the project, who, as you may remember, are the target audience for

the document. However, for new team members who come on board the project, a

summary will be a good starting point for understanding the game. Indeed, for any-

one reading the document for the first time, be they a producer, an executive, or a

marketer, getting an idea of the game’s “big picture” through a one-page summary

can be quite helpful. Even if whoever reads the Introduction is not going to have

time to read the rest of the document, this one-page summary should allow them to

understand the essence of the gameplay.

The Introduction should limit itself to a single page. Longer than that and the

Introduction stops being an effective summary. Any information that does not fit on

a single page is simply not part of the game’s core design. If you find yourself

going over the limit, figure out what is least important among the data you have in

the summary and cut it. Repeat this process until the summary fits on a single page.

Think of the summary like your resume: longer than a page and you may lose your

reader. Write a gripping first paragraph which sums up the entire game, with the

following paragraphs filling in the structure outlined in the opening.

Before writing the design document, you should have worked on defining your

game’s focus, as I explored in Chapter 5, “Focus.” That focus is an excellent start-

ing point for your summary. Recall that the focus is a summing up of your game’s

most compelling points in a single paragraph. Start with your focus as the opening

paragraph of your overview, and then use the following paragraphs to go into more

detail about each compelling part of your game.

One of the body paragraphs of your overview should sum up the game’s story,

if any. In this paragraph, focus on the adventures the player will experience during

gameplay, while not dwelling so much on the back-story or history of the game-

world. Follow the game through to the story’s conclusion, mentioning the different

types of worlds the player will navigate and characters they will encounter. Always

keep in mind that this is just a summary, so it does not need to go into that much

depth. Just touch on the high points of your story and move on to the next

paragraph.

The other body paragraphs of your summary should discuss different aspects of

your gameplay, using the key parts as outlined in your focus. What features of the

gameplay are most central to the game and will be most instrumental in making

gamers want to play your work for hours and hours? Of course, you should not

focus on features that all games have (“Project X includes the ability to save the

player’s game at any time!”) but rather on features that will make your game stand

out, the parts that define your game as a unique and compelling experience.

322 Chapter 17: The Design Document

The conclusion should then come in and sum up the entire overview, with a

special emphasis on why this game will be so compelling to the user, what this

game does that no other game has. The reader should finish the page on an up note,

enthusiastic about the project. Think of this page summary as rallying the troops,

psyching up the team, and getting people excited about the project without forcing

them to read over the entire document.

Game Mechanics

The Game Mechanics section is the most important part of your document. It could

also be called the “gameplay” section, since it describes what the player is allowed

to do in the game and how the game is played. By describing what sort of actions

the player can perform, the Game Mechanics section defines the game itself. As a

result the Game Mechanics section is one of the hardest to write in the design docu-

ment. Describing gameplay is an extremely challenging proposition, and as a result

many bad game design documents skip this section entirely, preferring instead to

focus on story, visuals, or menuing systems, all of which are easier topics to write

about. The old saying goes, “Writing about music is like dancing about architec-

ture.” Writing about gameplay is just as challenging and imperfect, yet it must be

done for your design document to be useful to the team who will create your game.

Except for necessary references to the player’s character, you will want to avoid

detailing any specific game-world objects or characters in the Game Mechanics

section. Save those descriptions for the relevant content sections later in the

Chapter 17: The Design Document 323

Sequels, such as
Thief and Thief II,
are often able to
use an identical
or extremely
similar Game
Mechanics
section in their
design
documents.
Pictured here:
Thief II.

document. For instance, you will want to describe the possible effects of the

different weapons the player might pick up, and how the player will control those

weapons, but you will want to save the actual list of the different weapons found in

the game-world until later in the document. The specific weapons represent

instances of the functionality you describe in the Game Mechanics section. You can

think of it in the following fashion: many different games could be made from what

you lay out in the Game Mechanics section. For instance, the design documents for

the Thief games follow a nearly identical Game Mechanics description. It is only

the weapons, items, levels, and enemies that change from Thief to Thief II. The core

game remains the same, and it is the core game you are documenting in the Game

Mechanics section.

It makes sense to introduce the player’s different capabilities in the same order

someone playing the game for the first time would experience them. For instance,

start out simple. What are the most basic moves the player can do? Say you are

working on a game where a player controls a game-world surrogate (be it another

human, a spaceship, an airplane, a robot, or whatever your imagination may have

concocted). You should probably start with how that character moves forward and

backward, turns left and right, and so forth. After you introduce the simpler moves,

introduce more complex ones such as jumping, crouching, rolling, and so on, as

appropriate. If your game is more of an RTS game or Diablo-style RPG, it may be

that the player moves his surrogate(s) using point-and-click, and you will want to

describe precisely how that works. How good does the player character pathfinding

need to be? What does the game do when the surrogate cannot reach the place the

player clicked? Do you have separate buttons to select a character and then to move

it, or is it more of a one-button system?

As you describe the character’s movements, you will want to list the physical

commands the user needs to perform to pull off those movements. For instance, “To

move forward, the player will need to press and hold the Forward Button. If the

player just taps the Forward Button, the player character will only move a tiny

amount.” It is probably a good idea to name the different keys or buttons the player

has as her controls instead of referring to them specifically; use “Forward Button”

instead of “Up arrow” or “Blue X Button.” This keeps your description of the

player’s controls more platform-independent and allows you to change which keys

do what later, without making you change a lot of instances of “the Up arrow” in

your design document. A programmer who is implementing your control system

does not care so much what the literal key assignment for a command is, but she

needs to know how many different commands the user will have and what

game-world actions are associated with which commands.

Once you describe how the player commands his game-world surrogate, the

next logical step is to describe the surrogate’s movement model. Does it follow a

realistic physics model or something more simplistic? Does it ramp up to full speed

324 Chapter 17: The Design Document

slowly or does it achieve terminal velocity immediately? Does it move slower up

inclines than on flat surfaces? Is its responsiveness quick and tight like Quake or

slow and precise like Tomb Raider? How does it react when it bumps into an

object—slide off, turn, or just stop? These are the sort of details you will need to

consider and describe in depth.

It may be that moving game pieces or player surrogates around is not the key

operation in your game. Think of what a player starting a game would do first, and

describe that. If you were describing Railroad Tycoon, for instance, you would want

to talk about how the player lays down track and the rules governing that. If you

were writing the design document for Lemmings, you might want to describe how

the player can change a regular lemming into a special lemming, such as a blocker

or a digger. If you were describing SimCity, you would want to explain how the

player zones an area.

If your game starts out with the player needing to create her character, as she

might in an RPG such as Diablo, you will want to describe that process, summariz-

ing the significance of each statistic the player must choose. What does “strength”

or “dexterity” represent? Later on in the Game Mechanics section, when you are

describing an action that is affected by a particular statistic, you will be able to refer

the reader back to that particular statistic’s original definition.

Having started with the basics, you can proceed to the player’s more complex

actions, trying to logically structure the document so that each subsequent action

builds on the previous one as much as possible. You want your different game

mechanics to flow one into the next so the reader can see the structure of the game

Chapter 17: The Design Document 325

RPGs such as
Diablo II often
start the game
with the player
creating her
character. Of
could this will
need to be fully
described in the
design
document.

building. And, of course, you want to avoid referring to mechanisms you have not

yet defined or detailed.

Certainly the sort of topics you will cover will vary widely depending on what

type of game you are creating. If your game involves combat, you will need to go

over that in detail, explaining how the player uses different weapons and what the

possible effects of those weapons are on the game-world. If the player’s surrogate is

able to pick up and manipulate objects, you will want to explain fully how it picks

them up, how it can then access them, how inventory management works, and so

forth.

The Game Mechanics section is also a proper place to lay out what sort of puz-

zles the player might encounter in the game-world. Indeed, if your game is a puzzle

game this will take up a large portion of the mechanics section. You will want to

describe how puzzles function, how the player is able to manipulate them, and give

direction as to how the puzzles will be created, without actually listing specific puz-

zles. As with descriptions of specific weapons, save lists of puzzles for the content

sections later in the document. For instance, say you were describing puzzles in the

original Prince of Persia. You would want to explain that puzzles can involve hit-

ting pressure plates, hidden knock-away ceilings, falling floor segments, gates

which can be raised and lowered by the pressure plates, spikes that spring out from

the floors and walls, special potions, certain types of magical effects, and whatever

other components the game-world allows. You will not actually list any specific

configurations of these components that will be found in the levels. Save that for

the level-specific sections later in the document, or for the level designers to figure

out on their own. Here you should list the palette of objects and behaviors from

which the puzzles can be created.

326 Chapter 17: The Design Document

Describing the
variety of puzzle
components
found in a game
such as Prince of
Persia is
appropriate in
the Game
Mechanics
section.

If the game in question involves the player switching into different modes in

order to accomplish different tasks, each of these modes should be described in

detail. For instance, in Drakan the player maneuvers the player-surrogate, Rynn,

through the world using forward and backward keys, while the mouse turns the

character. However, when the player presses the inventory key, the game goes into

inventory mode. From this mode the player no longer controls Rynn’s movements,

but instead is presented with a mouse cursor with which Rynn’s inventory can be

manipulated using standard drag-and-drop functionality. In the design document for

Drakan, the designer would want to clearly describe how the player’s controls shift

from one mode to the next, and how the game-world is manipulated in each.

Some sections of the design document will be dependent on the technology

the game will be using, whether 2D or 3D, indoor or outdoor, real-time or pre-

rendered. Though one tries to separate the technological aspects of the game into

the technical design document and keep them out of the design document as much

as possible, what is being created is still a computer game, and as such it is inher-

ently tied to the technology it will use. Writing a design document without having

any sense of what sort of technology the game will have access to is usually impos-

sible and at the very best impractical. You do not need to know how many polygons

per second the engine will be able to handle, or whether it will support NURBS or

not. However, you do need to have some base understanding of the tools that will

be available to the designer. Designing a control or combat system that works in a

3D world and one that works in a 2D one are completely distinct and different

tasks. You want to play to the strengths of the technology the game will use while

dodging the weaknesses.

For example, the Game Mechanics section will need to describe what the player

sees while she is playing the game. This includes how the player sees the world,

what sort of camera view will be used, and how the player will be able to affect that

camera’s position. In order to write about this, you need to know what the camera

will be capable of doing, which is entirely dependent on the game’s engine. It may

be that the engine will only support a first-person view, only a side view, or any

number of other limitations. Nonetheless, how the player sees the world is such a

central part of the game’s design that you must discuss it in the Game Mechanics

section.

The in-game graphical user interface (GUI) is of critical importance to your

game, and therefore, it should be described in detail in the Game Mechanics sec-

tion. You should describe any data that is overlaid on the depiction of the

game-world, such as, for an action game, the player’s health or other statistics

needed during gameplay. The GUI section should also cover any other GUIs which

are part of gameplay, such as what the player sees when his surrogate becomes

involved in a conversation or when managing inventory. Describing the graphical

interface is even more important for games like Alpha Centauri or The Sims which

Chapter 17: The Design Document 327

include many different GUIs and in which the player constantly uses the GUI to

play the game. The descriptions of these GUIs can either all be included in one part

of the Game Mechanics section, or can be detailed during the description of the sys-

tem to which they are relevant. Remember that you want your design document to

be as reader-friendly as possible. If the art director is looking for the different GUIs

that need to be created and they are scattered throughout the Game Mechanics sec-

tion, some may be missed. On the other hand, a programmer might prefer to find

the GUI for a particular system included with the description of that system. You

need to decide which approach is in the best interest of your document and the pro-

ject. In the Game Mechanics section, you want to describe only the GUIs that are

used in the game and are thereby relevant to gameplay. Any of the front-end GUIs

used when the player is starting a new game or loading an old one are not really

part of the gameplay. As such, the front-end GUIs should be separated into the Sys-

tem Menus section, which I will discuss later in this chapter.

It is easy to assume a lot when writing a Game Mechanics section, but a good

designer will avoid assuming anything. For instance, a designer may be working on

a first-person shooter in the Quake mold. He may make the assumption that when a

player runs over an object, her character will automatically pick it up. The designer

has played so many first-person shooters that it is totally obvious to him that this is

how he wants it to work. But if he fails to write it down in the document, the pro-

gramming team may assume it will function some other way, copying their own

favorite game. Do not assume that the same gameplay components that are obvious

to you will be obvious to whoever is reading your document. Spell everything out

328 Chapter 17: The Design Document

The GUI is
extremely
important to
games such as
Alpha Centauri,
and will need to
be thoroughly
described in the
design
document.

TE
AM
FL
Y

Team-Fly®

explicitly so there is no room for confusion.

You can almost think of the Game Mechanics section as an extremely detailed

first pass on the manual. You are describing in intense detail how the player will

accomplish every different action in the game-world—what commands the player

will use and what the results of those commands will be. If you are writing your

game design document as a journalist might write a news story, in the Game

Mechanics section you should be concerned with the “what” and “how”—what the

player does in your game and how he does it. Later in the document, you will get to

the “where,” “when,” and “why.”

Artificial Intelligence

If the Game Mechanics section describes how the player can interact with the

game-world, then the Artificial Intelligence section documents how the world will

react to the player’s actions. How will the opponents the player faces in the

game-world behave? What will they do in which situations? This section may also

describe how the game-world behaves when the player is not doing anything. For

instance, it could discuss ambient behaviors such as how townspeople go about their

daily business.

Some design document authors may prefer to include the Artificial Intelligence

section in the Game Mechanics section, but I prefer to keep them separate if possi-

ble. Whether to include the Artificial Intelligence section within the Game

Mechanics section depends on the nature of your game. For a game such as Lem-

mings, where the player controls and the AI are tightly intertwined, it makes perfect

Chapter 17: The Design Document 329

In games such
as Doom II, the
player
mechanics and
the behavior of
the AI agents
are discrete
enough to be
described in
separate sections
of the design
document.

sense for the author of the design document to discuss them in the same section.

But for a game such as Doom, where the player’s manipulation of his game-world

surrogate, the Space Marine, is relatively distinct from the behavior of the enemies

he fights, it makes sense to split up the information into two sections. Such separa-

tion makes the programmer’s navigation of the document easier, since the process

of working on the player’s movement and the creatures he will battle are custom-

arily separate coding tasks.

In the AI section you will want to do your best to fully describe how you expect

the game to behave for the player. If you are working on a game where the player

moves her character around in a game-world where she encounters other characters,

you will want to describe how those characters react. Do they ignore the player

until she initiates a conversation? Or are they attracted to the player? Can they

pathfind around the area in an apparently intelligent manner, or are they walking on

predefined paths? Some NPCs may initiate combat with the player; when and why

do they decide to do this? Is it based on seeing the character? Hearing her? Or are

they activated by level-designer specified triggers? Or all three, in different situa-

tions? How smart are the characters? Are they able to hide around corners, sniping

at the player from a safe location? Do they flee when wounded? There are a number

of questions you should answer in the AI section, enough to give the AI program-

mer an idea of what he needs to implement. The more questions you answer, the

more likely the programmers will create behaviors in the game that match your

expectations and vision.

330 Chapter 17: The Design Document

Describing the
collaborative
tactics the AI
will use is very
important in
the design
documents for
strategy games
such as WarCraft
II.

Designing an AI for a strategy game can be a significantly more involved pro-

cess. Suppose you are working on an RTS game like WarCraft or a turn-based

strategy title such as Civilization. What sort of strategies will the enemy use to

overwhelm the player’s units? How will the units work together? If applicable,

when will the computer player decide to build more units, and how many will it

make? Will the AI pick up on and defend against different attack types performed

by the player, such as a flanking maneuver? Is the enemy AI supposed to be a real

match for the player, or is balance achieved because the computer simply has more

powerful equipment? If necessary, you can provide a walk-through of a specific

game, and how the enemy AI would behave at different junctures of that game.

Working on the Artificial Intelligence section is a good place to enlist the help

of programmers on your team. Find out what sorts of AI they have experience

working with, and explore how that might be applicable to your project. Find out

what is difficult to accomplish and what is easy. It is often hard for a designer

(especially if he is a non-programmer) to comprehend that getting an AI agent to

flee when wounded is a trivial task, while getting it to pathfind up some stairs and

jump over a ledge can be extremely difficult. Instead of going for pie-in-the-sky

notions of what you would like the AI in your game to be capable of, work only

with real, accomplishable goals. Remember that a programmer who reads a design

document that is filled with descriptions of implausible AI that is in no way

grounded in reality is likely to become irritated at the document, and it will be a

challenge for that document to be taken seriously in the future. Having a program-

mer work with you on the game’s AI documentation will help make that section of

your document that much stronger, as well as assuring that the AI programmer

really understands what is expected of the agents in the game.

In working on your Artificial Intelligence section, try to follow the same rules

you did when writing the Game Mechanics section. Do not refer to specific NPCs

in the game, but rather to general behaviors that different agents may exhibit. You

will get to the specific NPCs and what set of behaviors they will use in the Game

Elements section later in the document. Again, try not to assume anything. Put in as

much detail as you can about how the agents in your game will behave, even if it

seems obvious to you.

Game Elements: Characters, Items, and Objects/Mechanisms

If you think of the level designers on your team as painters, then the game elements

are the colors they have on their palette. These elements are the different parts of

your game that will be brought together in the levels to create a compelling experi-

ence for the player. The designers will be able to take these elements, and,

combining them in unique and interesting ways, create a variety of levels which will

keep the player interested for hours. Of course, not every game has levels, but

Chapter 17: The Design Document 331

nearly every game has game elements. Whether these elements are the various types

of foes the player fights in Robotron 2084, the different sorts of special buildings

that can be created in SimCity, or the different blocks in Tetris, the game elements

need to be listed and detailed in the Game Elements section.

Now that you have spent a good many pages focusing on the more general

game mechanics and artificial intelligence capabilities of your game, it is time to

move on to specific content. Remember that you kept the Game Mechanics and AI

sections general enough that one could make many different games using them.

These sections may even remain relatively unchanged for a sequel, should your

game have one. But the enemies, NPCs, objects, items, and mechanisms the player

will encounter in the game-world will probably be unique to this game. This con-

tent is usually closely tied to the story, which you will delve into later in the Story

Overview and Game Progression sections of your document. It is actually a toss-up

if you want to list your characters, items, and objects before or after the story sec-

tions. It is up to you to determine what makes the most sense for your particular

document and game.

I customarily use three classifications of game elements: characters, items, and

objects/mechanisms. You may wish to create a separate section in your design doc-

ument for each of the classes, or you can make each class a different sub-section in

one all-inclusive Game Elements section.

� Characters: The characters class includes all the enemies the player will battle,

all the personalities he might meet and potentially have conversations with, and

all the different types of AI agents in the game. Think of the character grouping

as containing all of the active, non-player-controlled elements in the game.

� Items: The item class includes any entity that the player can pick up and use or

manipulate in some fashion. Certainly any weapons the player might use would

be listed here, as well as any items that might make their way into the player’s

inventory, such as armors, keys, or health elixirs.

� Objects/Mechanisms: The third group contains what I call objects or

mechanisms. These elements are entities that appear in the game, that are not

AI driven, and which the player cannot pick up but can operate in some way.

This would include doors, switches, puzzle elements, or other objects which

can be manipulated through the course of the game.

Again, depending on the type of game you are working on, you may not need to use

all three classifications. A shooter like Half-Life would have all three: the aliens the

player fights would be among the characters, the weapons he finds would be listed

under items, and the different game-world mechanisms the player encounters, such

as the redirectable laser beams, would fall under the third classification. An RTS

game like StarCraft, however, might instead have a units listing (which is essen-

tially a combination of characters and items) detailing all of the different units that

332 Chapter 17: The Design Document

the player or enemy can control, along with an objects/mechanisms list which

details any objects the player interacts with, such as doorways or teleporters. If the

RTS being designed is one in which units could pick up objects, however, you

might want to create a third classification after all. An RPG such as Diablo might

add fourth and fifth groupings for listing the player’s skills and spells respectively,

since these are game elements that do not really fall into any of the three classifica-

tions I have discussed. Try to separate your game-world elements, whatever they

may be, into the most logical groupings possible. Depending on the nature of your

game, it is not unreasonable to have only one class or as many as ten; compelling

games can be created in either case.

Within each class, try to list the objects in the most logical order possible and

group different sub-classes of objects together. For instance, if you are working on

an RPG, you might want to list all of your potions in one spot, all of your bladed

melee weapons in another section, and all of your ranged weaponry in another. An

RTS might want to separate its units into offensive, defensive, and construction, or

perhaps static and mobile. Again, take a look at the kind of game you are making,

and try to divine the method of representation that best suits the data you are pre-

senting and that makes it easily navigated and understood by readers. The Game

Elements section should provide information for both the art and programming

teams. The art team will need to make sure art assets get created for all of the ele-

ments you describe. The programming team will want to read the Game Elements

section in combination with the Game Mechanics and AI sections to get a full

understanding of what the game will be expected to do. (Of course, ideally, if the

Chapter 17: The Design Document 333

The design
document for
Diablo II might
contain separate
Game Elements
sections for
describing the
player’s spells
and skills.

Game Mechanics and AI sections are thoroughly written, the programming team

should not have to look at the Game Elements sections at all.) Keep both the artists

and programmers in mind as you work on cataloging the game’s characters, items,

mechanisms, and whatever other classifications your game may demand.

In listing and describing these game elements, you want to avoid assigning

actual statistics to any of them. This level of detail about the items or enemies is

simply not something you can predict before you have a functioning game in which

you can test the behavior of the AI or weapons and balance them properly. Statistics

that you come up with in pre-production, where you have no real chance of

play-balancing or trying them out, are a waste of your time as well as that of any-

one who might have to read them over.

Instead, try to write descriptions of the game elements in question and their

relation to the other elements. How do they compare in difficulty to each other?

What traits does a particular AI agent have? Is this one more or less likely to run

away in combat? Which AI capabilities will this element use and to what intended

effect? How do the entity and its various effects appear to the player? How big is it

compared to other objects? Include enough information for a programmer to under-

stand what code will be required for the entity, and sufficient description that an

artist will be able to make a concept sketch. You want to provide as much useful

detail as possible without overdoing it. Readers, whether artists, programmers, or

other designers, will know when you are just documenting for documenting’s sake,

in which case your document stops being practical and useful. Do not waste their

time by making them read through reams of fluff to get the information they need.

Story Overview

Though not strictly necessary for a design document, I think having a brief Story

Overview can be quite helpful in a design document, assuming your game has a

story at all. Properly written, the overview provides all of the document’s readers

with an easy-to-read narrative of what transpires in the game. Much like the design

document’s overview, the Story Overview is a quick way for everyone on the team

to understand the story’s “big picture.” To achieve this, you must keep the overview

to an easily readable length while trying to include all of the major story points. A

couple of pages should be sufficient, though this may vary depending on the com-

plexity of the game’s story; a shooter might only require one page, while an RPG

might take a few more.

Certainly you do not need to include all of the game’s sub-quests or describe

every conversation the player will engage in or every character the player will

meet. Try to make the Story Overview as compelling and readable as possible, so

people will want to read it. While the Game Mechanics section may be difficult to

read with its bullet-point lists and attention to detail, your Story Overview should

334 Chapter 17: The Design Document

be a pleasure to read. Indeed, if it is not a pleasure, try to figure out why not. Is it

because your story is not that compelling? Do you need to refine and improve it in

order to make it more interesting?

Game Progression

Depending on the nature of the game, the Game Progression section may well turn

out to be the longest in the design document. This is where the game designer

breaks the game down into the events the player experiences, and how they change

and progress over time. This section will provide a guide for both the art team and

the level designers as to what type of environments they will need to create for the

game. The level designers take this section as a guideline for what each level is sup-

posed to include and then fill in all the details as they build out each level, bringing

all of the components of the game together.

For many types of games, including RPGs, RTS games, first-person shooters,

action/adventures, and mission-based flight simulators, the Game Progression

breakdown will be best done by level. For each level, you should describe in detail

what challenges the player will face, what story (if any) transpires on them, and

how the levels will appear aesthetically to the player. Figure out and describe what

the major challenges will be on a given level: fighting with a horde of enemies at

location A, meeting and talking to a specific character at location B, and solving a

gameplay puzzle at location C. You certainly do not need to break down the level to

the point where every single conflict is listed in minute detail. As with the character

statistics, this is something that you will only be able to do when you are actually

working with the level, when you are able to try the conflict a certain way and test

it out. Explain how the appearance of the level will communicate the game’s story,

if applicable. What objects and items must be in what locations for the story to

progress properly? Also discuss which elements from the game’s “palette” will be

available on this level. Which types of enemies will the player expect to encounter

and what types of items will he find along the way?

More than anything, try to put into words how the level should affect the

player, not just in terms of how difficult the level will be, but what sort of gameplay

experience the player will have. Should the player feel constant conflict and chal-

lenge, or is this level more slow-paced and centered on exploration? Is the story at a

climax in this level, resulting in increased tension, or is the level more slow-paced,

focusing on filling in the game’s back-story? As you write your Game Progression,

always keep in mind how the player should feel when playing a given level, and try

to communicate that emotional state in your writing.

Of course, not every game has levels, and so your Game Progression may not

break down so easily into self-contained units. But most games have stages of some

kind. Try to determine what the stages of your game are, and break down your

Chapter 17: The Design Document 335

Game Progression into these stages. For example, the original arcade game Centi-

pede has a series of waves the player plays through. In that game, once the player

kills all the segments of the centipede, he progresses to the next wave. The waves

are cyclic, with each subsequent wave throwing a different centipede, either in

terms of its length or speed, at the player. Also, from each wave to the next, the

conditions under which certain enemies appear change. For instance, the flea never

comes out in waves in which there is a twelve-segment centipede on the play-field.

If one were to write a Game Progression for Centipede (which would not need to be

very long at all), one would want to break it down by waves, clearly delineating

how the game changes from wave to wave.

Some games may not need a Game Progression section at all. For instance, a

design document for a strategy game like Civilization or a software toy like SimCity

could describe all of the relevant gameplay in the Game Mechanics, AI, and Game

Elements sections. Since the levels in these games are randomly generated anyway,

there is not much use in having a Game Progression section. However, if the game

in question is to include certain scenarios which do start on predefined levels in

specific configurations (as the SimCity games do), a Game Progression section

would be the ideal place to describe these different scenarios and how they will

challenge the player.

336 Chapter 17: The Design Document

Free-form
strategy games
such as the
SimCity series
will not require
a Game
Progression
section, since
what happens
during the game
is entirely
determined by
the player’s
choices and the
game
mechanics.
Pictured here:
SimCity 2000.

System Menus

The System Menus section is where you should detail the main menu and whatever

other options screens the player will be presented with at various points outside of

the game itself. These menus do not actually impact the gameplay in any significant

way, and as a result should be separated into their own unique section. You should

include descriptions of how the player will save his game and how he will load it

later. Describe what type of interface the player will have with these menus: will he

use mouse-pointer-based point-and-click, or will he use the Enter and arrow keys,

or both? Try to be as complete as you think is necessary to ensure that the system

menus are intuitive enough to allow the player to enjoy playing the game itself. Pro-

ducers love to see that you have fully described the flow of these menus, so it may

be important that you include a System Menus section, though, in my opinion, such

a section is not truly required for a complete design document. It might even make

sense to make the System Menus section into its own separate document, since they

are so divorced from the gameplay proper.

One Man’s Opinion

In the preceding pages, I have presented the format I like to use for game design

documents. Let me repeat that it is by no means the industry standard format. Many

great design documents have used formats wildly different from mine, both in terms

of structure and in terms of how much detail they provided. But if you present a

document structured as I have explained, you will not be laughed at or thought a

fool. As I have stated previously, what is most important is that you communicate

your vision for the game to the people reading your document. You are free to pres-

ent your design information in whatever form makes the most sense to you while

providing for maximum clarity and utility for your data.

Part of the reason why the design document format can vary so much from pro-

ject to project is that games are not yet (nor do I think they ever will be) a

standardized art form, as plays, movies, or symphonies are. Sure, within gaming

there are certain genres or types of gameplay, and the design document format for a

given genre, such as a first-person shooter, can be standardized. But even then, as

the form of the shooter changes, as it implements new gameplay styles and

mechanics, the structure of the document will need to adapt to these changes in

order to communicate them effectively. One can hardly expect the design document

for a first-person shooter such as Half-Life to be of the same form as one for a strat-

egy game like Alpha Centauri. What the games accomplish and the experiences

they provide are too radically different from each other, and hence their design doc-

uments must be different as well.

Chapter 17: The Design Document 337

Inauspicious Design Documents

As I previously recommended, it may be useful to try to get your hands on some

professional game design documents in order to give you an idea of what the indus-

try expects in such specifications. However, you must be careful. It is likely that the

document you obtain will not be any good. Many of the documents that have been

used for published games and which were written by experienced professionals are

truly terrible. By way of example, and in order to best teach you what to avoid, I

will explore a few of the different types of horrible design documents, and why they

fail so miserably at what they are supposed to accomplish.

The Wafer-Thin or Ellipsis Special Document

These thin little volumes, certainly none longer than thirty pages, startle and amaze

the experienced game designer with their total and complete lack of any useful con-

tent whatsoever. They use meaningless descriptions like “gameplay will be fun” and

“responsiveness will be sharp.” In these documents, many comparisons to other

games are made: “This plays like Super Mario 64” or “The game has a control

scheme similar to Quake.” While such comparisons can be slightly useful, as I have

discussed, the writer of the Wafer-Thin Document almost always fails to go on to

explain the control scheme of Super Mario 64 or Quake in any detail, let alone the

scheme to be used by the game in question.

Often these documents spend a lot of time, maybe half their pages, talking

about back-story. Usually this back-story is very weak and poorly developed and is

only tangentially related to the game being developed. The Wafer-Thin Document

also spends a lot of time talking about how the menus will work. Not the in-game

menus, but the system menus where the user selects what type of game he wants to

play, sets his options, and so forth. Many mock-ups are made and options carefully

listed. What exactly the options will affect in the game is seldom described in any

detail, since the game itself is barely defined. Figuring out the menu system is

something best pursued once the game is working, when the designer knows what

sort of options might be important and what different gameplay choices the player

will have; it is certainly far from the most difficult part of game design, nor the

most important system to nail down first.

Wafer-Thin Documents are often constructed by managers who like to think

they are game designers. The reason these can also be called Ellipsis Special Docu-

ments is that they are often littered with ellipses. For example, the worlds the player

will encounter in the game will be described in the following manner: “Jungle

World is a very hot and sticky place where the Garguflax Monkeys swing around

and torment the player . . . ” And that will be all the document provides in way of

description for the world, ending at an ellipsis, as if to say “insert game design

338 Chapter 17: The Design Document

TE
AM
FL
Y

Team-Fly®

here.” It is unclear whether the writers of these documents plan to come back and

fill in at the ellipsis later or that perhaps they do not deem it worthy of their valu-

able time to actually explain how their game works. They just assume someone

somewhere will fill it in and make them look good.

Another example of the content found in Ellipsis Special Documents might be:

“The player will be given an option of many cool weapons. For example, the Gar-

gantuan Kaboom does twice the damage of the player’s other weapons and has a

special effect. The Barboon Harpoon will allow the user to kill enemies at a dis-

tance with a nice camera effect. Other weapons will be just as fun and cool . . . ”

Here the writer of the Ellipsis Special fails to describe the weapons the game will

have to any useful level of detail, and then, having listed two weapons, decides to

leave the rest up to the imagination of the reader. Of course, readers are very use-

fully told that the other weapons will be “fun and cool.” The writers of the Ellipsis

Special mistakenly thinks that is all the description necessary to develop a game.

The only advantage to the Wafer Thin or Ellipsis Special Document is that it

allows whoever gets to implement the design to pretty much take over the project

and turn it into her own. I say this is a good aspect, since usually the ideas the man-

ager included in the Wafer Thin Document are beyond ridiculous and do not make

for viable gameplay. But one must be wary. Problems arise when the manager

shows up six months later and complains: “But that’s not what I wrote!”

The Back-Story Tome

Unlike writers of the Ellipsis Special Documents, the designer who writes the

Back-Story Tome spends a lot of time working on his document. These books (it is

hard to call them merely documents) usually stretch into the hundreds of pages—

300-, 400-, even 500-page documents are not out of the question. There’s a lot of

information in there.

The first mistake these documents make is usually a poor table of contents and

the lack of an index. In a design document, well-ordered information and a good

table of contents can replace an index, but the absence of both is a huge error. The

problems are compounded when the document is as long as War and Peace. The

primary reason for the existence of game design documents is to allow team mem-

bers to quickly look up information about a section of the game they are working

on. If a programmer wants to know how the AI for a particular enemy is going to

work, she needs to find that information quickly and easily. If she cannot find it,

she may just make something up. Similarly, when an artist wants an idea of the tex-

tures that will be needed for a given area in the game, he wants to be able to find

where that area is described as quickly as possible. Design documents are not read

like novels. No one starts at the beginning and comes out at the end. Primarily,

design documents are reference materials, and if team members cannot easily

Chapter 17: The Design Document 339

retrieve the data they are seeking, they are liable to give up.

However, once one starts hunting through one of these Back-Story Tomes, one

is startled to find that, indeed, there is no information about the gameplay in there.

It is all back-story. And at five hundred pages, it is far more back-story than most

computer games will ever use. The history of all the characters in the game, the

friends of those characters, and all the relevant parents and siblings are all

described in minute detail. It may be very interesting stuff (though usually it is a

disorganized mess), but in the end the reader is left with very little idea of how the

game is supposed to function. A lot of games make storytelling one of their central

concerns, and a story bible can be quite useful to game creation. In such a case, it

makes sense to discuss the game’s story in the design document to some extent. But

first and foremost, a design document is supposed to contain the game’s design,

which is very different from a game’s story. Though these Back-Story Tomes are

very impressive in terms of weight and will probably impress the venture capital-

ists, the programmer who has to work with such a tome as his only guidance is

going to end up designing the game himself.

The Overkill Document

Some designers think they can describe every last aspect of a game in the design

document. It is certainly true that many design documents lack the necessary detail

to be useful, as we found in the Ellipsis Special Document discussed above, but at

the same time, going to an excessive level of detail can be a waste of the designer’s

time as well as the person who has to sift through all of that excess information.

Furthermore, excessive documentation can lead to the illusion that the designer has

created a complete, thorough document, when in fact he has gone into far too much

detail about certain subjects while skipping other areas that need to be addressed.

For example, suppose that the game being documented has a number of charac-

ters who perform certain actions in the game-world. Say the game has townspeople,

and they need to walk around, sit down and stand up, talk to each other, and sleep.

The document should describe these behaviors in the AI section. A truly thorough

document might break this down into separate animations: stand from sitting, sit

from standing, idle sitting, idle standing, walk, converse with hand gestures, and so

on. Probably this is not necessary, since a good animator and lead artist will be able

to break this down better than a designer can. But some designers may go over-

board and actually sketch or list the individual animation frames. This is absurd.

There is no way to know in the design document stage how many animation frames

will be required for a given animation. This sort of decision can only be made and

adjusted during the game’s production. Not to mention that listing animation frames

is insulting to the animator who will only feel demoralized by this degree of

micro-management. Furthermore, the design document should stick to gameplay

340 Chapter 17: The Design Document

design, and not veer into the territory of the art bible or other art documentation.

Another example might be what I call “balancing data.” These are the actual

statistics for the weapons, items, and characters found in the game. The design doc-

ument should probably list what different attributes weapons and characters will

have. For instance, a weapon might have a range, an accuracy, a number of shots,

and a rate of fire. Furthermore, the design document might want to describe the

qualities of a given weapon: “The Double Barreled Shotgun has a short range and a

low accuracy, but does a large amount of damage in a large area.” However, actu-

ally listing the values for a weapon’s attributes is not very useful in the design

document. Saying “Shotgun Accuracy: 2” does not really serve any purpose since

the number “2” does not have any context and therefore no meaning. These values

are best determined when the game is actually functioning, when a designer can

balance the weapons as they will be used by the player and thus the designer can

experiment with different settings to achieve the desired effects. Creating large

tables full of data before this information is actually testable is by and large a waste

of time.

As with animation minutia and precise balancing data, source code also does

not belong in the document. Designers who start writing out algorithms in their

design documents are going too far. It does not matter if the designer is also a pro-

grammer. There should be no code, not even pseudocode, in the design document.

Including code will only serve to bloat the document and distract from omitted

information which needs to be covered. If there is any useful information in the

Overkill Document, it is so hidden in the river of useless data that team members

will be too intimidated to look for it. The author of the Overkill Document thinks

that he can preplan everything, and that he is far more talented than any member of

his team. While such excessive attention to detail can be impressive to those who

do not really know what they are doing, a design document that goes too far will

only infuriate the team that has to work with it.

The Pie-in-the-Sky Document

These design documents often have noble intentions with grand ideas for truly mag-

nificent gameplay. Sadly, the writers of them typically lack any technical grasp of

what the computer is capable of or what a team of twenty people is likely to accom-

plish in a year and a half. As a result, these overambitious documents put forth

fancy ideas with no basis in reality or feasibility and end up frustrating and infuriat-

ing the teams assigned to “make them happen.”

Pie-in-the-Sky Documents include ideas such as “a fully modeled replica of

Manhattan will be the player’s primary game-world, complete with AI agents repre-

senting all of the city’s seven million inhabitants in real-time.” The authors of

Pie-in-the-Sky Documents do not want to be bothered with messy details such as

Chapter 17: The Design Document 341

the reality that no existing computer system can simulate seven million humans in

any sort of reasonable time frame (let alone real-time). Another feature suggested in

a Pie-in-the-Sky Document might be “a natural language parser will be included

that allows users to type in full, complex English sentences which the characters

will respond to with their own dynamically generated dialog.” The guilty designer

does not want to hear that research institutions have been working for decades on

natural language processors that still have trouble with short, simple sentences.

Pie-in-the-Sky Documents are often combined with Ellipsis Specials into truly

wretched design documents, where the guilty designer outlines a completely

impractical project without bothering to go into much detail about it.

The Fossilized Document

Any of the above flawed design documents can also be a Fossilized Document.

Indeed, a design document which does not necessarily suffer from any of the above

problems and was once a fine reference tool will become a Fossilized Document

over the course of a project if the designer is not diligent in her efforts to keep the

document up to date. I know of no original game project whose design has not

changed significantly during the course of its development, and when the design

changes but the design document does not, that document starts to become a Fossil-

ized Document.

Suppose a programmer on the development team looks something up in the

Fossilized Document. Say the information that person finds is out of date. They

may start implementing the old, long-since-modified functionality. At some point, a

designer or producer who is aware of the changes that have taken place in the

design will notice that the programmer is creating a system that is no longer appro-

priate, and will chastise the programmer for doing so. This creates frustration for

both parties, not to mention wasting the programmer’s time. Furthermore, when-

ever the programmer needs to know something about the design in the future, he

will not trust the design document, and instead will go hunt down a designer or pro-

ducer to find out how a given system is supposed to function. Of course, this

defeats the purpose of the document, as the designer must stop whatever he is

working on to explain the system to the programmer. This new system may be

described correctly in the document, but the programmer is not going to get burned

again by using the Fossilized Document. When the designer fails to update the doc-

ument when design changes occur, the entire document becomes useless. No one

can trust it, and as a result no one will bother to read it.

342 Chapter 17: The Design Document

A Matter of Weight

It is often joked that design documents are not read, they are weighed. This is not

surprising given the heft of many design documents and the lack of desire among

team members to read them. Shockingly, this statement is often true. I once heard an

ex-producer from a major gaming publisher talk about her experience with design

documents and the project approval process. She said that the “decision-makers”

would bring a scale to their “green-light” meetings. When it came down to two sim-

ilar projects that were both relatively worthy of funding, they would take the design

document for each project and place it on the scale. Whichever one weighed more

would get accepted, the other rejected. Much as it pains me to tell you, if you are in

the commercial gaming business and groveling for dollars at publishers, you need to

make your document hefty. You need it to be impressive to pick up and flip through.

Many will never read it at all. Others will read only the Overview and Table of Con-

tents at the beginning. But everyone will pick it up and remark on its weight.

Of course, many of these super-thick documents contain a lot of information of

negligible value toward the actual development of the project. They may be a stel-

lar example of one of the failed types of documents I discussed earlier, such as a

Back-Story Tome or an Overkill Document. It is your challenge as the game

designer to make the document as practical as possible by providing only useful

information in the document, while making it hefty enough to impress the suits.

One might want to include a large number of flowcharts or concept sketches or

choose to use a bigger font, all while not being too obvious. Indeed, a great game

(though a simplistic one) can have a perfect design document only ten pages long.

One wonders how many great, simple games have been cast aside by publishers

who were unimpressed with the mass of their design documents.

Getting It Read

Once your design document is written, one of your biggest challenges may be get-

ting anyone on the development team to read it. Often, many programmers, artists,

or even other designers will not want to put the time into a careful reading of your

document. Others may have been burned by bad design documents in the past and

will jump to the conclusion that yours is of similarly poor quality. Keeping your

document up to date, including only useful information, providing a detailed table

of contents, and limiting yourself to practical, accomplishable gameplay elements

will help. If your team members sample your document and find it to be of superior

quality, they are more likely to return to it for reference when they are actually

implementing a given system or working on a particular piece of art. As with any

written document, you need to earn the trust of your readers if you hope to keep

them reading.

Chapter 17: The Design Document 343

Another key method of getting your design document read is to make it easily

available to anyone who wants to read it. Keep it in the same source-control system

that your team uses for asset management. You want your team members to be able

to get the latest version of the design document as easily as they get the latest build

of the game. Since you will be constantly revising and updating your document to

keep it up to date with the project (and to prevent it from becoming a Fossilized

Document), source control will be a valuable tool for keeping track of the previous

revisions.

When you check in the latest version of the document, send your team an

e-mail telling them that it is available and explaining what has changed. That way,

people can easily skim over the changes. If one of the changes is relevant to their

work, then they can get the latest version of the document off the network and read

over the relevant updates. Updating your document does not do any good if no one

knows you have updated it, or if people are still reading old revisions. It is probably

a good idea to use a version number with your document, such as 1.3 or 2.7.

Include this version number, along with the date, in a header on every page. Often

people will print out a design document and not realize how old or fossilized it is. If

they can quickly compare a date and a version number, they will know which ver-

sion of the document they have and whether they need to get a new one.

Documentation is Only the Beginning

Some designers seem to think that a thorough design document is, by itself, enough

to build a game. It also seems to be the case that companies have bought design

documents from designers, with those designers moving on to write other design

documents while another team actually executes their design. A design document is

a rough outline, more the suggestion of a game than anything else, and without

being involved in a game’s creation until it goes gold master, one cannot truly be

considered to have designed the game. A designer who takes any pride in his work

will want to be there throughout the project, ready to change the design as necessary

to make it the most compelling game possible and updating the document as the

design is changed and revised (and rest assured it will be continuously changed and

revised). A committed game designer will want to be there to balance the weapons,

the AI, the controls, and certainly the levels, to make sure the game follows the

focus through and the initial vision is realized.

If a designer writes a design document and then passes it on to others to actu-

ally build, the people who do the actual creation will change the design to match

their own interests and artistic drives. The design document will be a springboard

for their own act of creation, not the original designer’s. The design document is an

integral part of the game’s creation, perhaps, but a design document is not all that is

required. To claim any sort of meaningful authorship on the project, a designer

344 Chapter 17: The Design Document

needs to be involved for the duration. In a way, writing the design document is the

easy part of computer game design. Actually taking the document and creating a

compelling gaming experience is much, much harder.

Chapter 17: The Design Document 345

Chapter 18

Interview:
Jordan Mechner

The only complaint one could have about Jordan Mechner’s work in com-

puter games is that he has not made more games. Each of the games he

has designed and spearheaded—Karateka, Prince of Persia, and The Last
Express—has had a unique elegance and sophistication that one seldom

finds in the world of computer games. But the game industry has had to

do without Mechner for several periods of time while he pursued his

other great love, filmmaking. Indeed, it is Mechner’s knowledge of film

that has helped to contribute to the quality of his games. But this quality

does not come through the epic cut-scenes and barely interactive game

mechanics that so often come about when developers attempt to merge

film and gaming. Instead, Mechner has blended film and game tech-

niques in unique and innovative ways, helping his titles to tell stories

visually while still retaining the qualities that make them great games.

346

This interview was originally conducted around the release of The Last
Express for Inside Mac Games magazine. For inclusion in this book,

Mechner was kind enough to fill out the interview a bit, expanding it to

cover the full breadth of his fifteen years in computer game development.

What initially attracted you to computer games?

Well, it was 1979, and I was a sophomore in high school. The first computer

that I ever got a chance to play with was the PDP-11 that we had in our high school.

But it was very hard to get any time on it, and the teacher who was in charge

wouldn’t let the students read the manuals, for fear that would give us the ability to

go in and change grades and stuff like that. So it was this guessing game of trying to

learn how to get the computer to do anything. So when a friend of mine showed me

his new Apple II, it was just like a dream come true, to have a computer in your

own house that you could use whenever you wanted. And it was completely open;

you could pop open the top and see how it was made and you could read all the

manuals that came with it. And of course, the irony was that at that time I didn’t

know of any manuals that explained assembly language. So I was just kind of look-

ing through the assembly code of the computer’s operating system to try to figure

out what the different commands meant. Over the years I picked that up, and more

books came out. It was just this great toy.

Did you always want to make games with the computer?

Well, I guess games were the only kind of software that I knew. They were the

only kind that I enjoyed. At that time, I didn’t really see any use for a word proces-

sor or a spreadsheet. I played all the games that I could find, and in my spare time I

tried to write games of my own. That was just the first use that occurred to me.

So that was the origin of Karateka?

It took a few years to get there. The first really ambitious project I did was a

game called Asteroids. That was my attempt to do for Asteroids what a game called

Apple Invaders had done for the other most popular coin-op game of the time. I fig-

ured that if Apple Invaders was a big hit because it was exactly like the coin-op

game, then I could do the same thing for Asteroids. But my timing was a little off. I

actually finished an assembly language, high-resolution version of Asteroids and

signed a deal with a publisher. But just about then Atari woke up to the fact that

these computer games were ripping off its hugely profitable arcade franchises, so

their lawyers scared everybody off and that Asteroids game was never published.

So then you did Karateka?

No, then I did a game that bore a strong resemblance to Asteroids except that

instead of rocks you had brightly colored bouncing balls, and instead of wrapping

Chapter 18: Interview: Jordan Mechner 347

around the edge of the screen they bounced off, hence its name: Deathbounce. I sent

it to Broderbund (this was 1982, I was a freshman in college) and got a call back

from Doug Carlston, who was at the time handling submissions as well as running

the company. I was very excited to get a call from someone in the computer games

industry. He said, “It looks like it’s well programmed, we’re impressed with the

smoothness of the animation and so on. But it feels kind of old-fashioned. Take a

look at our new game, Choplifter.” Doug was kind enough to send me a copy of

Dan Gorlin’s Choplifter, which was the number one selling game at the time, along

with a joystick to play it with. That was the game that really woke me up to the idea

that I didn’t have to copy someone else’s arcade games, I was allowed to design my

own!

Karateka came

out of a lot of ideas

all kind of converg-

ing at the same time.

Choplifter showed

me what was possible

in terms of smooth

scrolling and an orig-

inal game design.

Meanwhile, I was

getting megadoses of

exposure to cinema;

Yale had about a

dozen film societies

and I was trying to

see in four years every film ever made. Seven Samurai was my new favorite film of

all time. My mom at that time was heavily into karate, and I had taken a few lessons

during the summer down at the local dojo. Finally, I was taking film studies classes

(always dangerous) and starting to get delusions of grandeur that computer games

were in the infancy of a new art form, like cartoon animation in the ’20s or film in

the 1900s. So all those sources of inspiration got rolled into Karateka. What made

the big difference was using a Super 8 camera to film my karate teacher going

through the moves, and tracing them frame by frame on a Moviola. It was

rotoscoping, the same trick that Disney had used for Snow White back in the ’30s.

That made the animation look a lot better than I could have done by hand and better

than the other games that were out there. I worked on Karateka for a couple of years

between classes, and sent it to Broderbund at about the end of my sophomore year.

They were pleased and published it.

348 Chapter 18: Interview: Jordan Mechner

Karateka

TE
AM
FL
Y

Team-Fly®

So one of your goals was to merge cinematic techniques with an action game to

create a unique hybrid?

Very definitely. The accelerating cross-cutting to create suspense had been used

by D.W. Griffith in 1915; I figured it should be tried in a computer game. The hori-

zontal wipe for transition between scenes I lifted from Seven Samurai. The scrolling

text prologue at the beginning. And silly things, like saying THE END instead of

GAME OVER. I used the few techniques that I could figure out how to pull off in

hi-res graphics on an Apple II.

Karateka’s actually quite short. Was that a deliberate decision, to keep the game

focused?

Well, it didn’t seem short to me at the time. Actually, when I submitted it to

Broderbund it only had one level: you’d enter the palace and have the fight. One of

the first things they suggested to me was to have three different levels: you’re out-

side, you’re in the palace, then you’re down below. I wasn’t thinking in terms of

hours of play, I just wanted to make it cool.

The ending is a pretty devious trick, where if the player approaches the princess

in the “attack” stance she’ll kick him. How did you come up with that?

It seemed like a

fun little trick. You

only have one life in

that game: you get as

far as you can, and if

you’re killed, it’s

“The End” and you

have to start the

movie from the

beginning again. So I

figured that most

players, when they

finally got to the end,

would just run right

into her arms. But it’s

not a total cheat,

there’s a little clue there, where she puts her arms out to you, and then if you run

towards her she lowers her arms. So that’s a sign that something’s not right.

Chapter 18: Interview: Jordan Mechner 349

Karateka

But I don’t know that anybody ever played that game and did it right the first

time.

Yeah, in retrospect that was pretty nasty. I don’t know if we could get away with

that today. The other thing that we got away with on Karateka was that if you

played the flip side of the disk, if you put the disk in upside down, the game plays

upside down. I was hoping at least a few people would call Broderbund tech support

and say, “The screen is upside down, I think something’s wrong with my monitor or

my computer.” That way the tech support person could have the sublime joy of say-

ing, “Oh, you probably put the disk in upside down.” And the customer would

happily hang up thinking this was true of all computer software. I thought it was

extremely brave of the publisher to increase the cost of goods by twenty-five cents

just for a gag.

So did Prince of Persia grow out of your experiences on Karateka?

Well, there was a big gap between Karateka and Prince of Persia in terms of

my own life. I finished school and I took a year off. I wasn’t sure that I wanted to do

another computer game. The most direct inspiration there was a game by Ed Hobbs

called The Castles of Doctor Creep, which didn’t get too big a circulation, probably

because it was only available on the Commodore 64. My college dorm mates and I

spent a lot of hours playing that game. It had these ingenious puzzles of the Rube

Goldberg sort, where you hit one switch and that opens a gate but closes another

gate, and so forth. So the one-sentence idea for Prince of Persia was to do a game

that combined the ingenuity of The Castles of Doctor Creep with the smooth anima-

tion of Karateka. So when you ran and jumped you weren’t just a little sprite flying

through the air, your character actually felt like it had weight and mass, and when

you fell on the spikes it felt like it really hurt.

Another inspiration was the first eight minutes of Raiders of the Lost Ark. I

wanted to make a game with that kind of action feeling to it. And then there was the

Arabian Nights setting. I was looking for a setting that hadn’t been done to death in

computer games, and a couple of animators at Broderbund, Gene Portwood and

Lauren Elliot, suggested this one. I went back and reread the Arabian Nights and it

seemed to offer a lot of promise. It had all those great story possibilities which have

been absorbed into our collective unconscious—genies, the voyages of Sinbad,

Aladdin’s cave. It was just crying out to be made as a computer game.

You said you had taken some time off before making Prince of Persia. What

finally made you want to come back and do another game?

That was the year I wrote my first film screenplay. It was optioned by Larry

Turman, a very nice man who had produced about fifty films including The Gradu-

ate. We had a year of meetings with directors and studios and came close to getting

it made, but in the end it didn’t come together. Later I found out that for a first-time

350 Chapter 18: Interview: Jordan Mechner

screenwriter, that’s

not considered a bad

start at all. But I’d

been spoiled by

computer games,

and I thought, “My

God, I’ve just spent

six months here in

Los Angeles waiting

for something to

happen, and the film

isn’t even getting

made.” In compari-

son, I knew that if I

finished Prince of

Persia, it would get published. So I figured I’d better stick with that. At the point

when all this good stuff had started to happen with the screenplay, I was about six

months into Prince of Persia, and I’d put it aside for almost a year to focus on

screenwriting. It was pretty scary going back to programming after so much time

off; I was afraid I wouldn’t be able to remember my own source code. But I went

back, picked it up again, and finished it.

One thing about Prince of Persia is that it takes this finite amount of game ele-

ments and stretches them out over all of these levels. Yet it never gets dull or

repetitive. How did you manage that?

That was really the challenge of the design. It was modular in that there were a

finite number of elements that could be recombined in different ways. It’s the same

thing you try to do in a movie. You plant a line of dialog or a significant object, and

fifteen or thirty minutes later you pay it off in an unexpected way. An example in

Prince of Persia would be the loose floors. The first time you encounter one it’s a

trap: you have to step over it so you don’t fall. Then later on, it reappears, not as a

trap but as an escape route: You have to jump and hit the ceiling to discover there’s

a loose ceiling piece that you can knock down from below. Later on, you can use

one to kill a guard by dropping it on his head, to jam open a pressure plate, or—a

new kind of trap—to accidentally break a pressure plate so that you can never open

it again.

It was necessary to make Prince of Persia modular because the memory of the

computer was so limited. The smooth animation of the character, with so many

intermediate frames and so many moves, was taking up a huge percentage of that

64K computer. When efficiency is not an issue, you can always add production

value to a game by throwing in a completely new environment, or special effect, or

Chapter 18: Interview: Jordan Mechner 351

Prince of Persia

enemy, but when you’re literally out of RAM and out of disk space, you have to

think creatively. Which in turn forces the player to think creatively. There’s a certain

elegance to taking an element the player already thinks he’s familiar with, and chal-

lenging him to think about it in a different way.

Prince of Persia is really a simple game to control, especially compared to modern

action games. Was that a design goal of yours?

Absolutely. That was a very strong consideration in both Karateka and Prince

of Persia, and I spent hours trying to figure out how to integrate certain moves.

Should it be up with the joystick, or up with the button? Personally, I have a strong

prejudice against games that require me to use more than one or two buttons. That’s

a problem, actually, that I have with modern action games. By the time I figure out

whether I’m using A, B, X, O, or one of those little buttons down at the bottom of

the controller pad that you never use except for one special emergency move, I’ve

lost the illusion that it’s me that’s controlling the character.

Ideally, you

want to get the

player so used to

handling the joy-

stick and the

buttons that the

action starts feeling

like an extension of

him or herself. The

trick there, obvi-

ously, is that when

you bring in a new

movement that you

haven’t used

before, you want

the player to somehow already “know” what button or what combination of actions

is going to bring off that move. In Prince of Persia there were moves where I

thought, “This would be great, but I don’t have a button for it, so let it go. It would

be cool, but it doesn’t help the game overall.” A major constraint was keeping the

controls simple and consistent.

352 Chapter 18: Interview: Jordan Mechner

Prince of Persia

As far as game design, it seems that Prince of Persia was a logical extension of

what you did in Karateka, and Prince of Persia 2 was in turn an extension of that.

But The Last Express seems to be off in a completely new direction. What pro-

voked you to do something as different as Last Express?

I guess I don’t think of Last Express as being off in a new direction. I was still

trying to tackle the same problem of how to tell a story and create a sense of drama

and involvement for the player. There are a number of proven action game formulas

that have evolved since the days of Prince of Persia. Part of what interested me

about doing an adventure game was that it seemed to be a wide open field, in that

there hadn’t been many games that had found a workable paradigm for how to do an

adventure game.

So it wasn’t the inspiration of other adventure games?

No, on the contrary in fact. If you look at the old Scott Adams text adventures

from the ’80s, it’s surprising how little adventure games have progressed in terms of

the experience that the player has: the feeling of immersion, and the feeling of life

that you get from the characters and the story. So I guess it was the challenge of try-

ing to revitalize or reinvent a moribund genre that attracted me.

What inspired you to set the game on the Orient Express in 1914?

In computer game design you’re always looking for a setting that will give you

the thrills and adventure that you seek, while at the same time it needs to be a con-

strained space in order to design a good game around it. For example, things like

cities are very difficult to do. A train struck me as the perfect setting for a game.

You’ve got a con-

fined space and a

limited cast of char-

acters, and yet you

don’t have that static

feeling that you

would get in, say, a

haunted house,

because the train

itself is actually mov-

ing. From the

moment the game

starts, you’re in an

enclosed capsule that

is moving, not only

towards its destina-

tion—Paris to

Chapter 18: Interview: Jordan Mechner 353

The Last Express

Constantinople—but it’s also moving in time, from July 24th to July 27th, from a

world at peace to a world at war. The ticking clock gives a forward movement and

drive to the narrative, which I think works very well for a computer game.

The Orient Express, of course, is the perfect train for a story that deals with the

onset of World War I. The Orient Express in 1914 was the “new thing”; it was an

innovation like the European Economic Community is today, a symbol of the unity

of Europe. At the time it was possible to travel from one end of Europe to the other,

a journey that used to take weeks, in just a few days, without trouble at the borders

and so on. On that train you had a cross-section of people from different countries,

different social classes, different occupations—a microcosm of Europe in one con-

fined environment. All these people who had been traveling together and doing

business together, found themselves suddenly separated along nationalist lines for a

war that would last four years and which would destroy not only the social fabric

but also the very train tracks that made the Orient Express possible. To me the Ori-

ent Express is a very dramatic and poignant symbol of what that war was all about.

And a great setting for a story.

So would you say your starting point for Last Express was: “I want to make an

adventure game, what sort of story can I tell in that form?” Or was it: “Here’s a

story I want to tell, what type of game will allow me to effectively tell it?”

Definitely the latter. Tomi Pierce [co-writer of The Last Express] and I wanted

to tell a story on the Orient Express in 1914 right before war breaks out: how do we

do that? I didn’t really focus on the fact that it was a switch of genre from Prince of

Persia, or what that would mean for the marketing. It just became apparent as we

worked out the story that given the number of characters, the emphasis on their

motivations and personalities, the importance of dialog and different languages, that

what we were designing was an adventure game. I consciously wanted to get away

from the adventure game feel. I don’t personally like most adventure games. I

wanted to have a sense of immediacy as you’re moving through the train, and have

people and life surging around you, as opposed to the usual adventure game feeling

where you walk into an empty space which is just waiting there for you to do

something.

Was this your reason for adding the “real-time” aspect to Last Express, something

we’re not used to seeing in adventure games?

Of course, it’s not technically real-time, any more than a film is. The clock is

always ticking, but we play quite a bit with the rate at which time elapses. We slow

it down at certain points for dramatic emphasis, we speed it up at certain points to

keep things moving. And we’ve got ellipses where you cut away from the train,

then you cut back and it’s an hour later.

354 Chapter 18: Interview: Jordan Mechner

But still, it’s more real-time than people are used to in traditional adventure

games.

Or even in action games. I’m amazed at the number of so-called action games

where, if you put the joystick down and sit back and watch, you’re just staring at a

blank screen. Once you clear out that room of enemies, you can sit there for hours.

You mentioned filmmaking back there, and I know in 1993 you made your own

documentary film, Waiting for Dark. Did your experience with filmmaking help

you in the making of Last Express?

It’s been extremely helpful, but I think it can also be a pitfall. Film has an

incredibly rich vocabulary of tricks, conventions, and styles which have evolved

over the last hundred years of filmmaking. Some have been used in computer games

and really work well, others are still waiting for someone to figure out how to use

them, and others don’t work very well at all and tend to kill the games they get

imported into. The classic example is the so-called “interactive movie,” which is a

series of cut-scenes strung together by choice trees; do this and get cut-scene A and

continue, do that and get cut-scene B and lose. For Last Express, I wanted the player

to feel that they were moving freely on board a train, with life swirling all around

them and the other characters all doing their own thing. If someone passes you in

the corridor, you should be able to turn around, see them walk down the corridor the

other way, and follow them and see where they go. If you’re not interested, you can

just keep walking. I think of it as a non-linear experience in the most linear possible

setting, that is, an express train.

All of your games have featured cut-scenes in one way or another, and in

Karateka, Prince of Persia, and Last Express they’ve all been integrated into the

game so as to be visually indistinguishable from the gameplay. Was this a con-

scious decision on your part?

Absolutely. Part of the aesthetic of all three of those games is that if you sit back

and watch it, you should have a smooth visual experience as if you were watching a

film. Whereas if you’re playing it, you should have a smooth experience controlling

it. It should work both for the player and for someone who’s standing over the

player’s shoulder watching. Cut-scenes and the gameplay should look as much as

possible as if they belong to the same world. Karateka used cross-cutting in

real-time to generate suspense: when you’re running toward the guard, and then cut

to the guard running toward you, then cut back to you, then back to the shot where

the guard enters the frame. That’s a primitive example, but one that worked quite

well.

Same idea in Last Express: you’re in first-person point-of-view, you see August

Schmidt walking towards you down the corridor, then you cut to a reaction shot of

Cath, the player’s character, seeing him coming. Then you hear August’s voice, and

Chapter 18: Interview: Jordan Mechner 355

you cut back to

August, and almost

without realizing it

you’ve shifted into a

third-person dialog

cut-scene. The scene

ends with a shot of

August walking

away down the corri-

dor, and now you’re

back in point-of-

view and you’re con-

trolling it again. We

understand the mean-

ing of that sequence

of shots intuitively

because we’ve seen

it so much in film. A classic example is Alfred Hitchcock’s Rear Window. The

whole film is built around the triptych of shot, point-of-view shot, reaction shot,

where about half the movie is seen through James Stewart’s eyes. That’s the basic

unit of construction of Last Express in terms of montage.

On the other hand, in Prince of Persia 2, the cut-scenes were actually painted pic-

tures that looked quite a bit different from the actual gameplay. I seem to recall

not enjoying those quite so much . . .

I agree with you about that. There’s a distancing effect to those cut-scenes, they

make you feel like you’re watching a storybook. But it was the effect we were going

for at the time.

Right now there seems to be a trend away from full-motion video cut-scenes in

computer games . . .

And rightly so, because the full-motion cut-scenes sometimes cost as much as

the whole game and it’s debatable whether they really improved the gameplay.

Also, there’s the problem that the quality of the cut-scenes in most cases was pretty

low, if you compare it to good TV or good movies.

So you made a conscious attempt to do something different in merging a

filmmaking style with a game-making style?

My hope is that Last Express offers something that hasn’t really been offered by

any other adventure game, or actually a game of any genre, which is to really find

yourself in a world that’s populated by people. Interesting, well-rounded characters,

356 Chapter 18: Interview: Jordan Mechner

The Last Express

that are not just physically distinguishable, but have their own personality, their own

purpose in the story, their own plans of action. And through the fairly conventional

point-and-click mechanism, you’re actually interacting with a world that’s not just

visually rich but richly populated.

So how did you go about designing the player’s method of interacting with the

game?

Our goal was to keep it as simple as possible. Point-and-click appealed to me

because I always saw Last Express as a game that would appeal to a more main-

stream audience of adults. People who don’t usually play computer games and

aren’t particularly handy with a joystick aren’t going to sit still to learn a large num-

ber of keys and what they all do. Pointing and clicking is something that adults in

our society know how to do, so the challenge was to construct a game where you

wouldn’t have to know how to do anything beyond how to pick up a mouse and

move it over the screen. The cursor changes as you pass over different regions to

show you what you can do: you can turn left, you can talk to a different character.

The specifics of how that works evolved as we tested it. During the development we

worked out problems like: “Do ‘up’ and ‘forward’ need to be different-shaped

cursors?” We decided yes they do. “Do ‘look up’ and ‘stand up’ need to be differ-

ent?” We decided no, they can both be the up arrow. But the basic idea that it would

be hot-spot based, point-and-click was very much a part of the original design.

So how much film did you shoot for Last Express? It seems like there is a mon-

strous amount of footage in there.

The whole pro-

ject, because of its

size, was a huge

logistical challenge.

The film shoot was

actually only three

weeks long. Which is

not very much, when

you consider that an

ordinary feature film

shoot takes at least

four weeks, shooting

an average of three

screenplay pages a

day. Whereas for

three weeks, we shot

about fifteen

Chapter 18: Interview: Jordan Mechner 357

The Last Express

screenplay pages a day. We had a few tricks that allowed us to move that fast: the

fact that it was all blue-screen, the fact that we were shooting silent and had

recorded the sound previously, and the fact that we were under-cranking, shooting

seven and a half frames per second in some scenes, five frames per second in others.

With the goal being to select key-frames and then reanimate them, as you see in the

finished game. All that let us shoot a lot of material.

But in terms of keeping track of it . . . Just to give an example, the first phase of

the shoot was in the train corridor. We laid out a fifty-foot track representing the

corridor, with yellow lines on the blue-painted floor with a blue-painted cyc-wall

behind it. And for three days we marched all thirty characters on the train up and

down that corridor. The key moment, when a character walks toward the camera, is

the moment of eye contact—friendly or unfriendly—the nuance of that glance being

one of the things that brings you into the game as Cath, makes you feel that you’re

not just a phantom presence on the train but that people are reacting to you, even as

they pass you in the corridor. For the first three days we just filmed corridor walks,

and we had it basically down to a science. The camera was locked down for three

days; it didn’t move. If the camera moved, then we would have footage that didn’t

line up.

After three days in the corridor we moved to the restaurant, and again we had to

do that in a very unusual way. Instead of shooting one scene at a time and covering

each scene with a variety of camera setups, as we would in a film, instead we shot

one camera setup at a time. From each camera setup we would shoot all the differ-

ent scenes or actions that could possibly be seen from that angle in the course of the

entire story. We would lock down the camera in each position, say, the “seated at the

table looking straight ahead” view. We’d set up the other tables, and film every

piece of action that could be seen from that view—August Schmidt walks in, sits

down, orders dinner, the waiter brings him the food, he eats it, puts down his nap-

kin, gets up, and walks away. Then with the camera set up from a different dining

room angle, we’d have the same actors repeat the same actions. To make the shoot

as efficient as possible was a bit of a jigsaw puzzle, figuring out which actors to

bring in on which days and when to let them go, and is it more economical to move

the camera one extra time so that we can send a bunch of actors home early, or

should we leave the camera where it is and pay the actors for the whole day. That

times nineteen days was a logistically very complicated film shoot. With a lot of the

action being filmed from multiple angles, since in the game, you never know what

angle the player’s going to see it from.

And once it was all shot, it must have been a tremendous challenge to keep it all

straight.

We did the editing on an Avid; without that I don’t know what we would have

done. We dumped it all onto huge hard drives on this Macintosh-based non-linear

358 Chapter 18: Interview: Jordan Mechner

TE
AM
FL
Y

Team-Fly®

editing system, and selected the frames we wanted. We pushed that Avid system to

its limits. At one point our film editor had to call tech support because the system

was slowing down so much. When he told them how many effects he had, they

were startled, and couldn’t believe it was still functioning. We had more frame dis-

solves in just one of our scenes than they had anticipated anyone would ever have in

a normal feature film. We were picking still frames and dissolving from one to

another, so that every frame in the game was a special effect.

The official number is that we had forty thousand frames of animation in the

game. In comparison to an animated feature film, however, that number is mislead-

ingly low. In a typical dialog scene we’re dissolving between still frames on the

average of once every second or once every two seconds, whereas a conventional

film runs twenty-four frames per second. So to get the equivalent in terms of how

much action we really covered, you need to multiply forty thousand by twenty-four.

Also, a lot of frames are reusable. You’ve got one hundred fifty frames of the char-

acter walking up the corridor towards camera, then one hundred fifty frames

walking away from camera. Using just those three hundred frames, the train con-

ductor character, say, might spend ten hours walking over the course of the game.

When you walk into the dining room, you see six tables, and each table can have its

own action going on independently. If you play the game from start to finish five

times, the sixth time you might see two characters in the room together, whereas

before they were always in the room separately. Just because the action unfolds a

little differently. So the number of combinations of that footage is pretty much

unlimited.

So what made you come up with the effect of dissolving between frames every one

or two seconds used in Last Express? Why didn’t you use the more traditional,

full-motion style throughout the game?

From our point of view, full motion is basically an expensive special effect. It

looks great, as in the corridors, as in the fights. But if we had decided to use that for

the entire game, I think we would have ended up with something that was visually

very flashy but not very deep. We’re limited both by the amount of frames that can

be kept in RAM, and by the number of CDs. But ultimately, you’re limited by the

processor’s ability. When you walk into the restaurant and it’s full of people, with a

number of different animations happening on the screen at the same time, as well as

multiple tracks of audio streaming from the CD, that’s possible only because each

character is only animating every few seconds.

But there’s also an aesthetic disadvantage to full motion. Say the technological

limitations could be overcome, and we had a thirty-second loop of a character eat-

ing dinner. Sooner or later you realize the character is repeating. So you say, “Why

is it that when he takes a sip from his wine glass and then takes a bite of steak, the

steak keeps getting replenished every time he eats it?” That’s not helpful to the

Chapter 18: Interview: Jordan Mechner 359

game, to have the

player’s attention

distracted by follow-

ing those little

full-motion bits.

When it gets down to

it, we decided that

what’s important for

the game is that the

player believe the

character is there,

having dinner for an

hour and fifteen min-

utes. And any time

during that hour you

can talk to him. The

fact is that dissolving

between still frames gives just as good an impressionistic sense of “dining” as the

full motion would, and in some ways better, because you don’t have that glitch

when the film loops. So, with this convention, once the player accepts it, it opens up

the world and gives you the ability to tell this huge story that goes on for three days

and three nights with thirty characters doing all kinds of things. It would have been

a drastically smaller story had we stuck to full motion.

I noticed in the credits that for almost all the characters you have one actor doing

the physical acting—what the player sees on the screen—and another doing the

voice. Why did you decide to use different actors for the visual and audio aspects

of the game?

Casting was a tremendous challenge with a cast where you’ve only got two

Americans, and everybody else is French, Russian, Austrian, Serbian, Arabic . . .

The Orient Express was a truly multilingual train. We made the decision to have the

characters not just speak English with a foreign accent, as when they’re talking to

the American hero, but to also speak their native language, subtitled, whenever they

would normally do so. When the two French conductors are chatting with one

another off-duty, they’d naturally be speaking French. So casting American actors

who can do a fake German or French accent just wasn’t acceptable to us. We needed

native speakers for each language. I think we were very lucky to get such a good

cast both for the faces and for the voices. But to ask for the perfect face, the perfect

voice, and the perfect nationality to be united in one person for each role would

have been too much to ask—especially in San Francisco, on our budget! There

360 Chapter 18: Interview: Jordan Mechner

The Last Express

again, the fact that we weren’t doing full-motion lip-synching gave us the flexibility

we needed in casting.

Tatiana is a case in point. We used three casting agencies and auditioned hun-

dreds of actors in both L.A. and San Francisco, looking for the face and voice of a

sixteen-year-old Russian princess. The actress who ended up doing the voice is Rus-

sian and lives in L.A., the one we filmed is American and lives in San Francisco. To

find one actor who was that good for both, we would have certainly needed to go

out of state, if not to Russia!

By the way, we recorded the voices first, and then created animated visuals to

match, so the voice actors were free to create their own performance, as they would

with a radio play or doing a Disney cartoon. It gives you a more natural voice per-

formance than overdubbing. I think when you force actors to lip-synch to previously

filmed action, you lose something in the performance.

Reality seems to have been a dominant goal in your design of the game, whether

it’s the native speakers for the voice acting or if it’s the authentically modeled

train cars. Why did you go to such great lengths to make the game as real as

possible?

It’s a matter of respect for the player. Whether it’s a history world or a fantasy

world, I think that players respond to the amount of detail and consistency that the

creators of the game put into it. And even if the player doesn’t pay enough attention

to the conductors to figure out that one of them is close to retirement and the other

one is a young married guy, or that they have opposite political views, even so,

whenever you pass them in the corridor and overhear a little bit of one of their con-

versations, you get the subliminal feeling that you’re hearing a real conversation

between two real people. If we hadn’t bothered, then whenever you walked by,

you’d hear something artificial, and think, “You know, that sounds like something

they just staged for my benefit.” The fact that what you see in the game is just the

tip of the iceberg, and that all the characters have their own history, and their own

reality under the surface, you feel the mass of that, and the weight of it, though you

don’t actually see anything more than the tip.

Do you think computer games in general should strive for greater realism?

Well, realism is a bit of a loaded term. I don’t mean to imply that games should

be more realistic in terms of representing our world. Even something like Super

Mario Bros., which is completely a fantasy setting, has its own consistency. If a

character can jump off a ledge and float to the bottom in one situation, you

shouldn’t have another situation where he jumps off and he gets crushed. As long

as the creators actually took the time to think, “What are the rules for gravity in this

world, and under what circumstances can you get hurt?” As long as the game plays

by its own rules, players will accept it. In Last Express, we chose a real historical

Chapter 18: Interview: Jordan Mechner 361

moment, and we were very conscious about trying to represent faithfully what was

going on in the world at that time, and to respect that reality when drawing the con-

straints of our fictional world.

You use a very unique technique in Last Express where, though the actors were

filmed, in the end they look like very well-crafted cartoons. Why did you decide to

do it that way?

To begin with, I

like the cartoon look

aesthetically. I think

the look of cartoon

people against a 3D

rendered background

is very attractive.

Films like Snow

White and the Seven

Dwarfs had technical

reasons why they had

to be flat—they were

painted on cells—but

they bring out the

character nicely, and

I think it’s a look that

has good connota-

tions for those of us who as kids wanted to step inside the cartoon and become one

of the characters.

I think for computer games, there’s another advantage to having the characters

be cartoons, as opposed to live, filmed people. The experience of the computer

game player depends on being able to put yourself into a fantasy world, suspend

disbelief, and believe that what you’re doing actually has an effect on these fictional

characters. If you’re watching a filmed live actor, intellectually you know that this is

someone who was filmed on a sound stage, in a costume, with lights and cameras,

and whatever he’s saying and doing on the screen is what he did on the set. You

know you’re watching a cut-scene. Whereas with a cartoon, they’re not real to begin

with, so if you can believe that a cartoon character can walk and talk, why shouldn’t

he also be able to change his behavior in response to your actions as the player—for

instance, run away when he sees you coming?

So it adds to the suspension of disbelief?

Or, at least, it doesn’t break it, whereas filmed action would. And I think that’s

part of the reason why video cut-scenes haven’t been successful in computer games

362 Chapter 18: Interview: Jordan Mechner

The Last Express

at large. It’s just not a good fit.

Finally, of course, there’s one last reason why the cartoon style works in Last

Express, which is a historical one. Most of the images we have, culturally, from

1914 come to us through drawings of the time: newspaper drawings, magazine

advertisements, poster art by artists like Alphonse Mucha and Toulouse-Lautrec,

which were in an Art Nouveau style which was really the forerunner of the modern

comic book. So I think when we see someone in 1914 dressed as a cartoon, it feels

right in a certain way, whereas if we saw a 1914 person as a 3D polygonal model, it

wouldn’t have that same resonance.

So do you think a game with a more modern setting could use the same cartoon-

character approach to the visuals?

Well, I like the look a lot, and it could work in a lot of different situations. I

don’t think it needs to be a historical setting. But it was just one more reason why,

for Last Express, it was too perfect to resist.

So since the characters ended up looking like cartoons, why didn’t you just draw

them from the very start, instead of filming actors and then making them look

like drawings?

One reason was that, to get the high quality of animation and cell-type expres-

sion that you have in a Disney film, you need to spend as much money as Disney

spends. As expensive as this game was by computer game standards, it’s a tiny frac-

tion of the budget you would spend on an animated feature. We wanted to assure

consistency that the same character would look like the same character, whether

they were seen from up close or far away, angry or happy, and from different, very

difficult-to-draw angles. And to achieve that for forty thousand animated frames,

there’s just no way you’re going to be able to do that on the budget we had.

The goal of our automated rotoscope was to take a black-and-white filmed

frame and to turn that into something resembling a pen-and-ink line drawing, where

an artist could pull up that frame and colorize it in less than two minutes. We got to

the point where we had it set up like an assembly line. And not only that, but you

could have two different artists working on the same character, and because the

digitization and the rotoscoping were done automatically, it would yield very simi-

lar results. Anna looks like Anna, regardless of who colored her for that sequence.

We didn’t want it to look like a processed film image, and we didn’t want it to

look exactly like a cartoon. If you see a character walking toward you down the cor-

ridor and you’re not quite sure whether you’re looking at a drawing or a processed

filmed image, then we pretty much achieved our goal. And I think we did. Occa-

sionally we have someone ask, “Did you draw all this by hand?” If they can’t tell it

was filmed, then it worked.

Chapter 18: Interview: Jordan Mechner 363

I thought one of the most innovative design elements in the game is the save-game

system you used. Players never actually save their game, but Last Express auto-

matically remembers everything they do, and they can “rewind” to any point in

their game they want, if they want to try something a different way. How did you

come up with this system?

I’m glad you asked. I’m very proud of the save-game system. The funny thing

is that some people, including some reviewers, just didn’t get it. We still occasion-

ally get a review where they say, “It’s too bad you can’t save your game.” Our goal,

of course, was an extension of the design philosophy that went into the point-and-

click system; we wanted it to be very simple, very transparent, and intuitive. To

have to think about the fact that you’re on a computer, and you have to save a file,

and what are you going to name the file, and how does this compare to your previ-

ous saved game file—to me that breaks the experience. The idea was that you’d just

sit down and play, and when you stopped playing, you could just quit, and go to din-

ner, or use the computer for something else, or whatever. And when you go back to

playing, it should automatically put you back to where you left off. And if you make

a mistake, you should be able to rewind, like rewinding a videotape, go back to the

point where you think you went wrong, and begin playing from there. And I think it

works. The six different colored eggs were inspired by, I guess, Monopoly where

you can choose which piece you want: the hat, or the car. . . The idea was that if

you have a family of six, everybody will have their own egg, and when someone

wants to play they can just switch to their own egg and pick it up where they left it

off. People who complain that you can only have six saved games, or that you have

to use colors instead of filenames, are fixated on the conventional save-game file

system; they’ve missed the point. An egg file isn’t a saved game; it’s essentially a

videotape containing not just your latest save point, but also all the points along the

way that you didn’t stop and save. You can usually rewind to within three to five

real-time minutes of the desired point.

Music also seems to have been effectively used in Last Express. It shifts depending

on what’s going on in the game, as opposed to music in most adventure games

that just plays in the background, never changing. How did you approach the

game’s musical aspect?

We knew that music would be very important to the texture of the game, and

finding the right composer was very important. And we found him: Elia Cmiral, a

very talented film composer from Czechoslovakia, who, by the way, is not a com-

puter game player, had never scored a computer game, and I think even to this day

has never played a computer game. We approached it as a story, as situations, and

once he understood that there were mutually contradictory situations possible in the

same story—that in one outcome Cath gets stabbed and killed and in another out-

come he gets past that and goes on with the story—he had no problem scoring the

364 Chapter 18: Interview: Jordan Mechner

different variations. (Elia has since achieved success as a Hollywood composer with

scores for Ronin, Stigmata, and other films.)

Actually, although the cliché is that the composer always wants to add more

music and turn down the sound effects so the music can be louder, Elia is very disci-

plined about the role of music. For scenes where I thought he would put a big

dramatic chord or at least a little bit of underlining, he’d say, “No, that’s corny, it

plays better without it.” So he was really reducing the number of situations, saving

the music for places where it could really add something. We don’t have any wall-

paper music in Last Express; there’s no point at which music is just repeating in the

background, waiting for you to do something. The real music of Last Express is the

noise of the train. You become very attuned to subtle shifts in the ambience: a door

opens, the train noise gets louder, or you hear a door close somewhere, or you hear a

rumble of thunder in the distance, or the train slows down as it arrives at a station.

All of that almost comes to the foreground in the sound track, so that when the

music does appear it’s really noticeable. And in the dramatic scenes, the cut-scenes,

we scored those as you would in a film, using music, I hope subtly, to bring out the

different characters and situations. The fact that Anna, the leading lady, is a violin-

ist, gave Elia a major instrumental motif for the score. There’s a few hours of

gameplay on the second day where Anna is practicing in her compartment, and if

you walk through the train you hear her playing Bach partitas, tuning up, playing

scales, and so forth. Her character’s main theme is a violin theme as well, and

appears in different guises in different situations as the story develops.

It’s a game you really wouldn’t want to play with the sound off.

Certainly it would lose a lot without the sound. In Last Express the sound is

more than just the dialog. Without the shift in ambient noise, the music, the sound

effects operating as clues, the feeling of hearing a conversation so far away you

can’t quite make out the words and then getting closer to it, and then the effect of

hearing conversations in foreign languages that you can’t understand no matter how

close you get, all of that’s really integral to the experience of The Last Express. It’s

funny because people tend to focus on the graphics. But one of the more technically

innovative things we did was on the sound track. Most people aren’t aware of it, but

we actually have six tracks of sound being simultaneously streamed off the CD and

mixed on the fly. For example, you can have the train ambient noise, the sound

effect of a door opening, two people talking, thunder rolling in the distance, and a

bit of music trailing off from the last cut-scene, and all of that going at the same

time. It really creates a very rich sonic tapestry.

Again differing from many other adventure games, Last Express offers a fairly

non-linear experience for the player, where there seem to be multiple ways to get

Chapter 18: Interview: Jordan Mechner 365

through to the end. Do you think non-linearity in adventure games is important?

It’s crucial, otherwise it’s not a game. There are a couple of game models which

I wanted to steer away from, one of which is where you have to do a certain thing to

get to the next cut-scene or the story doesn’t progress. Another is the kind of

branching-tree, “Choose Your Own Adventure” style, where there’s ten ways the

story can end, and if you try all ten options you get to all ten of them. One of the

puzzle sequences

that I think worked

best in Last

Express is one of

the first ones,

where you encoun-

ter Tyler’s body

and you have to

figure out what to

do to get rid of it.

There are several

equally valid solu-

tions, and each one

has its own draw-

backs, ripple

effects down the

line. For example,

if you hide the body in the bed, you risk that when the conductor comes to make the

bed he will discover the body there, so you have to deal with that somehow. You

can avoid that problem by throwing the body out the window, but if you do that,

then the body is discovered by the police. And they board the train at the next stop

and you have to figure out how to hide from the police when they’re going compart-

ment to compartment checking passports. Either way, your actions have

consequences on the people around you. As another example, if you throw the body

out the window, you may overhear François, the little boy, saying to his mom, “Hey,

I saw a man being thrown out the window.” And she’ll say to him, “Shut up, you lit-

tle brat, don’t tell lies!”

I hadn’t even noticed that.

The game is full of little things like that.

So is that why you don’t tend to like other adventure games, because they’re too

set in “primrose path” style?

Some adventure games have great moments, but in terms of the overall experi-

ence it’s rare that a game consistently keeps that high a level. In Last Express too,

366 Chapter 18: Interview: Jordan Mechner

The Last Express

there are parts of the game that don’t quite live up to the expectations set up by that

first disposing-of-the-body puzzle. Defusing the bomb is one I wasn’t so happy

with. You just have to grit your teeth and follow the steps; there’s no way around it.

It’s not a particularly clever puzzle. But again, the main concern was that the story

would work overall, and that the overall experience would be satisfying.

I’ve heard many adventure game designers say that to effectively tell a story, you

really need to limit the player’s options, and force them on a specific path. Do you

agree with this notion?

It’s true, of course; it’s just a matter of how you limit what the player does. The

too-obvious-to-mention limit in Last Express is that you can’t get off the train. Any

time you get off the train, the game ends. The only way to win is to stay on the train

all the way to Constantinople. So in that sense, yeah, it’s the ultimate linear story.

You’re on a train, you can’t get off. But given that, within the train you should be

able to move around as freely as possible. There are some doors that we just had to

close because they would have changed the story too much and they wouldn’t have

let us get to the ending we wanted to get to. What if you take the gun and go

through the train and kill everyone? We decided you just can’t do that. So there’s

definitely a trade-off. The more wacky, off-the-wall options you give the player, the

more that limits the complexity and the power of the story you’ve set out to tell.

Whereas if you want to keep a very ambitious, central narrative that’s itself large in

scope, then you have to start closing doors around that, to make sure the player

stays in the game.

Every game approaches this challenge in a different way. With Last Express, the

train motif gave us the metaphor that we needed to keep it on track. I think once

people get the idea that they’re on the train, time is ticking, and they have to do cer-

tain things before certain stops, and they have to get to Constantinople or else they

haven’t really made it to the end of the line; once they get that, the story works. It’s

a matter of finding a balance for what works for each particular story. What’s right

for one game might not be right for another. I wouldn’t even begin to know how to

use the Last Express engine to do a game that wasn’t set on a train.

Last Express seems to have not sold well because of the lack of an adventure game

market. Yet adventure games used to be very popular. I’m wondering if you had

any idea what happened to all of the adventure game players?

That’s a good question, and I have to say that I was caught by surprise when I

woke up to find the adventure game market was dead, because I’d never really

thought that much in terms of genres. Even doing Last Express, the fact that Prince

of Persia was an action game while Last Express was an adventure game, I just

wasn’t thinking about it that way, right or wrong. As a game player, I’m not a big

adventure game player myself, for a lot of reasons. Usually the graphics weren’t

Chapter 18: Interview: Jordan Mechner 367

very good, the story lines were kind of arbitrary and contrived, the characters and

the plot just didn’t stand up in terms of the kind of story that I would want to see in

a movie or a novel.

So with Last Express I wanted to do a game that would have what I saw as the

qualities that were missing from most of the adventure games that were out there.

So as a player, I guess I have to assume my share of the guilt for not supporting the

adventure game market. I think I underestimated the degree to which the games

market had been stratified by the different genres. You had people out there who

saw themselves as action game players, as strategy game players, as role-playing

game players, or as adventure game players. I never shopped for games that way,

but I guess over a period of a few years there in the early ’90s, even computer game

publications started to stratify games according to genre. So did publishers, so did

shops, and I guess I didn’t see that coming.

So you don’t have any ideas about why the adventure game market dried up?

Well, I can only look at my own experience as a player. I enjoyed playing

adventure games back in the Scott Adams days, and then I kind of got bored with

them. I think adventure game makers need to stop asking, “Where did the market

go?” I think the question is, “Why do people no longer find these games fun to

play?” Maybe it’s something about the games themselves.

Your first two games, Karateka and Prince of Persia, were both solo efforts, where

you did all of the designing, writing, programming, and even drew the art. How

do you compare working with a large team on Last Express to working by

yourself?

It’s a lot more

exciting and

rewarding than

working alone,

because you have

the chance to work

collaboratively

with a large team

of talented people

who are really ded-

icated and who

excel in their own

specialties. It was

one of the most

thrilling experi-

ences of my

368 Chapter 18: Interview: Jordan Mechner

Karateka

TE
AM
FL
Y

Team-Fly®

professional life. The downside, of course, is that you spend all your time worrying

about where the next payroll is going to come from. One thing that was really nice

about the old days was that the cost of developing a game was negligible. Once

you’d paid the two thousand dollars for the computer and you’ve got five blank

floppy disks, it was basically paid for. Whereas with a large project there’s a lot of

pressure to meet budgets and schedules.

Computer games seem to be one of the only art forms that have shifted from

being predominantly solo endeavors to being more collaborative efforts, at least

for commercial titles. How do you think that affects the final games?

It’s interesting. What I’m doing right now, writing film screenplays, reminds me

more of programming than any other activity I’ve done in a long time. Like

programming, writing screenplays is basically a matter of closing the door behind

yourself in a room with a computer and nothing else. You’re trying to create some-

thing from scratch. If you write a screenplay that gets made into a movie, at that

point, like a modern computer game, you’ve got the whole circus, with highly spe-

cialized, skilled people, and it’s a creative collaboration between hundreds or more,

all of whom bring their own area of expertise. A big-budget movie, for all the daily

chaos of production, lives or dies on the strength of the script that was written,

often, years before. A modern game is a collaborative effort in the same way, on a

very tight budget, with money being spent daily, usually with a publisher who’s

banking on being able to ship it by a certain date. There again, what makes it work

or not is the strength of the concept, the initial vision, which usually predates the

whole production. There’s just no time to change your mind on the fly during pro-

duction about what the game should be.

But that tends to limit what kind of game designer can be successful, doesn’t it?

One who needs to make radical changes throughout the project to find the ideal

gameplay would have been more successful in 1982 than now. Now he wouldn’t

be working at all.

He just wouldn’t be working on a big-budget, multimillion-dollar production. A

game like Tetris I think is well within the means of anyone to dream up and pro-

gram, and if it takes them a year to find just the perfect combination of rules that’s

going to make it endlessly addictive, that’s fine, it’s not that expensive. But you

can’t take on a project with the latest 3D engine and forty artists at your beck and

call and think that halfway through you’re going to get to say, “Oh, now I realize

what this game really needs, I wish I’d thought of it a year ago.”

We’re at a pretty tough time in the industry. I’m not sure it makes much sense

economically to be a developer. I think it kind of makes sense to be a publisher, but

even then there’s only room for a few. This is a scary time because the number of

hits is small, but the size of those hits is bigger than ever. If you’re a publisher with

Chapter 18: Interview: Jordan Mechner 369

a Myst or a Tomb Raider that sells two or three million units, that’s great; your other

ten titles can be flops and you still survive. But if you’re a small developer with

only one title in production, as Smoking Car was, you absolutely need to hit the

jackpot. Only a handful of titles each year sell upwards of half a million units, and

that’s the category you need to aspire to in order to justify the kind of budgets we’re

talking about.

And to make a game with Last Express’s production values you really need a

large budget?

I think on Last Express we stretched the budget quite far for what we actually

got up there on the screen. We saved a lot of money; we got people to work for less

than their usual salaries or to defer salaries, we didn’t spend a lot of money on the

film shoot, we used a non-union cast and a non-union crew, and we didn’t have any

big names. So we pretty much saved money everywhere we could think of. And yet,

just because of the nature of the project, the scale of the game, the number of people

that were involved, and how long it took, it ended up costing a lot.

If you don’t mind telling, just how much did the game cost?

About five million.

And the development took four years; was that your original intention?

It took two years longer than planned.

What made it take so much longer than you thought?

Tool development was one. To develop our own rotoscoping technology, we

had to do a lot of tests, different types of costumes, makeup, processing to get it

looking the way we wanted. That was one. And the 3D modeling; that model was

huge, the train interior and exterior, and the number of rendered images was tremen-

dous. 3D modeling and rendering, animation, and tool development were the areas

that burst their boundaries. The film shoot itself actually came in on schedule and

on budget; that was the easy part.

So, looking back, do you wish you had managed to get the project done in a

shorter amount of time, on a smaller budget? Or are you satisfied that that’s just

how long was necessary?

Well, personally I took a bit of a bath on Last Express, financially. So in that

sense, it probably wasn’t a smart move. And I feel bad about our investors who also

hoped the game would sell half a million units, and were disappointed. It’s kind of

like having purchased an extremely expensive lottery ticket.

On the other hand, I’m proud of the game, I’m glad we did it, and I don’t think

we could have done it much cheaper than we did. I’m happy with the finished game.

370 Chapter 18: Interview: Jordan Mechner

Of course, the ideal would have been to design a smaller game. If at the beginning,

we’d looked at things and said, “OK, this is going to take four years and cost five

million dollars,” there wouldn’t have been a publisher in the world that would have

touched it. I wouldn’t have touched it myself! For better or worse, there’s a certain

amount of willful self-delusion that most of us in the software industry indulge in

just to get ourselves out of bed in the morning. Even games that take two years to

develop often start out with the producer and the marketing department telling each

other that it can be done in a year and be out by Christmas. The more technically

ambitious the project, the less you know what you’re getting into.

The film industry, by contrast, is relatively good at budgeting and scheduling

shoots and doing them in just as long as they’re supposed to take. The trade-off

there is that they’re not often trying things that are really new. When they do, like

using a new technology for the first time, or filming on location in a war-torn coun-

try, or filming out at sea, they often experience the same kind of budget and

schedule overages that are common in computer games. On Last Express, the whole

production hinged on our development of this new rotoscoping process, so to a cer-

tain extent, at the beginning when we said, “Yeah, we’ll develop it and it will take x

months and cost this much,” we were basically operating on blind faith, going for-

ward assuming that we could resolve whatever problems there were and that it

would work—which it did, eventually. It’s very hard to make accurate time and cost

projections when you are doing something for the first time. On Last Express we

were doing maybe ten things that had never been done before, all at the same time.

That was probably unwise.

Overall, unrealistic planning is not a good thing for developers; it doesn’t really

help us. One of my regrets about this project was that we were under so much finan-

cial strain from day to day that I was spending half my time worrying about the

game and half my time worrying about raising money. That’s the situation I put us

in by undertaking such an ambitious project.

Last Express is the first of your personal projects where you didn’t do any of the

programming. Do you miss it at all?

One great thing about programming is that, when you’re really on a roll, you

can lock yourself in a room and have the satisfaction of making progress every day;

it’s just you and the machine. The times when I would miss that the most was usu-

ally when I’d just spent two days in back-to-back meetings. Why did these meetings

have to happen and why did I have to be in them? On Last Express, we had four

programmers working on the project, and although I often envied their lot, I had my

hands more than full with the game design, script, artists and animators, casting and

directing the actors on the voice recording and film shoot, working with the com-

poser, sound designer, and editor, to list a few things that I actually enjoyed doing.

At various points I did offer my services to the programmers, but since my last area

Chapter 18: Interview: Jordan Mechner 371

of code expertise was in 6502 Assembly Language [on the Apple II] they decided

they didn’t really need me.

Last Express is an extremely unique game in both setting and design. In contrast,

most of the rest of the new games coming out seem to be set in either fantasy or

science fiction settings, and are all based on last year’s big hit. How do you feel

about the industry’s trend toward “me too” games?

With the occa-

sional magnificent

exception, I think

you’re right about

the majority of

games. I don’t know

if the “me too” prob-

lem is primarily in

terms of setting. I

guess I feel it more

in terms of genres.

You can take Doom,

and change the tex-

tures so that it’s an

express train in 1914,

but I don’t think

that’s really what the

industry needs. What’s more interesting to me is experimenting with game design

itself, how the game is constructed, what the player is actually doing, trying to cre-

ate a new form that works. That kind of experimentation was a lot easier to do when

the publisher’s stock price wasn’t riding on the success or failure of the experiment.

It’s definitely easier to get backing for something that’s a sequel or variation on a

proven formula. The harder it is to describe or explain something new, the fewer

people or companies you’ll find who are willing to risk money on it. I think it’s

unfortunate, but I don’t know what to do about it. It’s pretty much an inevitable

result of the cycle; when we go to the computer store as a shopper and look for the

next game, let’s be honest, what are we looking for? We’re more inclined to look at

things that are heavily promoted, that we’ve read about in magazines. So titles that

come out with little fanfare are going to have a harder time reaching the bigger mar-

ket. So in a sense, as a public, we’re getting what we asked for. But as a game

designer, yeah, I do miss it.

My friends who make films for a living always used to say: “Oh boy, I really

envy you making computer games. There you’ve got the chance to do something

really original. While down here in Hollywood all they want are retreads of last

372 Chapter 18: Interview: Jordan Mechner

The Last Express

year’s sequel.” It’s kind of interesting how the game industry now has the same set

of problems that filmmakers have been complaining about for years. Maybe even

worse. Along with bigger production values, bigger markets, and more glitzy award

ceremonies, we’ve achieved a kind of genre paralysis, and it’s become more diffi-

cult to break new ground.

So you just feel frustrated more than anything.

I guess resigned. I think every new art form goes through stages of its evolution.

With computer games we’ve lived through the exciting early years, and now we’re

in the growing pains years. This definitely doesn’t mean that innovation stops. Even

in filmmaking, which is a hundred years old, every couple of years a film does

come out that, whether because of societal changes or technological changes, could

not have been made a few years earlier, and is a valuable step forward. It’s just that

you have to weed out hundreds of clones and mediocre films to find those few

gems. I think we’re in the same place with computer games. Every year, out of

hundreds of new games, there’s a couple that push the envelope in a new and inter-

esting way. The best we can do is just keep trying to do that, and quit griping about

the glorious bygone early years, ’cause they’re over!

So how involved were you with the Prince of Persia 3D project?

My involvement was limited to giving them the go-ahead at the beginning, and

offering occasional advice and creative consultation along the way. It was a

Broderbund project. Andrew Pedersen, the producer, initiated it. It was his baby. He

brought the team together and worked hard on it for two years. So I can’t take credit

for that one.

It’s very difficult to take a 2D game and make it work in 3D instead, with full

freedom of movement for the player.

That’s the problem really. When you convert Prince of Persia to 3D

over-the-shoulder, one problem is how do you keep the controls simple. And the

other is how does the player know what kind of environment he’s in. Because you

only see what’s right in front of you. A crude example is you’re running toward the

edge of a chasm. With a side view you can look at it and see if it’s a three-space

jump or a four-space jump and are you going to clear it or not. If it’s too far, you

know there’s not even any point in trying. Whereas in a 3D over-the-shoulder game,

you don’t quite know how far it is until you try. And even then, when you fall you

wonder, “Was I not quite at the edge? Or did I not jump in quite the right direc-

tion?” So it makes it a different kind of game. You gain in terms of visceral

immediacy and, of course, the richness of the environment, but I think you lose

something in terms of a clean strategy.

Chapter 18: Interview: Jordan Mechner 373

So you don’t think that making every game 3D is necessarily the correct

approach?

Well, you have to distinguish the real-time 3D graphics technology from a par-

ticular interface. I think there’s a lot that can be done with real-time 3D graphics

engines. Doom, the first-person shooter, was obviously the first prototype and that

was the trend for a couple of years. And then Tomb Raider and Super Mario did the

following camera. Prince 3D falls into that category. So I think the challenge is in

finding new ways to present the action cinematically that will be as much fun as the

old games but still have all the visual excitement of the new 3D games. I think

there’s plenty of ground yet to cover. Prince 3D had a few intriguing moments in it

that I’d like to see pushed much further to invent the next big thing in 3D action

games.

I read that you enjoyed Tomb Raider quite a bit. That seemed to be an attempt to

put Prince of Persia into a 3D environment in order to produce something new

and exciting.

I think the key word there is new. Yes, I was really excited by Tomb Raider as a

player, because it was something that hadn’t been seen before. But I think now that

that’s been done, we can more clearly see the pros and the cons of that type of

game. If you want to do Tomb Raider today, you need to find a way to go beyond

what they did in ’96. You can’t just do the same thing over and over.

So did you come up with any good solutions to 3D-space navigation in Prince of

Persia 3D?

For me, Prince of Persia 3D is a bit on the complex side, in terms of the num-

ber of weapons and the number of moves. It’s not the kind of game that I would

design for myself. But they were aiming at a particular audience. I think the core

audience as they saw it were people who were a lot more hard-core gamers than I

was with the first Prince of Persia.

Do you find that your game designs change much over the course of a project?

With Karateka and Prince of Persia I had the luxury of letting the game evolve

over time, since it was just me in a room with a computer, with no budget and no

corporate bottom line. I thought Prince of Persia would take a year and it ended up

taking three, and that was OK—that was what it was. Last Express was different

because it was such a large project. With the machine that we constructed with

hundreds of people and networked computers, every day was expensive, so chang-

ing the design in midstream was not an option. There I spent a lot more time at the

beginning trying to work out the game in detail. You just have to pray that the origi-

nal design is solid and doesn’t have severe flaws that will reveal themselves down

the line.

374 Chapter 18: Interview: Jordan Mechner

But your earlier games did change significantly over the course of their

development?

Oh yeah. One example: Prince of Persia was originally not supposed to have

combat. One of my bright ideas there was an answer to what I saw as the clichéd

violence of computer games. I wanted the player to be an unarmed innocent in a

hostile world full of spikes and traps. There would be lots of gory violence directed

against the player, which it would be your job to avoid, but you would never actu-

ally dish it out. That was also a way of dealing with the fact that I didn’t think there

was enough computer memory to have another character running around on the

screen at the same time. Luckily, I had stalwart friends who kept pushing me to add

combat. When your friends tell you your game is boring, you’d better listen.

Shadow Man, the character, was a serendipitous accident because I thought,

“There’s no way to add another character in there, we don’t have the memory for

it.” Only if the character looked exactly like the Prince, if he used the same anima-

tion frames. I can’t remember who suggested it, but by shifting the character over

by one bit and then exclusive ORing with himself you got a black shape with a

shimmery white outline. So I tried that, and when I saw Shadow Man running

around the screen I said, “Cool, there’s a new character.” So that suggested the

whole plot device of the mirror and jumping through the mirror and having an evil

alter ego who would follow you around and try to thwart you by closing a gate that

you wanted to be open, or by dropping things on your head. And then there was the

resolution, where you fight Shadow Man at the end, but you can’t kill him, since

he’s yourself, and if you kill him you die. So you have to find a way to solve that.

Call it Jungian or what you will, it was a way to take advantage of the fact that we

didn’t have that much memory.

Chapter 18: Interview: Jordan Mechner 375

Prince of Persia

So later on you must have found some more memory so you could put in the other

characters.

A lot of the time that goes into programming a game like Prince of Persia on a

computer like the Apple II is taking what you’ve done already and redoing it to

make it smaller and faster. Eventually the stuff that was in there just got more effi-

cient and left enough room to come up with a limited set of character shapes for the

guards. If you notice, there’s a lot that the guards can’t do. They can’t run and jump

and chase you. All they can do is fight.

Your games have all been very visually appealing. How did you balance the

games’ visual appearance with the requirements of the gameplay?

I think along with what we already talked about with the simplicity of the con-

trols and consistency of the interface, visuals are another component where it’s

often tempting to compromise. You think, “Well, we could put a menu bar across

here, we could put a number in the upper right-hand corner of the screen represent-

ing how many potions you’ve drunk,” or something. The easy solution is always to

do something that as a side effect is going to make the game look ugly. So I took as

one of the ground rules going in that the overall screen layout had to be pleasing,

had to be strong and simple. So that somebody who was not playing the game but

who walked into the room and saw someone else playing it would be struck by a

pleasing composition and could stop to watch for a minute, thinking, “This looks

good, this looks as if I’m watching a movie.” It really forces you as a designer to

struggle to find the best solution for things like inventory. You can’t take the first

solution that suggests itself, you have to try to solve it within the constraint that you

set yourself.

So what made you decide to stop working in games and pursue screenwriting full

time?

I’ve always sort of alternated computer games and film projects. I think there’s

a lot of value to recharging your creative batteries in a different industry. Prince of

Persia would not have been as rich if I hadn’t spent those couple of years after

Karateka thinking and breathing film, writing a screenplay. The same with Last

Express. That project came on the heels of doing a short documentary film in Cuba

called Waiting for Dark. So, I don’t know, never say never. Maybe one day I’ll do

another game, but right now the challenge of writing a screenplay and getting a

good film made is a lot more exciting to me than doing another computer game. To

me a compelling project is one that you have to talk yourself out of pursuing, rather

than talk yourself into it.

One thing, though, computer technology is evolving pretty fast. A computer

game now is so different from what a computer game was ten years ago, who’s to

say what we’ll be doing in ten years?

376 Chapter 18: Interview: Jordan Mechner

So it’s not that you prefer working in a more linear form. It’s more of an alter-

nate pursuit for you.

It’s a different form, but a lot of the challenges are surprisingly similar. With a

computer game, although it’s a non-linear means of telling a story, you still have the

fascinating mystery of what is it about a particular world or a particular set of char-

acters that makes that game thrilling and gripping. What makes people say, “I want

to play this game, I want to be Mario,” and then look at another game that might be

technically just as good and say, “I have no interest in being this character in this

world.” Same with a film. There’s some mysterious chemistry between an audience

and a storyteller that causes the audience to decide, even based just on the trailer,

whether or not they want to live this particular story.

The two art forms are not all that dissimilar, when it comes to sitting down and

wrestling with a set of elements and trying to get them into some kind of finite

shape. The challenges of taking an established genre and breaking new ground with

it somehow, of making it surprising and suspenseful, of economically using the ele-

ments at your disposal, are very similar whether it’s a game or a film. The hardest

thing with Karateka and Prince of Persia was coming back to it day after day, look-

ing at something that had taken me a week to program and saying, “You know

what? I got it working, but now I have to throw it out and find something different.”

Same with screenwriting. You have to be willing to throw away your own work

repeatedly over the course of a long project, in order to arrive at that finite set of

elements that works just right.

Jordan Mechner Gameography

Karateka, 1984

Prince of Persia, 1989

Prince of Persia 2, 1993

The Last Express, 1997

Prince of Persia 3D, 1999 (Consultant)

This interview originally appeared in a different form in Inside Mac Games maga-

zine, www.imgmagazine.com. Used with permission.

Chapter 18: Interview: Jordan Mechner 377

Chapter 19

Designing Design
Tools

“Man is a tool-using animal . . . Without tools he is nothing, with

tools he is all.”

— Thomas Carlyle

A
n integral part of developing a good game is creating compelling content for

that game. In order to create superior content, the design team will need to

be equipped with well-designed, robust game creation tools. Therefore, one

can conclude that designing a good game is about designing good game creation

tools.

378

TE
AM
FL
Y

Team-Fly®

Other than the development environments the programmers use to compile the

game’s code, and the graphics packages the artists use to make the game’s art, the

most commonly used game creation tool is the level editor. What distinguishes this

tool from the others I mentioned is that it is typically built specifically for a project

or, at least, for the engine the team is using to power the game. It is the responsibil-

ity of the development team to make this level editor as powerful as it can be, to

facilitate the job of the level designers and allow them to make the best game-world

possible.

Of course, not every game has levels. Many of the classic arcade games from

the early 1980s such as Missile Command or Space Invaders do not have levels as

we think of them now. And the games that did, such as Defender or Tempest, cer-

tainly did not require sophisticated level editors to create their game-worlds. Games

like Civilization and SimCity auto-generate the basis of a level and then allow the

players and AI to build the rest themselves. Sports titles have levels that are quite

simple and mostly require the construction of visually pleasing stadiums to sur-

round the gameplay. I discuss the nature of levels in games in more detail in

Chapter 21, “Level Design.” Many modern games employ sophisticated levels, lev-

els which have a tremendous impact on the shape and form of the gameplay that

takes place on them. These games demand that their development team create an

editor with which the level designers can build the game-world.

Surprisingly, many development teams fail to invest enough programming time

in making their tools as good as possible. Usually teams have no idea what is stan-

dard in other tools used in the industry. Frequently, not enough time is invested in

Chapter 19: Designing Design Tools 379

The simple levels
found in early
games such as
Defender did
not require a
sophisticated
level editor to
be created.

preplanning and thoroughly designing how a level editor will work. As a result of

all of these factors, it is often many months before the level design tools are reason-

able to use. Frequently a programmer is stuck with implementing or improving the

level editor as “extra” work on an already full schedule, and is forced to use the

trusty “code like hell” method of implementation to get it done in time. Often, key

time-saving features are not added until midway through a project, by which time

the game’s designers are already hopelessly behind in their own work.

Desired Functionality

So what sort of functionality should a level editor include? Many might suggest an

important part of any level editor is having hot keys hooked up to all the important

functionality. Others would recommend plenty of configurable settings which allow

different designers to turn on and off the features they prefer, when they need to use

them. It goes without saying that a level editor should be stable enough that a

designer can use it for a number of hours without it locking up, but these sugges-

tions are all the obvious ones, the bare minimum that an editor should do to be

useful. What sorts of features should be included to allow an editor to truly shine,

to empower designers to do the best work possible?

Visualizing the Level

The most important objective for a world creation tool must be to allow the designer

to see the world he is creating while simultaneously enabling him to make modifica-

tions to it. This is often called What You See Is What You Get (WYSIWYG) in the

domain of word processors and desktop publishing packages, but is not something

that level editors are universally good at. I will call such a WYSIWYG view the

“player’s view” since it represents what players will see when they play the game.

The world the designer is crafting should be seen in this player’s view window

using the same rendering engine the game itself will employ, whether this means 2D

or 3D, sprites or models, software driven or hardware accelerated. This seems to be

the most important feature of any level editor. How can a designer hope to create a

good looking world if he must first tweak the world’s settings in the editor and then

run a separate application to see how it looks in the game?

The designer should be easily able to move the camera in this player’s view so

that he can quickly maneuver it to whatever section of the map he needs to see in

order to work on the level. This movement is probably best accomplished with a

simple “flight” mode where the player can control the camera’s position using sim-

ple movement and turning keys. In this mode the camera should move without

colliding with geometry or other game-world objects. Though one may also want to

provide a mode for the player’s view where the designer can maneuver through the

380 Chapter 19: Designing Design Tools

game-world as the player will in the final game, the editor should always allow the

designer to move around the level unconstrained. In order to finely edit a level, the

designer must be able to look closely at whatever he wants without having to worry

that a tree blocks his way.

Every difference that exists in what the designer sees in the editor and what will

show up in the game will make the levels look that much worse. Suppose the view

in the editor is only available using 3D hardware accelerated rendering, while the

game itself must run in a software mode in addition to hardware. This will create

frustration for the designer, since he will not be able to easily tell how the level will

appear in software. Sure, the level looks great with acceleration, but aliasing in the

level’s textures may be horrendous without the benefits of tri-linear filtering. Cer-

tainly having a hardware accelerated view in the editor makes sense since it will

run much faster than a software view and will thereby allow the designer to work

faster. But for games that need to run with and without 3D cards, the editor should

be able to easily switch between an accelerated and unaccelerated view, so the

designer can quickly and easily make sure the level looks good regardless of how it

is rendered.

Of course, the world as it will appear in the game is not always the best view

from which to edit that world. For this reason, level editors often need to include an

“editing view” in addition to the player’s view. The editing view is often top-down,

but may also consist of a rotatable wire-frame view or multiple views. The last

option is particularly useful for the editing of 3D game-worlds. For instance, the

popular Quake engine editing tool Worldcraft, which was used to create all the lev-

els in Half-Life, provides the player with the popular “tri-view” setup, with which

the designer can see top-down (along the Y axis), from one side (along the X axis),

and from another side (along the Z axis) simultaneously in three separate windows.

The three side views appear in addition to a 3D “player’s view” window. Having

multiple views is of particular importance for editing complex, overlapping 3D

architecture, such as one finds in Quake levels. In contrast to the player’s view win-

dow, which exists in order to show the designer exactly what the level will look like

in the game, the editing view’s purpose is to allow the designer to easily modify

and shape what he sees in the player’s view window. Of course, the editor should

allow editing views and a player’s view to be all up on the screen simultaneously,

and the changes made in one window should be instantly reflected in all the views.

In some cases there may not be a need for separate editor and player views. For

instance, in a 2D world such as was found in my first game, Odyssey: The Legend

of Nemesis, the player’s view of the world may be perfectly suited to editing the

levels. While I worked on the many levels for that game, not once did I wish for

another view of the game-world. Similarly, in StarCraft, the representation of the

world as it appears in the game is sufficiently clear to allow the designer to make

modifications directly to it. For this reason, the StarCraft Campaign Editor provides

Chapter 19: Designing Design Tools 381

only a player’s view window for the designer to edit in. However, for the StarCraft

editor, it might have been beneficial to provide a separate editing view. Because of

the isometric view the game uses, a view which can sometimes be confusing to

look at, a strictly top-down view in which the designer could edit her level could

have been quite useful in the placing and manipulating of units and other game ele-

ments. The StarCraft Campaign Editor does include a top-down “mini-map” of the

level being created, but the designer cannot actually change the level using that

view, nor is the mini-map large enough to allow for easy editing.

The Big Picture

I have argued that it is important for a game’s level editor to allow the designer to

see the level exactly as she will see it in the final game, but the player’s view

window does not always need to represent exactly what the player will see. It can

be quite useful if the level editor can also show the designer various extra informa-

tion about the level that will assist in that level’s creation. For instance, suppose

that the game being developed involves various monsters maneuvering the level on

predetermined paths. Being able to see exactly where these paths go is key to under-

standing how the level functions, and being able to see exactly where these paths

lead in the world the player will be navigating is important to making sure the paths

are set up properly.

In many level editors, this sort of level functionality information is communi-

cated in the editing view but not in the player’s view, but it makes sense to display

382 Chapter 19: Designing Design Tools

The view
provided in the
Zoner level
editor for
Odyssey was
perfectly suited
to editing a 2D
world.

this data in both places. Certainly the player’s view window should not always be

filled up with this sort of level functionality information, but the ability to turn on

and off the rendering of different data can be quite useful in setting up the level’s

behaviors. This is especially true for 3D games. Returning to the path example,

why should the designer have to extrapolate in his head from the 2D top-down or

side editing view exactly where a path will end up in the 3D view? Instead, the edi-

tor should just draw it for him, so there is no guesswork.

When working on Centipede 3D, a programmer was adding code that would

prevent the player from traveling up slopes that were too steep. In order to debug

this new slope-restriction code, he added functionality to the level editor that

allowed it to toggle on and off lines that separated the different triangles which

made up the landscape. These lines would change color depending on if a given

edge could be crossed by the player or not. The triangles themselves were marked

with a red X if they were too steep for the player to rest on. The programmer added

this functionality primarily to aid in his debugging of the slope-restriction code,

never realizing what a boon it would be to the level designers. Now the designers

could see exactly where the player could and could not travel on the level. An even

better side effect was the rendering of the triangle boundaries, which created a sort

of wire-frame view of the landscape, functionality which had not previously been

available in the editor. This then vastly simplified the editing of geometry, for now

the designers could see exactly which triangles created which slopes and then

modify the level accordingly. The addition of the wire-frame view and the slope-

restriction markers led directly to better, more refined geometry in the final game.

And the beauty of this functionality was that it could be turned on and off in the

editor, so if the designer wanted to see how the level looked he could turn it off, and

if he wanted to see how it functioned he could turn it on.

As with paths, it may also be useful if the designer can turn on and off the ren-

dering of objects such as triggers and other normally invisible objects. Similarly, it

can be enormously helpful to display the bounding information for the objects in

the world (which often does not exactly match the visual composition of the

object’s sprite or model), so the player can easily observe how the bounding infor-

mation will impact the ability of the player and NPCs to navigate the game-world.

Marking off where the player can and cannot go can be quite useful as well. And

again, each part of this functionality data should be easily toggled on or off via hot

key, menu, or button, so that the designer has the choice of seeing exactly the data

he needs for the problem he is working on. And the data should absolutely be ren-

dered in the player’s view window, so that the designer can see exactly how the

trigger, path, slope restriction, or other object is placed in the game-world, without

having to guess from a top-down view. By using a visually authentic view of the

game-world which can also display game behavior data, the designer is able to

work on a level’s aesthetic qualities just as well as its gameplay attributes.

Chapter 19: Designing Design Tools 383

Jumping into the Game

For games where the player is manipulating a character through a world, it is impor-

tant for the designer to be easily able to know how the level “feels” to navigate. To

this end, in addition to having the player’s view of the world represent what the

player will see in the game, it can be quite useful to allow the designer to actually

maneuver in this view as she would in the actual game. With this sort of addition,

the designer is able to test whether the player will be able to make a certain jump,

how it will feel to navigate a particular “S” curve, and whether or not the player’s

character moves smoothly up a set of stairs. In addition to this “gameplay” mode,

the level editor should retain the unconstrained “flight” mode I mentioned

previously.

The Vulcan editor for Bungie’s Marathon engine was particularly well suited to

allowing the designer to test the “feel” of the level while constructing it. The Mara-

thon technology was similar but a bit better than Doom’s, and was licensed for use

in a number of other games, including my game Damage Incorporated. Vulcan was

subsequently revised, renamed Forge, and released with the final game in the series,

Marathon Infinity. Vulcan/Forge allowed for a “visual mode” which functioned as a

player’s view window. In visual mode the designer could navigate the world just as

the player would in the final game. The shortcoming of this was that the designer

was unable to edit the world, aside from texture and lighting placement, while in

this view. This was no doubt due to the speed of processors available when the

384 Chapter 19: Designing Design Tools

Bungie’s Forge
level editor for
the Marathon
engine included
a “visual mode”
where the
designer could
actually
maneuver
through her level
exactly as a
player would in
the game.

editor was created, and the comparatively small size of affordable monitors at the

time. Nonetheless, the visual mode in Vulcan was quite useful, and the switch from

editing mode to gameplay mode was fast enough to allow the designer to make a

change, see how it felt, and then switch back to make more changes as necessary.

Of course, one might conclude that the next logical step is to allow the designer

to actually play the game in the player’s view. In this way the designer can see how

well different mechanisms function, and what sort of a challenge different adversar-

ies will present. However, this opens the programmer up to a large amount of

implementation difficulties. In order for game-world objects to function as they do

in the game, many objects will move from the position they start out in when the

player begins the level. For instance, an aggressive troll might run toward the

player and attack. Do these moving objects then actually move in the level editor as

well? And what happens if the designer saves the level in this new state? Surely

that is a bad idea, since all of the locations in which the entities have been carefully

placed will be changed. What a designer wants is to be able to quickly test a level at

any given location, and once he is done playtesting have the level revert to its

“unplayed” state. This may best be accomplished by allowing the designer to

quickly enter a “test mode” and then allowing him to exit it just as quickly,

instantly returning him to level editor functionality. The quicker this transition the

better, for the faster and easier it is, the more likely the designer will want to go

back and forth to test and re-test the playability of his level. If the designer has to

wait a minute or longer to playtest, he will not be able to try as many different

changes to the level before he runs out of time. For this reason, it makes sense to

have a programmer focus on smoothing out and speeding up this transition as much

as possible.

Any seasoned game designer will tell you that a large part of whether a game

succeeds or fails is dependent on how well it is playtested and balanced. Even the

most brilliant initial game design can be completely destroyed if the implemented

game is not playtested thoroughly. I do not mean just for bugs, but for gameplay,

for how the game feels to play, and for how it captivates the player. Playtesting is

an iterative process which involves trying a type of gameplay, then modifying it,

then trying it again, and repeating this loop until the game is fun. It can be very

hard, then, to properly iterate through playtesting if the level editor does not facili-

tate the modification of the game’s levels, and then easily allow the designer to try

out what has been changed. The easier it is for the designer to jump into the game,

the more likely she is to repeat the playtesting cycle again and again until the game

is as perfect as possible. If the level editor does not facilitate such testing, the

designer is likely to become frustrated or simply not have the time she needs to suf-

ficiently balance the game.

Chapter 19: Designing Design Tools 385

Editing the World

The best development tools for a game are composed of a delicate mix of

off-the-shelf programs and proprietary editors. A good team will know just how

much to use of each so that they are neither wasting the time of their programmers

by having them develop overly sophisticated tools when a good commercial pack-

age is better suited, nor unreasonably restraining the efforts of their designers by not

allowing them to refine the game’s content from within the level editor. Though no

team should be forced to develop a game without a level editor, it is equally fool-

hardy to force the team to do all of the game’s content creation from within

proprietary tools.

It is important that the level editor actually allow the designer to modify all

gameplay-critical aspects of a level. This would seem to me to be an obvious pre-

requisite for an editor, but I have heard so many stories of teams working with 3D

Studio Max and “entity editors” that it bears mentioning. Often teams think they

can get away with using an off-the-shelf tool such as Max to create all of their

world geometry, and then create a level editor only for importing the meshes from

Max and positioning the items, NPCs, and other game-world entities. This cannot

lead to good levels. As the designer is placing creatures in the map, he needs to be

able to simultaneously change the geometry to fit the placement of that creature. If

a designer must exit the editor and then run a 3D modeling application (which are

seldom known for their speed), modify the geometry in that program, and then

re-import the level into the proprietary editor before she can test out her modifica-

tions, she will certainly be discouraged from making too many “tweaks” to the

geometry. As a direct result, the geometry will not look as good in the final game, if

it is playable at all. Not allowing a designer to edit the level’s gameplay-critical

architecture in the editor itself is tantamount to tying one arm behind her back. It is

my experience that designers work best with both hands free.

When I started working on Centipede 3D, the level editor we had was really

more of a game entity manipulator than a proper level editor. The geometry for a

given level was derived from a grayscale, square height-map, with those used in

Centipede 3D all consisting of 32 pixels square. Each pixel therein represented a

height value on the landscape. These height-maps, which could be created in

Photoshop or any other pixel-pushing tool, were a good way to create an initial ver-

sion of a level’s geometry. Unfortunately, in the version of the editor used at the

start of the project, the height maps could only be modified in a paint program; they

could not be edited in the editor itself. This was a shame, since looking at a top-

down 2D representation of a 3D level is not exactly the best way to get an idea of

how the level will end up looking. As a result, the levels that were created early in

the project were simple and a bit flat. It was not that the level designers were not

working hard to make the levels attractive, merely that there was only so much that

386 Chapter 19: Designing Design Tools

could be accomplished with the tools provided.

However, midway through the project, functionality was added to the tool to

allow the designer to edit the height-maps while in the level editor. The height-

maps could still be created in Photoshop and brought into the game, and this

remained the best way to make a first pass on the level’s architecture. After that

first pass, the geometry was easily manipulated in the level editor, where the

designer was able to see the level in 3D while modifying the height-map. As a

result, the designers were able to tweak the geometry until it was perfect. The

change in the quality of the levels was dramatic. As always, time did not allow for

us to go back and redo the earlier levels. Since the levels were made in the order

they appeared in the game, anyone playing Centipede 3D will be able to tell at what

point the level designers were given the new and improved tool. It was not that the

designers could not create levels with the previous incarnation of the editor, it was

just that level editing was so much more difficult that the levels failed to look as

good as the designers wanted.

There is a lot to be said for being able to create fancy level geometry in a fully

featured 3D package, and even level editors with sophisticated geometry editing

capabilities would benefit from the ability to import externally created architecture.

The key to creating quality game art assets, whether they are 2D sprites or 3D mod-

els, is being able to import from commercial packages. I do not know that anyone

was ever forced to create 2D sprite artwork for a game using only an in-house tool.

Yet, it seems that many unfortunate artists have only been allowed to model charac-

ters or other objects using proprietary modeling tools. I have discussed how

important it is to allow the level designers to manipulate a level’s architecture in the

editor. But certainly forcing game designers or artists to model every game-world

element in the level editor is a big mistake. Artists should be able to create game-

world objects such as trees, weapons, or trash cans in their favorite modeling pack-

age and import them into the game. Simply put, there is no way a game’s

programming team is going to be able to code up an art editing package with all the

power, robustness, and stability of a Photoshop, 3D Studio Max, Maya, Softimage,

or any of a number of other popular off-the-shelf products. Without the many fea-

tures found in these packages, artists will simply be unable to create the best quality

art possible. Furthermore, most artists are already familiar with one or more of

these packages, and so when they come on to the project they will be that much

closer to being “up to speed.”

At the same time, the team will need to be able to manipulate this art using pro-

prietary tools. Having an in-house editor with which to set up animations, nodes on

a skeleton, collision data, or other information is essential to making the art func-

tion properly within the game. Teams who attempt to avoid setting up any sort of

art editing software will frustrate their artists, designers, or whoever gets stuck with

configuring the art and its animations to work in the game. A proprietary art

Chapter 19: Designing Design Tools 387

manipulation tool that does exactly what the game engine needs it to is a key ingre-

dient in a bearable game development experience.

Scripting Languages and Object Behaviors

It seems to have become the norm for games to use a system where designers can

set up and balance the enemy, weapon, and other game behaviors exactly as they

need them, without involving a programmer. Many games now include scripting

languages which, though relatively simple, allow for complex entity creation with-

out requiring the game engine itself to be recompiled. These scripting languages

provide many benefits to game development. Probably most important is that they

encourage the creation of more unique behaviors in the game, whether these are

reusable in-game entities such as NPCs or unique behaviors and events for different

levels, such as NPCs carrying on a particular conversation while the player watches,

as in Half-Life.

One great benefit of a properly designed scripting system is that it is com-

pletely portable to other systems. This means that when the game is ported from the

PC to the Dreamcast, for instance, all of the enemy behaviors that have been

scripted and debugged on the PC will be equally functional on the Dreamcast, pro-

vided the script interpreter and its associated functions are properly ported as well.

In that vein, a robust scripting language is also more stable to work with than pro-

gramming in C. The scripting language gives the script’s author less opportunity to

thoroughly crash the game, and when a script does something illegal the game can

spit out a properly informative message instead of just locking up. Often the script-

ing languages are not as complex as actual C programming, and thereby allow

designers with some programming savvy to take on the creation of unique world

behaviors, thus freeing up harder-to-find programmers for more complex tasks. In

most systems, scripts can also be loaded on demand, which means only the scripts

that a particular section of the game uses will need to be resident in memory, thus

freeing up more code overhead. An added bonus of a game having a scripting lan-

guage is that it allows for complex user modification of that game. A well-designed

and appropriately powerful scripting system will empower motivated players to

make their own “mods” for the game for distribution to friends.

Scripting languages have their downside as well. First is the time involved in

implementing a scripting system. If the language is to be actually useful to the

game as described above, it will need to be very stable and provide its user with a

lot of power, which is certainly non-trivial to implement. Debugging a problematic

script can also be quite a lot of trouble, since no game developer is going to have

the time to implement a symbolic debugger as nice as the one that comes with

Visual Studio or CodeWarrior. Most of the time, the scripts are compiled at run

time, and as a result can be significantly slower than C/C++ code. Again, no matter

388 Chapter 19: Designing Design Tools

TE
AM
FL
Y

Team-Fly®

what the developer does in terms of optimizing performance of the scripts, he will

not be able to match the compiling power of the C++ compilers made by Watcom,

Microsoft, or Metrowerks. And finally, though one of the big advantages to script-

ing languages is supposed to be that they can be used by non-programmers, it often

turns out that, if the scripting language is actually powerful enough to create AI for

an NPC, the scripting language is going to be so complex that it requires a pro-

grammer to use it effectively. And if a programmer’s time is being tied up in the

creation of scripts, why stop her from just doing her coding work in C?

Of course, one of the main advantages of scripts is that they greatly simplify

the balancing of gameplay. Instead of a programmer tweaking a number in the code

and then waiting for the game to recompile, a designer can adjust a value in a script

and just run the game. But what if one wants to achieve this benefit of scripts with-

out having to implement a scripting system. What if, instead, the designer were able

to adjust behavior parameters in the level editor itself? This is the approach taken

by Surreal Software’s Riot Engine. In Surreal’s Level Editor, designers are given

access to all the settings or “behavior variables” for a given AI, weapon, or other

game-world entity. The behaviors themselves are coded in C++, with the program-

mers leaving “hooks” to all the crucial settings that determine how the game-world

object will behave, such as how fast it moves, what its detect radius is, what objects

it turns into when it is destroyed, and so forth. This provides much of the

game-balancing benefit of scripting languages by empowering the designers to end-

lessly tweak the game while still taking advantage of the speed of a powerful C++

compiler and debugger. This functionality makes the level editor not just a tool for

Chapter 19: Designing Design Tools 389

Surreal
Software’s Riot
Engine Level
Editor allows the
designer to
tweak all sorts
of settings for
different
game-world
entities.

modifying the game’s levels, but turns it into more of a gameplay editor, where the

designer is able to change much of the game’s content on the fly.

“Scripted events” in levels are another thing that game scripting languages do

well. Each level in the game can have a unique script which sets up and triggers

various unique behaviors on that level. Having complex, unique behaviors has

recently become a much bigger concern of game developers, especially after Valve

used scripted events to such great effect in Half-Life. Of course, there is a key dif-

ference between “scripted events” and the “scripting language” one uses to set them

up. Half-Life had great scripted events, but apparently a difficult-to-use method for

setting them up. Creating a solid and simple scripting system is the best way to

ensure that the designers will make use of it. Instead of involving a separately com-

piled, text-based scripting language, level editors can include the ability to

empower designers to easily set up complex game events. StarCraft’s Campaign

Editor is an especially good example of this sort of functionality. Its “Triggers”

editor allows designers to use a very familiar point-and-click interface to set up

complex scripted events. Pop-up menus provide lists of all the commands available,

and then further pop-ups show the designer all of the different parameters that can

be passed to those commands. The whole system is easily comprehended by some-

one looking at it for the first time, with commands written in plain English. Thus,

the Campaign Editor allows unique events to occur in StarCraft levels without

involving the overhead of a full-blown scripting language.

Us Versus Them

Unfortunate as it may be, the development of the tools for a project often comes

down to a battle between the programmers and the designers. Game programmers

are often loath to work on tools for a variety of reasons. First, many of the program-

mers who wanted to get into gaming did so because they did not want to program

databases, spreadsheets, or 3D modeling packages. They wanted to make games,

and tools often seem too much like “real programming.” There’s also a perception

that getting one’s code in the game is more important than getting it in the tools. If

the title is a big hit, the game will be played by millions of people. The tools for a

given project will be used by ten, perhaps twenty people. When a programmer’s

friends ask her what she worked on while she was at that wacky game company,

most programmers do not want to have to answer, “I worked on the tools.” There is

just no glamour there.

390 Chapter 19: Designing Design Tools

Further complicating matters is the perception that a programmer’s time is

more valuable than a designer’s. So if a designer has to spend five times as long

making a level because a programmer does not have the time to make the level edi-

tor better, well, that’s OK. The level still gets made, right?

As I have stated previously, game developers should not be asking themselves

the question, “Do the tools allow for the game’s content to be created?” Instead,

they should ask, “Do the tools allow for the game’s content to be made well?” If a

designer is constantly fighting with the level creation tools, he is not going to be

able to invest time into truly refining the level. In fact, he may be so irritated at

perceived programmer laziness that he throws his hands up in disgust and does not

work on the level as much as he might otherwise. A good level designer will be

inspired by a good tool set to do the best work he can, because he can see direct

results. The example I used before about the level design tool and the resultant

quality of the levels in Centipede 3D is a good lesson for game developers. With

the creation of a superior level editing tool, level quality will improve dramatically.

A tools programmer should be able to take pride in having worked on a really

good tool that facilitates the designer’s work. The programmer responsible for a

well-conceived and well-implemented level editor which greatly facilitates the cre-

ation of beautiful levels should feel that she played a vital role in the creation of

those levels. For without the features of the level editor, the designer would not

have been able to create the landscapes or structures he did. The designer must

always make it a point to remember the programmer who made possible the cre-

ation of such levels and be suitably appreciative of her efforts.

Chapter 19: Designing Design Tools 391

Blizzard’s
StarCraft
Campaign Editor
automatically
sets up
transitions
between different
types of
landscape
textures, thereby
saving the
designer a lot of
work.

At one point I added a texturing feature to the Riot Engine Level Editor. The

Riot Engine employs tiling textures for its landscape, with transition textures avail-

able for when a grass texture meets a rock texture, for example. I added the

functionality that allowed the editor to automatically place the proper transitions

between two different texture types. Interestingly, this was a feature included in the

level editor for my first published game of six years ago, Odyssey: The Legend of

Nemesis. Indeed, this auto-transitioning functionality is found in many 2D terrain

level editors, such as Blizzard’s StarCraft Campaign Editor. Before I added the fea-

ture, the level designers at Surreal had to pick by hand the transition texture that

was needed. Certainly the auto-transitioning feature was not absolutely necessary

for the creation of levels. All of the levels for the game Drakan had been made

without the use of the auto-transitioning tool, and certainly they were very beautiful

levels with transitions in all the right places. The key difference is that those transi-

tions took a lot of designer time to set up. Once I added the auto-transitioning tool

the designers were delighted, since now a large and tedious part of their jobs had

been all but eliminated. One even said, “Richard could take off the next month and

we could keep paying him.” He was appreciative of the feature I had added and was

thoughtful enough to communicate his thanks to me. With praise like that, I am

much more likely to keep adding nifty features to the editor.

The Best of Intentions

However, one must be careful. Sometimes when programmers are tasked with add-

ing functionality to the editor, they may end up adding features that no one really

needs. It is difficult for a programmer who, most of the time, does not make the

game’s levels and therefore does not spend a lot of time working with the level edi-

tor, to properly understand where that editor is lacking. Indeed, what a programmer

may see as a cool feature turns out to be functionality no designer will ever want to

use. When a programmer goes to a lot of trouble to implement a feature for the edi-

tor and then the designers fail to use it, resentment tends to grow in the programmer.

Then when a designer comes to the programmer requesting a more practical and

necessary feature be added to the editor, the programmer is likely to ignore her:

“She never used the vertex-warping tool that I worked so hard on, so why should I

work on this model-aligner for her? Forget it.”

Anyone who has worked in the industry knows that, in a lot of ways, designers

and programmers think differently. For this reason, it is very important for the

designers and programmers to be in constant communication about what features

the editor needs and how they can best be implemented. When developing an

in-house tool set, the programmer has the tremendous advantage of having his user

base down the hall. He does not have to guess what they want from the program;

instead he can go ask them. Similarly, the designers have the advantage of being

392 Chapter 19: Designing Design Tools

able to go to the editor’s developer and make suggestions on how the tool should

function. With a good flow of information between the parties involved, the tools

cannot help but improve.

One possible technique for facilitating the creation of a good tool is to assign

one programmer to be primarily responsible for the maintenance and improvement

of the level editor. This programmer can then become quite familiar with the work-

ings of the tool and can take pride in what a good application it is. If one

programmer does most of the editor work, the designers will know which program-

mer they can turn to with their suggestions for improvements to the tool. That

programmer will get a better sense of what the designers like and do not like. Of

course, if the programmer assigned to working on the tool really wishes she was

working on lighting effects or AI, the tool is going to suffer as a result. Finding a

programmer who really wants to work on the tool is important if this strategy is to

succeed.

Another useful tactic is to actually have a programmer make a complete, simple

level using the tool. That way, the programmer can easily spot areas for improve-

ment in the tool, and can finally understand what the designers have been

complaining about for so many weeks. Without actually having to sit down and

fully use the application they are creating, the programmer is likely to conclude that

the designers are overemphasizing the problems with the editor (known in industry

parlance as “whining”). But by actually having to use the tool he is working on, a

programmer is likely to easily identify what shortcomings the editor has which can

be trivially fixed through a few hours of coding. Designers frequently fail to under-

stand the complexity of different programming tasks, and as a result make requests

for nearly impossible features in the level editor, while thinking easily remedied

problems are unfixable. Perhaps the best solution of all is to have a designer who is

also a programmer, and thereby spends a lot of time working with the editor. This

designer/programmer is directly motivated toward improving the tool she must

work with every day, and is likely to do whatever she can to make it the best tool

possible. Ten years ago I am sure this was not that uncommon, but for full-scale

projects in development today it is fairly rare. Programming a level editor and

designing levels have each become tasks which fully consume an individual devel-

oper’s time, and the days of the designer/programmer often seem to be a thing of

the past.

Chapter 19: Designing Design Tools 393

A Game Editor for All Seasons

A level editor does not actually need to be bug free. Bug-free software is the stuff

one buys in stores, if one is lucky. Really great in-house tools can have plenty of

bugs in them. What is important is that these tools be buggy in predictable ways.

The bugs should occur in patterns that the designers can learn how to predict and

teach themselves to avoid. Once a designer becomes adept at the tools he will know

what not to do and will be able to easily work around the trouble spots. Proprietary

level editor tools are one place in software development where the old joke, “Doc-

tor, it hurts when I do this!” “Then don’t do that!” really rings true.

Of course, if the tools used on a project are good enough, marketing may catch

on and can come up with the bright idea, “Hey, we can release the tools with the

game!” Indeed, shipping a game with its level editor and having users create add-on

levels for your game can help to keep interest alive in a game long after it has been

released. Hard-core fans will love to make “mods” for the game to circulate among

their friends or the general public. For the tools to be released, they really will need

to be relatively bug free, or at least much more stable than when they were only

being used in-house. The possibility of releasing the level editor to the fans should

function as an incentive to encourage the programming team to create the best tools

possible. Of course, some publishers still fail to see the logic of having the fan com-

munity build add-ons and refuse to release the tools used for the game’s creation.

The argument they often give is that if users can build more levels themselves, who

will want to buy the sequel? Of course, id Software, the company that popularized

releasing level editors to the public, seems to be doing quite well financially, sug-

gesting that protectionist thinking in terms of level editors is somewhat foolish.

It all comes down to what should be recognized as an axiom in the gaming

industry: a game can only be as good as the tools used in its creation. A

well-conceived level design tool can make the difference between a great game and

a mediocre one. One can think of the ideal level editor as a place where the

designer has total control of the game-world: of its architecture (where the player

can go), of its aesthetic appearance (lighting, texturing, and sounds), and of its

gameplay (NPC, item, and other entity placement, movement, and behavior). Of

course, the best level editor in the world is not going to make up for a sub-par

engine, a fundamentally flawed game design, or a demoralized development team.

But those are topics for another chapter.

394 Chapter 19: Designing Design Tools

Chapter 20

Game Analysis:
The Sims

Designed by Will Wright
Released in 2000

B
ased on its concept alone, The Sims is not a game that many people would

identify as one they would want to play. Indeed, a focus group conducted

early in the project’s development was so unfavorable that the game’s

designer, Will Wright, had trouble getting any staff on the project. And why would

395

it be fun? “Control a collection of characters at home in a simulated suburbia.” To

hear that description of the game, it seems disturbingly too much like real, mun-

dane, suburban life to possibly be entertaining. Indeed, all that is simulated in the

game is home life—no going “out” to concerts or roller rinks for these “sims.” But

to hear someone talk about The Sims is to instantly become intrigued. “Well, I was

trying to get my sim to flirt with this woman, but her husband became upset and

decked my character!” So what is it that makes this game so brilliant and so fiend-

ishly entertaining?

To summarize, the player starts playing The Sims by first creating the characters

he wants to control by assigning quantities to different attributes: Neat, Outgoing,

Active, Playful, and Nice. The player can then place these characters in a home,

either pre-built or one he constructs himself. From there, it is the player’s responsi-

bility to make sure the house has all of the objects the sims will need to live: a bed,

a toilet, a kitchen, a phone, objects for entertainment, and so forth. The Needs indi-

cators help communicate what the sim requires to achieve happiness, including

listings for Hunger, Energy, Comfort, Fun, and Social. The player also must see to

it that his sim finds a way to bring in money to pay for all the nifty stuff the player

purchases, a goal accomplished by looking at the job listings in the newspaper. In

addition, the game has an elaborate social component, where other sims can be

invited over, talked to, entertained, flirted with, and befriended. The game provides

such an amazing breadth of areas for the player to explore, one is amazed that all of

them are also quite deep in their functionality.

Abdicating Authorship

The Sims is a very good example of what Doug Church at a Game Developer’s Con-

ference lecture described as “abdicating authorship” in computer games. That is,

instead of the game designer coming up with the game’s story ahead of time, as is

the case in 95 percent of adventure, role-playing, and action games made today, the

authorship of the game’s story is abdicated to the player. The player can then take

the story in whatever direction he wants, no matter how prurient, dull, or hackneyed

it may be. Indeed, at first the player may not even think of the experience as being a

story, just as he may not think of his own life as a story. Yet it still is a story. In The

Sims, the storytelling becomes more of a collaborative effort between the player,

who directs the action, and the game designer, who provides the framework, tools,

and space with which the player can work. Since the player is intimately involved in

the creation of the story, that story becomes his, and as a result the player becomes

that much more involved in the game. Instead of having his strings pulled by the

game designer as has happened in so many other games, it is the player who is now

pulling the strings. The feeling of empowerment is tremendous indeed.

396 Chapter 20: Game Analysis: The Sims

It is widely agreed that The Sims is a software toy and not technically a game,

even though it is frequently called a game and discussed in the same breath as other

titles which definitely are games. Indeed, The Sims is a toy because it does not pres-

ent a definite goal to the player, though it may insinuate or imply one. There is no

“winning” or “losing” The Sims beyond what the player defines those terms to

mean. Perhaps the player will think he has lost when his sim dies during a cooking

fire. Or maybe the player will think he has won when his sim manages to build the

largest, most extravagant house in the neighborhood and has reached the apex of

her chosen career path. However, these victory/loss conditions are ones that the

player is suggesting into the game, not ones that the game demands. This abdicates

authorship to the player more than a goal-oriented game ever could. For instance,

every time someone plays a racing game such as San Francisco Rush, the ending of

the game is predetermined; once the player or one of his opponents crosses the fin-

ish line on the track, the game ends. Thus the end of the “story” that Rush is telling

is predetermined. The player may be able to author how well his own car does in

that race and what sort of tactics it uses to try to win, but how the story ends is a

known, unchangeable quantity. Even a game like Civilization, which gives the

player a great deal of freedom as to how he will play his game, still constrains the

player by saying the game is over when the year 2000 rolls around, when the player

wins the space race, or when he achieves military dominance. By setting up victory

conditions, the game designer is authoring how the game will end. Since The Sims

and other software toys do not dictate how the game must end, the player is left to

decide when enough is enough. Some players, perhaps primarily the hard-core

gaming aficionados, see this lack of winning and losing as a detriment to the game,

Chapter 20: Game Analysis: The Sims 397

The Sims
provides a
framework upon
which players
can author their
own stories.

but for many players it would seem to make the playing experience all the more

compelling.

Familiar Subject Matter

Of course, The Sims is not the original software toy, nor is it even Will Wright’s

first. His first success with the software toy genre came with SimCity. It too simu-

lated a sophisticated system and allowed the player to truly control her city’s

destiny. Though SimCity is an excellent, entertaining title, The Sims is more compel-

ling still. A lot of this has to do with the fact that the player of The Sims is

controlling humans instead of a city. In other words, it follows Chris Crawford’s

insistence that games should focus on “people not things.” In general, most players

will find people to be much more interesting than things, and players will be able to

form an emotional bond with a simulated person much easier than with a simulated

city. After playing The Sims for a while, players will feel sad when their sim’s

amorous advances are rebuffed or when their house burns to the ground. Though

certainly not as smart or interesting as actual humans, the simulated people in The

Sims are close enough to being plausible that players will want to believe in their

sims’ virtual existences and will fill in the simulation’s deficiencies for themselves.

Furthermore, almost all the players who play The Sims will have an intimate

knowledge of the subject being simulated before they start playing. They will feel

that they are something of an expert on this “suburban life” subject and think they

will be able to play the game better as a result. For instance, players know by

instinct that they should set up a bathroom with a shower, a toilet, and a sink. If the

job were to simulate an alien life-form’s daily life on another planet, players would

have much less of an idea how to proceed and would need to figure out the life-

form’s culture before they could expect to succeed at the game. Because players

already know so much about the subject matter of The Sims, they are that much

more drawn into the game. From the moment she starts up the game, the player

feels good because she is putting her real-world knowledge to use in creating these

simulated lives. When Will Wright made SimEarth, he created a game involving

systems that players knew very little about, and this may explain why so many peo-

ple found the game to be quite difficult. For SimCity, players had a better sense of

what was going on; while they may not have been experts on urban planning and

dynamics, players at least thought they knew how a city should be laid out and

were familiar with problems such as traffic, pollution, and crime. With The Sims,

most players know infinitely more about the topic than they do about city planning.

Hence, the game is that much more compelling to play. Its very familiarity draws

the player in like nothing else can.

Of course, simulating a subject many of the players will be familiar with can be

a challenge as well; if the designer gets it wrong, players will know instantly. In the

398 Chapter 20: Game Analysis: The Sims

TE
AM
FL
Y

Team-Fly®

alien-life simulator, who is to say what is accurate since the world and creatures are

made up to begin with? This grants the designer more artistic license for how the

world is constructed. However, in a reality simulation like The Sims, if the designer

makes the wrong choice about what will provoke a sim to do what action, players

will see the error and their suspension of disbelief will be shattered instantly.

Working with a subject that players are intimate with may serve to draw them in,

but if it is not done correctly it may drive them away as well.

Safe Experimentation

On first inspection, one might not think that what The Sims simulates is actually all

that interesting. Indeed, for the suburbanites who are likely to own a computer to

play the game and have the disposable income to purchase it, how different is the

game-world of The Sims from real life? It would seem that the escapist and

wish-fulfillment qualities many games possess are totally lacking in The Sims. Fur-

thermore, The Sims does not even present “life with all the dull bits cut out.” The

player’s sims still have to engage in the more mundane aspects of modern life, such

as going to the bathroom, going to work, paying bills, and taking out the trash. Is

this fun? Strangely, it is, since these more tedious chores lend an air of “realism” to

the proceedings, which makes the player’s successes or failures all the more

meaningful.

What The Sims really provides to the player is a test-bed for safe experimenta-

tion. While prudence may prevent the player from pursuing a career as a criminal or

Chapter 20: Game Analysis: The Sims 399

Though the
subject matter of
The Sims may
seem pedestrian,
the game is so
fascinating
because it
provides players
with a safe world
in which to
experiment.

professional athlete in real life, the game will allow the player to take her sims in

that direction with little risk to the player. While building a house is a major under-

taking involving great financial risk for the purchaser, in The Sims, players can

build lavish houses, spend money on frivolous trinkets for their sims, throw wild

hot tub parties, or pursue homosexual relationships just to get a sense of what life

might be like if they lived it differently. If these experimental lifestyles turn out to

not work as well as the players had hoped, the only loss is for their sims, an effect

considerably less serious than real-world bankruptcy or social ostracizing. Indeed,

if the player avoids saving her game after a catastrophic event or decision, the loss

is easily undone entirely. The life the player controls in The Sims may be one quite

close to her own, but the ability to try new things without fear of serious repercus-

sions makes the experience compelling and exciting.

Depth and Focus

A big part of what makes The Sims work is the range of choices the player is pre-

sented with for what he can do with his sims. Abdicating authorship is all well and

good, but if the designer fails to provide the player enough meaningful choices, the

player will find himself only able to author a very narrow range of stories. Indeed, it

is the designer’s responsibility in creating a software toy to design that toy with a

broad enough range of possibilities that the appeal of playing with it is not quickly

exhausted. And Wright did that expertly with The Sims, leaving the player with a

constant feeling that there is so much more to do and see in the game-world, that

one could never hope to do it all.

A player can concentrate on building her house, starting either with some of the

pre-built houses or constructing one from the ground up. A robust set of house-

construction and landscaping tools allows the player to create a very large variety

of houses, with probably no two built-from-scratch houses ever being the same,

even with hundreds of thousands of people playing the game. Once a house is built

or purchased, players can concentrate on filling it up with all manner of interesting

possessions which have a variety of effects on the inhabitants of the house. Of

course, the player gets to construct the inhabitants as well, picking from a large

range of personalities, body types, ages, ethnicities, and even hairstyles, with the

option to make children or adults as well as males or females. Once the sims move

into the house, the player is able to determine what they eat, what they study, what

career they pursue, how they have their fun, and with whom they socialize.

Whether it be house building, property acquisition and placement, character cre-

ation, or life control, any one of these components includes far more choices than

most games provide. When all of these different systems are combined, the range of

choices available to the player increases exponentially, creating a game with truly

unprecedented depth.

400 Chapter 20: Game Analysis: The Sims

Of course, what the sims cannot do in the game is significant as well. The sims

cannot leave their homes except to go to work, and when they do the player cannot

follow them. Being able to go to other places would be nice, but consider how

much more complex the game would need to be to simulate the rest of the world. A

massive amount of additional work would have been required, and had that sensible

limitation not been made early on in the title’s development it might never have

been completed. By focusing on the home life, the game is able to “get it right” in a

way it could not have had the game-world of The Sims been larger. In short, what

would have been gained in breadth would have been lost in depth. If a designer

spends all her time adding an unreasonable range of possibilities to the game, it is

likely that any one of the features the game includes will be far shallower than if

the designer knows how to focus her efforts.

The Sims also expertly captures the “just one more thing” style of gameplay.

This type of gameplay is perhaps best exemplified by Civilization, where the player

is constantly looking forward to the next technology to be discovered, the next unit

to be built, or the next discovery of new territory. Similarly in The Sims, the player

may be working on having his sims meet new people, trying to advance their

careers, hoping to put an addition on the house, and thinking of someday having

them raise a child, all at the same time. Because of these constant aspirations, there

is never a good place to stop playing the game; there is constantly something on the

horizon to look forward to. Hence the game is fabulously addictive, with captivated

players devoting hour upon hour, day after day, and week after week of their lives

to the game.

Interface

The best a game’s interface can hope to do is to not ruin the player’s experience.

The interface’s job is to communicate to the player the state of the world and to

receive input from the player as to what he wants to change in that game-world. The

act of using this input/output interface is not meant to be fun in and of itself; it is the

player’s interaction with the world that should be the compelling experience. But

since the interface determines how the player interacts with the world, if that inter-

face is not up to the task then at best the player will become frustrated and at worst

the player will be unable to perform the action he wants.

The Sims’ user interface is a beautiful example of how to do an interface cor-

rectly. It provides the player with a staggering amount of information about the

game-world, while allowing the player to easily and intuitively make whatever

changes she wants. Unlike many modern action games, the tutorial primarily

provides the player with information about how to play the game, not how to

manipulate the interface. The interface is so simple and intuitive that players pick it

up with very little difficulty, no doubt the result of rigorous playtesting. The fact

Chapter 20: Game Analysis: The Sims 401

that help is embedded throughout the interface is key, allowing the player to click

on any text item for an explanation of how it is important and why it is relevant.

A big part of the success of The Sims’ input/output scheme is its similarity to

systems the player is likely to understand before he ever starts playing the game.

For instance, the buttons that determine the game’s simulation speed look like those

one would find on a tape player, something with which almost all players will be

familiar. A large amount of the interface is reminiscent of Microsoft Windows, with

the pointing and clicking the player does mirroring that OS wherever appropriate.

Item manipulation is reminiscent of Windows as well; the player can use drag and

drop to place objects, or simply click and click. The standard Windows “X” appears

in the upper right-hand corner of dialog boxes to indicate that they can be closed,

and the regular OK/Cancel button combinations are used wherever appropriate.

While the functionality mirrors Windows in many ways, it is important to note that

the appearance of the interface does not look exactly like Windows. All of the but-

tons are nicely drawn in a friendly art style that is a far cry from Windows’ cold,

utilitarian sterility. If the game used the actual dialog box art that Windows pro-

vides, the player would instantly be reminded of working with the file picker or

some other Windows interface, not an experience he is likely to remember fondly,

certainly not as a “fun” activity. However, by putting a new visual style on the

behavior of Windows, the interface is intuitive and familiar to the player without

actually reminding him of file management.

Another example of this is the “head” menu used throughout the game. When

the player wants to have a sim perform an action on a particular object, the player

402 Chapter 20: Game Analysis: The Sims

The Sims has an
extremely
intuitive interface
that includes
multiple ways for
the player to
accomplish the
same action.

simply clicks on the object in question. From there a floating head of her current

sim appears, with a range of different actions the sim can perform surrounding it in

a circle. The player then simply moves the mouse over to the action he wants and

clicks on it. While moving the pointer around, the sim’s head actually tracks the

cursor, watching it wherever it goes. This menu functions identically to a pop-up

menu in Windows, but with several distinct advantages. The first is that it does not

look like a pop-up menu, and thereby the player does not associate it with boring

Windows functionality. Second, the menu only lists the options that are available

for the current object at that time. A normal pop-up menu would list all of the

objects possible, with currently unavailable options grayed out. Third, by having

the sim’s head in the center, the menu brings the player closer to the core of what he

is doing; he is directing the sim to perform a certain action. The directive he is giv-

ing to his beloved sim is more intimate than it would have been through a more

sterile, bland, and standard pop-up menu.

Controlled Versus Autonomous Behavior

In the game, the player is able to direct his sims to perform certain actions: take out

the trash, call up a friend, take a shower, and so forth. The sims will also, however,

function on their own without the player’s direction. The sims contain enough inter-

nal logic to tend to their most pressing needs, whether it is to eat, to go to the

bathroom, to play a pinball game, or to read today’s paper. As the player makes

additions to the house or purchases further possessions, the sims will walk over to

new objects and either applaud or complain about them, their reaction dependent on

how much they like each particular object. This communicates to the player whether

the sim is generally going to be happy with the new possession or if the sim would

rather it were not there. Since the way the house is set up is a big component of the

sim’s total happiness, this provides crucial information to the player about how to

best set up the house.

The autonomous behavior of the sims also allows the player to set up the house

and then sit back and watch how the sims live in it. This makes the game more like

SimCity, in which the player could only set up the framework of the city—its

streets, its zones, its key buildings—and then see how the inhabitants of the city

live in it. A player of The Sims can build a pleasant house that he thinks would be

good to live in and then sit back and watch the sims inhabit it, using their default

behavior. This provides yet another avenue for interesting gameplay.

Chapter 20: Game Analysis: The Sims 403

The sims generally do not have the foresight of a player, however, and as a

result will perform better, be more productive, and be happier if the player smartly

directs their every move. For instance, the sims will not try to improve their

career-boosting skills of their own volition, such as improving their creativity by

learning how to paint. So it is often in the player’s best interest to override the sims’

internal choices for what action to perform next, if he wants the sim to attain her

full potential. However, the autonomous behavior avoids the player having to

micro-manage every little decision. Sure, being able to tell the sims exactly what to

do is a key part of the game, but if the player is controlling a number of sims at

once, planning something for every one of them to do at a given moment can be

quite a task. The sims’ internal behavior helps to off-load this responsibility from

the player when the player does not want to worry about it.

A Lesson to Be Learned

The Sims is perhaps the most original commercial game design released in recent

years. The game does not take as a starting point any other published game, but

instead seems to have emerged entirely from Will Wright’s brain. To look at the

game is to marvel at its creativity and innovation. There is so much that is done

right in The Sims, an entire book could be devoted to an analysis of its design. The

game is truly like a computerized dollhouse, providing us the ability to play-act real

human scenarios in order to better understand them. The description of the

dollhouse found in the game is quite illuminating:

404 Chapter 20: Game Analysis: The Sims

The sims have
some intelligence
of their own,
which frees up
the player from
having to worry
about every last
detail of their
lives.

Will Lloyd Wright Doll House

This marvel of doll house design is meant for everyone, allowing

children as well as adults to act out fantasies of controlling little fami-

lies. This incredible replica comes complete with amazingly realistic

furniture and decorative items. Don’t be surprised if hours upon hours

are spent enjoying this little world.

What is perhaps most interesting and compelling about The Sims is the poten-

tial it has to teach us about our own lives. What is the relationship we have with the

possessions we own? How does the space we live in affect our lives? How does

jealousy start in a relationship?

Of course, no one would argue that The Sims is a completely accurate simula-

tion of human motivations and activities, but does it need to be completely accurate

to cause us to think about our lives in new and interesting ways? As we move our

sims around and watch them interact, we may disagree with how the simulation

models their behavior. But in that disagreement, we think about what we really

would expect them to do, with that reflection shedding new light on the relation-

ships we maintain in our real lives. This, it seems, is the potential of computer

games—not to allow us to escape from real life or to even replace it, but to open up

new areas of thought, to be able to see the world through a different set of eyes and

come back to our own lives equipped with that priceless information.

Chapter 20: Game Analysis: The Sims 405

Chapter 21

Level Design

“We’ve always striven for ‘immersion’ in the gameplay, but as we’ve

grown (well, changed at least) as designers, our sense of that has

changed. While the details of this attempt vary from game to game, the

core goal has been to provide a range of player capability in the world.

With this breadth of capability, the player hopefully feels more involved in

their decisions. An Underworld player can open a door with the key, by

picking the lock, by breaking it down, or by casting a spell. If the player

can choose their own goals, and their own approaches to an obstacle,

then when they reach the goal it is far more satisfying. Flexible simulation

of game elements is a powerful way to enable the player to make their

own way in the world.”

— Doug Church, talking about his game Ultima Underworld

406

A
s computer games have grown in size and scope, the tasks that in the past

were performed by one person are now performed by multiple people. This

division of labor is necessary for the timely completion of the sophisticated

and massive games the publishers demand and the marketplace has come to expect.

One of the unique roles that was created through this division of labor was that of

the level designer. Once the core gameplay for a game is established, it is the level

designer’s job to create the game-world in which that gameplay takes place, to build

spaces that are fun for the player.

The number of level designers required for a project is directly proportional to

the complexity of the levels to be used in that project. For a 3D game with

extremely detailed architecture which all must be built by the level designer, it is

not unreasonable to have two levels per designer, perhaps only one. Sometimes the

game’s primary designer also serves as a level designer, and sometimes she merely

oversees the team of level designers working on the project. For a 2D game, it is

not out of the question for the game’s lead designer to craft all of the game’s levels.

Level design is where all the different components of a game come together. In

some ways creating a level is like putting together a jigsaw puzzle; to build his lev-

els, the level designer must make use of the game’s engine, art, and core gameplay.

Often level design is where a game’s problems become most apparent. If the engine

is not up to snuff, the levels will start behaving erratically in certain situations, or

the frame rate will not be able to support the planned effects. If the art is made to

the wrong scale or has rendering problems of any kind, these difficulties come out

as the level designer starts placing the art in the world. If the title’s gameplay is not

able to support a wide enough variety of levels to fill out an entire game, or, even

worse, if the gameplay just is not any fun, this problem will become apparent dur-

ing the level design process. It is the level designer’s responsibility to bring these

problems to the attention of the team, and to see that the difficulties are resolved

properly. Often this can result in the level designer being one of the least liked team

members, since he must always be pestering people to fix problems, but if he

instead tries to ignore the problems he encounters, the game will be worse as a

result. The job of the level designer is one that comes with great responsibility.

With all the different aspects of the game’s content to worry about, the level

designer’s job is certainly not an easy one. Beyond making sure all of the game’s

components are up to snuff, if the level designer’s own work is not of the highest

quality, then the game is likely to fail miserably. If the levels do not bring out the

best aspects of the engine, the art, and the gameplay, it does not matter how good

those component parts may be. Without good levels to pull it all together, the game

will fail to live up to its potential.

Chapter 21: Level Design 407

Levels in Different Games

The definition of a “level” varies greatly from game to game. It most commonly

refers to the game-world of side-scrollers, first-person shooters, adventures, flight

simulators, and role-playing games. These games tend to have distinct areas which

are referred to as “levels.” These areas may be constrained by geographical area

(lava world versus ice world), by the amount of content that can be kept in memory

at once, or by the amount of gameplay that “feels right” before the player is granted

a short reprieve preceding the beginning of the next level. Though many classic

arcade games such as Centipede or Space Invaders took place entirely on one level,

others such as Pac-Man or Joust offered simple variations on the game-world to

prolong their gameplay. Thus, the different mazes in Pac-Man constitute its levels.

In a campaign-based strategy game such as StarCraft, the levels or scenarios are

defined by maps accompanied by objectives the player must accomplish, such as

defend the Terrans against the Protoss forces in this amount of time. In a racing

game, a level would be one of the tracks available in the game. In a sports game,

say baseball, the levels would be the different stadiums featured in the game. Here

the difference between the various levels is completely aesthetic, since in terms of

play mechanics, a baseball game played in Wrigley Field is only subtly different

from one played in Yankee Stadium.

Games such as Civilization and SimCity do have levels, but one key difference

from the games described above is that the entirety of a player’s game takes place

on a single level. The base level is also often randomly generated, and from there it

is largely the user’s responsibility to construct the level as he plays. This is why

408 Chapter 21: Level Design

Joust made
simple changes
to its game-
world to
produce different
levels.

TE
AM
FL
Y

Team-Fly®

these titles are often referred to as “builder” games. For these titles, the authorship

of the level is almost entirely abdicated to the player.

This chapter deals primarily with games that use pre-built levels which have a

major impact on the gameplay. Though sports titles and “builder” games may have

levels, their construction is left up to the artists and players respectively, and there-

fore is not generally of concern to designers. For games like Doom, Tomb Raider,

Super Mario 64, Maniac Mansion, Pac-Man, StarCraft, and Fallout, however, the

design of the levels has everything to do with gameplay and therefore the designer

must be intimately involved with their creation.

Level Separation

How a game is broken down into its component levels has a huge impact on the

flow of the game. Players often play a game a level at a time. If a parent announces

dinner while a child is playing a game, that child is likely to beg to be allowed to

“just finish this level.” In console games, frequently the player can only save her

game between levels, which places further importance on the end of a level as the

completion of a unit of gameplay. A level can function like an act in a play, a chap-

ter in a book, or a movement in a symphony. It gives the audience a chance to see a

discrete unit within a larger work, to understand what portion of the work has been

completed and how much awaits ahead. Well-designed levels are set up such that

difficulty and tension ramp upward toward the end of a level where some sort of a

mini-resolution finally occurs. This may be through a boss monster to defeat or a

special quest object to obtain. When the player finally sees that the level has ended,

she knows that she has accomplished a significant amount of gameplay and should

feel proud of herself.

Technical limitations often dictate where the end of a level must occur. Only so

many textures, sounds, and level data can fit in memory at once, and when those

resources are used up, the gameplay has to stop long enough for different level data

to be loaded in. New technologies present the opportunity for more seamless envi-

ronments. Even on the technically limited PlayStation, the developer Insomniac

was able to avoid loading screens entirely in Spyro the Dragon, instead just having

Spyro fly into the air for a second while the necessary data is swapped in, then fly-

ing back to earth in the new level. To the casual player watching Spyro, the break is

much less jarring than seeing a “loading” screen come up. The Spyro the Dragon

levels still have to be divided into sections between these non-loading screens,

however, meaning that the gameplay in those levels is still limited to a certain

amount of space. A good designer, of course, can take the memory constraints and

use them properly to create levels that are fun and challenging to play while also

fitting in the space available. Again, the designer must take the limitations of the

hardware and embrace them.

Chapter 21: Level Design 409

Half-Life is another interesting example of level division. Here the team at

Valve wanted to create a more seamless experience for the player, but were still

using the limited Quake technology. Quake had featured thirty or so levels, each of

which took a significant amount of time to load. In Quake the levels existed in sep-

arate universes from each other; never would a monster chase the player from one

level to another, never would a player return to a previous level. The programmers

at Valve came up with a system where, if the levels were small enough, they could

be loaded in under five seconds. They also made modifications so that monsters

could track the player across the boundaries between maps. The level designers at

Valve were able to make their levels very small, much smaller than a standard

Quake level, but then created a great quantity of them. The areas between two lev-

els contain identical architecture, such that the player can run across the border

between two of these levels and, aside from the brief loading message, not even

know he had crossed a level boundary. The result is a much more seamless experi-

ence for the player. Evidently the team still felt the need for story arcs in the game,

since text “chapter titles” appear briefly on the screen at key points during the

game. But since the programming and design teams were able to create a near-

seamless level loading system, the design team was able to separate the game into

these storytelling units wherever it felt best, instead of where the technology dic-

tated. The ideal for an immersive game like Half-Life, of course, would be to

eliminate these load times entirely. Someday the technology will exist to cache in

new level data as the player gets close to needing it. Until then, designers trying to

create seamless environments must strive to keep the loading as short and unobtru-

sive as possible.

Level Order

The order in which the levels occur is also important to the overall flow of the

game. Perhaps big shoot-out levels should be alternated with more strategic or puz-

zle-oriented levels. If a game places all of its strategic levels early in the game and

then crowds the end with more action-oriented episodes, the game may seem unbal-

anced. At the very least, the designer should know how the order of the levels will

affect the flow of gameplay, and should be aware of how moving different levels

around will affect it. For example, if a game has thirty levels and six boss monsters,

one logical way to place these adversaries in the game would be at the end of the

fifth, tenth, fifteenth, twentieth, twenty-fifth, and thirtieth levels. The bosses cer-

tainly do not have to be on those precise levels, and each can be shifted slightly

forward or backward in the level order without causing any serious problems. If the

bosses were placed one each on the last six levels of the game, this would be obvi-

ously unbalanced. It would seem strange to the player that after twenty-four levels

of no-boss-monster gameplay, suddenly he has to fight one every level.

410 Chapter 21: Level Design

The way the game is broken up into its different levels and the order in which

those levels must occur differs from game to game. For a game like Unreal, as with

the Doom and Quake series before it, the designers were only instructed to make

some cool levels, with little concern for story (since none of these games really had

one) or which events should happen before which other events. Some thought was

put into at what point certain adversaries would first appear in the game, and hence

the earlier levels were more restricted in which creatures they could use. Similarly,

of course, the earlier levels had to be easier and the later ones had to be harder. But

for the most part, the level designers just tried to make the coolest levels possible,

almost working in a vacuum from the other designers. Certainly they would see

each other’s work and this might inspire them to make their own levels better, but

none of the levels really had to match up thematically with the levels that came

before or after it, and the lack of a story meant that this did not adversely affect the

game.

In a game such as Indiana Jones and the Infernal Machine, however, the story

plays a much larger role. In order for that story to work, the levels need to support

it. Hence, for a more story-centric game, a great deal of preplanning is done by the

game’s design and story teams as to which story events need to happen in which

levels. In what sort of environments should those levels take place? What types of

adversaries will the player fight there? The order in which the levels appear in the

game cannot be changed as easily as in Doom, since that would radically change

the story as well. In order for the entire game to flow and escalate in difficulty

appropriately, the type of gameplay found in each level must be planned ahead of

time. The levels do not need to be planned down to minute detail, however, as this

Chapter 21: Level Design 411

The goal of the
Unreal level
designers was to
create some cool
levels, not
necessarily to
make them fit
together as a
whole.

is best left to the level designer, who can place the individual encounters, objects,

or minor puzzles as they best fit the level. A mini design document explaining what

the level has to accomplish in order to function within the game’s story will allow

the level designer to know exactly what she must include in the level; from there

she can fill in the details.

The Components of a Level

Once the levels a game needs have been decided on, possibly with some idea of

how those levels must support the story, the next task is to actually create those lev-

els. Regardless of its location in the game as a whole, the goal of every level is to

provide an engaging gameplay experience for the player. When working on the lev-

els for a game, it is important to constantly keep in mind the focus of the game.

What is this game trying to accomplish? How important are the different aspects of

the game? What will the level need to do to support the type of gameplay this game

has? In addition, depending on the amount of pre-production design done on the

levels, one may need to consider how this level may play differently than others. Is

it a “thinking” level after an action-intensive one? Is this level more about explora-

tion and discovery than building up the strength of the player character or

characters?

Before level design begins, the design team should convene and break down the

different gameplay components of the game, since each member must completely

understand how the gameplay functions. Each level designer must understand how

412 Chapter 21: Level Design

A level for the
sophisticated
Quake III Arena
engine requires
significantly
more work than
one for a simpler
2D game. As a
result, making
changes to a
Q3A level is
significantly
more time
consuming.

his level will use that gameplay before he starts building anything. In some games it

is easy to radically change the layout of a level, such as in a tile-based game like

StarCraft. If problems with the level arise, the level can be easily reworked. For a

game using the Quake III engine, however, once a level is built it is very labor-

intensive to radically alter it. Producers will be reluctant to invest another month of

architecture construction time to rework a level because it is not playing well.

Therefore understanding ahead of time the gameplay of the game and the level in

question is important. One perhaps simplistic but still useful way to break down the

components of a level’s gameplay is in terms of action, exploration, puzzle solving,

storytelling, and aesthetics.

Action

Action is the most obvious component of the levels for many games, and indeed for

many titles the action element is the only justification for the level’s existence. Of

course there are some games that eschew the action component entirely, such as

many adventure or puzzle games, but nearly all other games contain some action

components, whether it consists of blasting demons in a shooter like Doom, inca-

pacitating walking mushrooms in Super Mario 64, slaying mutants in Fallout, or

speeding by the opponents’ cars in San Francisco Rush.

Whatever your game’s action component is, the level designer’s job is to under-

stand how much action the level contains and at what pacing this action component

should be presented to the player. What percentage of your level should be action

filled and exciting? How many battles will the player fight? Is the combat fast and

furious or are there “breaks” or intermissions between major conflicts? Should the

player’s adrenaline be pumping during the entire level because of a constant fear of

death? Of course, the amount of action is entirely dependent on what type of game

you are making, but regardless, you need to have a clear idea of what amount of

conflict the player will encounter.

For a game with a lot of action, the levels must be constructed keeping in mind

how that action will play out. The level designer must keep in mind how the enemy

AI functions and what types of maps will lead to the most interesting conflicts.

What geometry will give the player lots of locations to duck and cover while dodg-

ing enemy fire? How can the levels be best set up to encourage the player to figure

out her own strategy for defeating the opposition? Knowing what sort of action

your game will have and how that action best plays out is critical to designing lev-

els that bring out the best in the action gameplay.

Exploration

What will the player be doing when not in the heat of battle? Exploration is a major

part of a lot of action/adventure titles such as Tomb Raider or Super Mario Bros.

Chapter 21: Level Design 413

Instead of just providing a bridge between different action set pieces, if properly

designed the exploration can actually be a lot of fun for a player. It is often hard for

the design team to see this after slaving away on a map for months. How much fun

is exploring architecture with which you are already painfully familiar? Always try

to keep in mind that for a player experiencing a map for the first time, the thrill of

exploring a new virtual world can be quite stimulating. It may be important to con-

stantly be showing your level to first-time viewers or playtesters, and getting their

feedback on whether they enjoy exploring the level or not.

The designer must keep in mind how the player will explore the level to know

how best to lay it out. What cool piece of art or architecture will the player see

around the next corner? How excited or awe-inspired will the player be on finding

new areas? Making exciting exploration a part of your game goes beyond creating

exciting architecture for the player. It is also determined by how the level flows,

and what the player will have to do to reach an exciting new area. Being dropped

right into the middle of some nice architecture is much less satisfying than having

to navigate a large area of the map to finally make it to an exploration payoff.

Part of making the exploration aspect of a game work is determining the flow

of a level. Will the player need to explore several offshoots from a main, critical

path, or will the player generally only have one way to proceed? Will the path the

player must take to complete the level be obvious at first, or will the player need to

experiment and look around quite a bit before they find it? Games that are very

action-oriented will tend to put the player on a path which leads directly to the next

conflict. Games that encourage the player to poke around may make the path less

obvious.

414 Chapter 21: Level Design

As far back as
Super Mario Bros.
on the Nintendo
Entertainment
System,
Miyamoto’s
games have
included
exploration as a
key gameplay
component.

I once saw someone criticize Shigeru Miyamoto’s games as being all about

exploration, and therefore not very good games. The observation that exploration is

the focus of the later Mario was a correct one. The mistake was in asserting that

this is not a fun part of gameplay, as millions of Mario fans will refute. The chal-

lenge lies in making exploration entertaining and rewarding for the player,

something Miyamoto’s games do expertly.

Puzzle Solving

Sometimes progressing in a level involves more than just finding a path to the next

area. Instead it may involve figuring out what needs to be accomplished in order to

open a certain door or how a large obstacle can be cleared out of the way. Perhaps

the worst examples of this are the “switch flipping” puzzles found in many

first-person shooters. In these games, for no particular reason, the player needs to

navigate through a large section of the map in order to flip a switch. This action

opens a door which leads the player to another area where another switch is in need

of flipping. And so it goes. This switch may instead be a key or any other object that

opens a door or any other type of device that blocks the player’s progress. This is

the simplest form of a puzzle in an action/exploration game. Here the focus is

mostly on the player exploring until he finds the puzzle, with the solution to the

puzzle then being trivial. In the case of the switch, once it is found all the player

needs to do is flip it.

More sophisticated variants on the switch/door combination can be situations

which require the player to actually figure something out in order to progress. Per-

haps a laser beam needs to be refracted around a series of corners in order for the

player to progress. In order to refract it correctly, the player will need to move sev-

eral reflective plates. The player must understand the simple physics of the situation

which govern how the beam will behave when reflected in different ways. The

focus here shifts from just finding the puzzle to finding it and then figuring out how

to manipulate it correctly. The player’s gaming experience is enhanced by this puz-

zle instead of it merely delaying the end of her game. Determining how much

emphasis your level will have on puzzle solving is important to keep in mind, espe-

cially within the context of the game as a whole. A sure way to frustrate the player

is to suddenly throw a bunch of arbitrary puzzles at her after the entire game up to

that point has been more action-oriented.

Storytelling

Setting is a big part of storytelling, and levels are a vital component of establishing

the setting for a game. Therefore, levels are an integral part of telling a game’s story.

If the story is more than something tacked on to an already completed game, it only

makes sense for the game’s levels and the story to work in synergy. Depending on

Chapter 21: Level Design 415

the type of storytelling that the game is employing, it may be necessary for the

player to meet and converse with characters in the levels, such as in Half-Life or in

almost any RPG. Setting up the levels to support the appearance of these characters

becomes very important. In some games it is obvious that the levels were designed

from the very start with the story in mind. For instance, in Myth: The Fallen Lords,

the player’s goals for a certain level are directly tied to the progression of the story.

In a historical wargame such as Gettysburg!, the battles the player fights have to be

tied to the story, since it could hardly be a historical simulation otherwise.

Knowing the story goals for a given level prior to constructing that level is cru-

cial to communicating the story effectively. The story should still be loose enough

to allow the level designer to be creative in making the best level possible. There

are still concerns about gameplay, about balancing the right amount of strategy,

action, puzzles, and exploration, and since it is nearly impossible to balance these

components before the level actually exists, the level designer needs to not have his

hands tied by an overly restrictive story. Indeed, it may turn out that the story needs

to change in order to accommodate the gameplay needs of the level, but having an

idea of what story needs to be told on a particular level is essential to designing that

level so it fits properly into the overall narrative.

Aesthetics

How a level looks and sounds are probably the driving factors behind many level

designers’ work. I certainly would not dispute that a level’s appearance is crucial to

its overall success. At the same time, however, the aesthetic component becomes a

416 Chapter 21: Level Design

In a historical
game such as
Gettysburg!, the
gameplay is very
much tied to a
particular story
from history.

problem when how the level looks becomes the designer’s primary concern, a situa-

tion which usually has a detrimental effect on how the level plays. Suppose a level

designer spends a lot of time creating a massive, gorgeous cathedral for a level, and

the appearance of that cathedral is constantly at the forefront of his mind. What if it

turns out that the cathedral is hard for the player to navigate, the AI agents easily get

confused when trying to pathfind though it, and the whole structure is a bit more

than the engine can handle, resulting in the level running slowly? If the cathedral

looks great and its construction sucked up a lot of man-hours, who will want to cut

it? It may translate into some fabulous screenshots on the back of the box; too bad it

will not be any fun to play.

A big part of the level designer’s job is to balance the appearance of the level

with the other requirements of that level, as I have listed above. There is always an

achievable middle ground where the level looks good, plays well, renders quickly,

and suits the needs of the game’s story. Level designers spend a lot of their time

learning the “tricks” of a given engine or level editor. What can they do that will

use the fewest polygons while still looking good? Often the solutions they come up

with are not necessarily “real” but rather “faked.” Of course the whole purpose of

creating levels for a virtual world is creating “fake” content, so a level designer

need not worry if an effect is achieved by “faking” something. If the player cannot

tell it is faked, if he cannot see behind the magic curtain, that is all that matters.

One of the principles behind all special effects is to create something that looks like

something it is not. The level designer’s job is to make the player see something

that looks like something it is not, giving the level what Unreal level designer Cliff

Bleszinski would call “schlack,” a shiny and fancy coating over an otherwise unin-

teresting level.

The visual side of a level can have a big impact on the other concerns of a

game’s level as I have listed before. For instance, in order to make a level playable,

the textures on a level should be laid out in such a way that the player can see

where he should or should not be able to go. Instead of wondering if a particular

slope is too steep for her game-world surrogate to climb up, a different texture can

serve as a visual cue to the player as to which slopes are passable and which are

not. Lighting can be used to conceal secret areas, or a big puzzle in the level may be

figuring out how to turn the lights on. If certain special areas are supposed to be

rewards for the player’s diligent exploration, making those special areas look

impressive is essential to maintaining the player’s interest in the level.

A lot of time can be spent on the aesthetics of a level. The amount of time is

directly proportional to the complexity of the engine and level editor being used as

well as the desired visual effect of the level. In fact, it may be the case that all of the

gameplay and story elements of the level can be set up first and then the visual

appearance can be tweaked for weeks to come. Lighting can be endlessly adjusted,

textures can be shifted or switched for other textures, and polygon faces can be

Chapter 21: Level Design 417

adjusted to better represent the visual effect the designer is trying to achieve. All

the while, the level designer must be fully aware of the effects changes in the

level’s appearance will have on the gameplay.

Balancing It All

Because a good level must balance action, exploration, puzzle solving, storytelling,

and aesthetics, the work of the level designer is a bit of a balancing act. Even if the

level may look better a certain way, how does that impact the story being told? Do

the story requirements for the level mean that it cannot have much in the way of

combat? Then how important is combat to the game, and can the level survive with-

out it? Is the quantity of puzzle elements in the level preventing the player from

being able to enjoy exploring it? The action, exploration, puzzle solving, storytell-

ing, and aesthetic qualities of a game level all have interdependencies which the

level designer must be constantly aware of and be constantly maintaining. The price

of good level design is eternal vigilance.

Level Flow

For different types of games, what a level is expected to accomplish changes signifi-

cantly. Consider action/exploration games such as Super Mario 64, Tomb Raider, or

Doom. Though the gameplay in these three games is significantly different, the

functions the levels serve in each is remarkably similar. In all these games, the

player customarily plays through the level from a distinct beginning point to a sepa-

rate end point. A big part of playing the level is exploring the spaces it contains, and

as a result, once the player has played through the level, it is significantly less fun to

play a second time. Furthermore, any encounters the player might have with charac-

ters or adversaries in these levels are carefully predetermined and set up by the level

designer. Every time the player plays such a level, he will have roughly the same

gameplay experience as the last time he played it. The flow of the level is more or

less linear, with perhaps only a few choices of how to get from point A to point B.

RPGs offer roughly the same flow pattern as the action/exploration games dis-

cussed above, perhaps with a bit more non-linearity. The designer usually intends

for the player to navigate to a particular location in a particular way. RPGs may

tend to be a bit more non-linear than action/adventure games, usually allowing the

player to choose the order in which different actions can be performed. Often “hub”

style gameplay allows the player to branch off on different adventures while return-

ing to a central location, such as a town. The player may also stay in the town to

hone his skills for as long as he likes. In the end, though, RPGs offer similar level

flow as action/adventure titles.

418 Chapter 21: Level Design

TE
AM
FL
Y

Team-Fly®

In a level from a strategy game such as WarCraft or Civilization, however, the

action is less canned and the level flow is less clearly defined. WarCraft and Civili-

zation may be as different from each other as Super Mario 64 and Doom, but the

way they use their levels is the same. Exploration is not such a central part of the

enjoyment of these strategy games, and the battles may take place on any part of

the map. Different locations may provide specific strategic advantages when used

correctly, but battles can start in one location and move to another, or certain sec-

tions of the map may go completely unexplored and unexploited by the player and

his opponents. The gameplay on such a map is often significantly less predictable

than on an action/exploration game’s map. The level’s flow is more nebulous.

Of course, there is at least one distinguishing characteristic that makes the level

flow in Civilization significantly different from that of WarCraft. In Civilization,

any one game consists of play on only one level. That is, the player starts a game of

Civilization on one level and plays on that level until she wins or loses, while in

WarCraft the player plays a series of scenarios on a series of levels. Civilization

presents a much more continuous gameplay experience for the player, which may in

turn make it that much more addictive. Whereas a game like WarCraft presents the

player with an easy stopping point—the end of a level—a game like Civilization

has no such breaks. Both types of games may include levels with unpredictable

flows, where different players can play the levels significantly differently, but since

a player in Civilization spends all of his time on one map, the overall feel of the

game is radically different. Of course, the fact that Civilization is turn-based while

WarCraft is real-time significantly changes the flow of the games as well, but that

is a change in gameplay rather than a change in level design and usage.

Returning to our action/exploration games, if we were to take a multi-player

death-match level from a game like Quake, we would see that the level’s flow is

Chapter 21: Level Design 419

The level flow on
a level of a
real-time
strategy game
like WarCraft is
less defined than
in an action/
exploration
game: combat
encounters can
take place all
over the map.

much closer to that of a strategy game. That is, exploring the level is less important

and combat can take place in completely unpredictable ways all over the map.

Indeed, many players of multi-player death-match games will find a map they like

and stick to it, at least for a while. The player will need to have explored the map

thoroughly before he actually has a chance of winning a death-match on that map,

certainly when playing with experienced players. Exploration and memorization of

the map may be an integral part of the metagame in that such exploration leads to

the player’s victory in future games, but the exploration is only a means to an end,

not an end in and of itself, unlike in a single-player game where exploration is a big

part of the fun.

With the exception of racing games, sports games typically provide a very

non-linear flow to their gameplay. The flow of a basketball game’s levels more

closely resembles a death-match or strategy game’s levels than an action/explora-

tion game’s maps. Action takes place all over the level or court, with the player’s

movement flowing back and forth across the level, covering and recovering the

same ground but in unique and unpredictable ways. Exploring the level is relatively

unimportant, as the shape of the level is completely simple and typically the entire

court or a very large chunk of it is on screen at once.

In a racing game, the player moves from a distinct start location to a distinct

end location. This movement is quite similar to an exploration-oriented action game

such as Doom, with the key differences that typically the race’s start and end loca-

tions are the same (the track loops) and usually the race-path is repeated multiple

times before the level is over. This flow is just as linear as in an action/adventure

title, if not more so. Modern racing games such as San Francisco Rush or Cruisin’

World incorporate some of the exploration elements of action/exploration games by

making the levels look visually stunning and varied, making the first time the

player rounds a corner an aesthetically thrilling experience. Older racing games

(such as the venerable Pole Position) relied more on the challenge of navigating the

track to entertain the player rather than the thrill of racing through new, fantastic

locations. Many more modern racing games also include alternate paths or short-

cuts that players can take for varied gameplay results. The flow is still in the same

general direction, but some branching allows the player to concentrate on more than

just how tightly he can take a given corner.

From my discussion of these gaming genres and the way that gameplay flows

on their respective levels, one could divide the games into roughly two groups:

those with more linear levels (action/adventure, role-playing, and racing games)

and those with more non-linear, unpredictable gameplay experiences (strategy,

sports, and multi-player death-match games). Of course, that is not to say that the

two do not overlap. For instance, specific StarCraft levels do everything to encour-

age players to play them in a specific path, especially the small-team indoor levels.

Similarly, many Super Mario 64 maps allow for multiple viable paths the player

420 Chapter 21: Level Design

can use to play them through. If the designer is creative enough in her efforts, the

distinction between the two types of levels can be blurred, which can often lead to

more varied and interesting gameplay.

Elements of Good Levels

As you design a level, there are a seemingly infinite number of details you must

keep in mind. You must be concerned that you balance the elements of action,

exploration, puzzle solving, storytelling, and audiovisual appeal. You must work

with the artists and programmers to achieve the effects you want. For 3D levels, you

must make sure the whole level is optimized so that it can run on the target system.

Often you have to deal with unruly level design tools which seem to thwart your

every attempt to make something cool.

Often a level designer will come up with a list of rules of thumb to follow while

making a level, even if she does not write this list down. Every designer will have

her own list of “dos” and “don’ts” that she keeps in the back of her mind, and this

list can change significantly from project to project. Some games will have their

own “design rules” established ahead of time and which the designers can then fol-

low, but there are also rules which can apply to any project. Here I present a partial

list of my own rules of thumb, which I use to attempt to make a level that is stimu-

lating to play.

Player Cannot Get Stuck

This should be obvious. The player should never become hopelessly stuck when

playing your level. There should be no pits that can be fallen into but not climbed

out of, no objects which, when moved incorrectly, permanently block the player’s

progress, and no doors which fail to open if the player approaches them a certain

way. Though this goal may seem perfectly obvious, it will actually consume a large

amount of your time as a level designer. Consider a puzzle where the player has a

certain amount of dynamite, and that dynamite needs to be used to blow a hole in a

wall so the player can progress in the level. Well, what if the player uses up all his

dynamite blowing up the wrong things? Without any more dynamite, the player is

completely stuck. Similarly, suppose the player needs to talk to a particular NPC to

get a particular object. What if, instead of talking to that character, the player kills

him? Either the player’s game must end nearly instantly, or there must be some

alternate way to progress through the game. Designing your level in such a way

that, whatever the player does, he can still finish the level, takes a lot of thinking

and planning. As a level designer, you must always be asking yourself, “But what if

the player tries it this way?”

Chapter 21: Level Design 421

Sub-Goals

As the player plays a level, he should have understandable sub-goals. Instead of

playing through the whole level just trying to get to the exit or accomplish some

large goal, the player should be able to recognize that there are various tasks he can

accomplish which contribute to the final goal. A very simple example of this would

be the different keys in Doom. The player knows that once he gets the blue key he is

that much closer to finishing the level. In an arcade racing game like San Francisco

Rush, instead of having just one finish line per track, most games have multiple

“checkpoints” along the track at which the player is given a time bonus and

informed of how well he is doing. In an RPG, the player may be working to defeat

an evil force that is tormenting the land, but along the way he is able to go on vari-

ous sub-quests for villagers who need his help. These various sub-quests lead the

player toward the larger goal, and provide the player with positive feedback that he

is, in fact, playing the game well. A sub-goal is useless if the player does not under-

stand what he has accomplished. Therefore, it is also important to provide the player

with some sort of reward for achieving the goal, whether it is audiovisual bells and

whistles, a new weapon, bonus points, or more time on the racing clock. If the

designer does not provide enough sub-goals on a particular level or if those

sub-goals are so transparent that the player does not realize he has achieved them,

the player may become confused as to what he is supposed to be doing and whether

he is getting any closer to succeeding.

422 Chapter 21: Level Design

In racing games
such as the San
Francisco Rush
series, players
are given
sub-goals
through
checkpoints
which award
more time.
Pictured here:
San Francisco
Rush: The Rock
Alcatraz Edition.

Landmarks

The more complex your level, the more the player is likely to get confused navigat-

ing it. Unless confusion is your goal, which it usually should not be, it is a good

idea to set up memorable landmarks in your level to ease the player’s exploration. A

landmark is any unique object in your level that the player will recognize the second

time she sees it, whether it is a particularly ornately decorated room, a large statue,

or a steaming pool of lava. In terms of exploration, then, when the player returns to

this landmark, she will know that she is returning to a location she has previously

visited, and will thereby begin to understand the layout of the level. Landmarks do

not necessarily need to be big red signs labeled “Checkpoint A,” but can instead be

worked into the story and setting of the level itself.

Critical Path

Even though I am a big proponent of non-linear gameplay, I am also a big fan of a

nice critical path in a level. A critical path gives the player a sense of a direction he

can go in order to complete the level. This direction may be a physical direction,

such as “head North” or “head for the rainbow,” or it can be a more ambiguous goal,

such as finding a creature and defeating it or retrieving an important object. Always

giving the player a primary goal to accomplish is crucial to making your level play-

able. The player should have a goal and, as I discussed, sub-goals that work toward

achieving that primary goal. The player should always be aware of the goal and the

related sub-goals, and should always have a sense of what he can do to progress in

the level. Separate optional side-goals may be less obvious or hidden, but nothing

frustrates a player more than having no idea what he is supposed to do. Having a

clearly established critical path is a good way to help prevent the player from

becoming confused.

Limited Backtracking

If your game relies on exploration for a large part of its gameplay value, it is proba-

bly a bad idea to make the player backtrack through large sections of the level that

he has already explored in order to continue in the game. That is not to say that your

level cannot have branching paths for the player to explore. It merely means that

each branch should loop back to the main path without the player needing to back-

track along the same path. If your game is more of a role-playing or adventure game

where creating the illusion of reality is important, the necessity of backtracking may

be more acceptable. Certainly in an RTS or sports game, the player will be covering

the same ground over and over again, but the appeal of a basketball game or

WarCraft is not so tied to exploration as Super Mario 64, a title which does a very

good job of eliminating the need for backtracking entirely.

Chapter 21: Level Design 423

Success the First Time

If most players are able to beat your level the first time they play it, you have proba-

bly made a level that is too easy. Nonetheless, the possibility should exist that a

player could make it all the way through your level on the first try. I do not mean,

however, that the player could make all of the right choices just by happenstance.

Instead, you should provide enough data to the player that she has a reasonable

chance of avoiding all the obstacles put in her path if she is observant and quick-

witted enough. Whenever the player fails in your level, she should feel that she had

a fair chance of avoiding that failure if she had only been more observant or had

thought more before she acted. Nothing frustrates the player more than realizing

that the only way to make it through the level is by trial and error combined with

blind luck. Of course, your level can still be hard. Your clues as to what to do can be

quite subtle, the monsters to be defeated can be really strong, or the choices to be

made can be truly challenging, but if the player does everything perfectly, she

should be able to get through your level the first time she plays it.

Navigable Areas Clearly Marked

The player should have a clear idea of where he will be able to go in the level.

Slopes that the player will slide on should appear to be significantly steeper than the

slopes that can be walked on. Textures may be used to differentiate between areas

the player can navigate and those he cannot. It can be very frustrating to the player

than when an area that appeared to be unnavigable turns out to be the only way out

of a particular area. Another example might be a room with ten doors in it. The

player tries three of these doors, and they are all locked. At this point, the player

will probably conclude that the doors are there only for show and will stop trying

any of the other doors. No information is given to the player to indicate that the

other doors might be openable when the first three he tried were not. If it turns out

that the only way out of this room is through one of the doors which happens to be

the only one that was unlocked, I would suggest that this area has been poorly

designed. The only way out of such a room is through tedious trial and error. The

fun in a game may involve trying to get to certain areas or the thrill of running

around in those areas, but there is little fun to be found in determining which areas

the designer arbitrarily decided could be navigated and which could not.

Choices

This may seem obvious, but it is something level designers can often forget to keep

in mind as they are building their levels. Good levels give the player choices of how

to accomplish goals, just as good gameplay gives the player lots of choices for how

she will play the game. Choices do not necessarily mean multiple paths through a

424 Chapter 21: Level Design

level, though that may be a good idea as well. In a first-person shooter, choices

could mean giving the player different options for how to take out all of the enemies

in a room—plenty of different places to hide, different locations that the enemies

can be shot from, and so forth. Such a setup creates a variety of different strategies

that will successfully defeat the horde of advancing demons. Choices could also

mean bonus objects that are challenging for the player to get, such as a rocket

launcher in the middle of a pool of lava—the player has the choice to risk going for

it or not. In a strategy game, interesting choices mean different places where battles

may play out or different places a player can choose to rally his troops or gather up

resources. In adventure games, the genre most notorious for not giving players

enough options, choices mean multiple solutions to the game’s puzzles, different

characters to talk to, and plenty of different ways to move through the game. Players

become frustrated when they feel that they are locked into just one way of playing

the game, especially if that one way is not the way they would like to play it.

A Personal List

Certainly the list I have provided above is far from complete. As you work as a

level designer, it makes sense to establish your own list of design goals to keep in

mind while creating your level. As you work on levels that are received well by

your peers or players, try to analyze the levels to see what you did well. Then try to

abstract these accomplishments into a list of goals to keep in mind as you work on

subsequent levels. This list does not necessarily need to be formally written down;

just keeping a mental checklist may be sufficient. The options I listed here may be a

start for your own list, or you may find yourself coming up with a completely differ-

ent set of goals. Every designer approaches level design in her own way.

The Process

The process of constructing a level can vary greatly from designer to designer. What

works for one person may not work for another. That said, I have found the follow-

ing progression of steps to be one that works well for me. I may not always follow

the steps precisely, but generally speaking, this progression produces more consis-

tent and efficient results than just cranking out a level without any plan of what to

do first or how to proceed.

step 1. Preliminary

Before starting to design a level for the game, ask yourself if the gameplay is in a

close-to-final state. Is the game going to change so much that the level you design

will no longer be fun to play? Or worse, will the level no longer be playable? For

instance, suppose you are developing a third-person action/adventure such as Tomb

Chapter 21: Level Design 425

Raider. Before you start making a level for the game, you need to determine how

final the movement of the main character is. Will more moves for the character be

added? Will the game’s hero someday be able to do a double forward flip that will

radically change the distance she will be able to jump? Often when you begin work-

ing on a level the game itself is far from complete, and some changes will probably

be made to the main character’s movement. But if the team is aware that radical

changes to the player movement model will be made, having level designers start

working on levels is a big mistake.

On one project I worked on, we started working on the levels before the ability

for the main character to jump had even been added to the game. As a result, once it

was added, we went back and had to modify the levels to include areas that would

use this jumping ability. Unfortunately, after the jumping had been in the game for a

while, it became clear that the jumping was not that much fun, and that we would

have to go back to the levels and remove a lot of the jumps we had put in. The end

result was not nearly as clean as if we had known from the very beginning how the

jumping would work. The problem here was that production had started on the lev-

els before the game mechanics were sufficiently hammered out and implemented.

As I discussed in Chapter 13, “Getting the Gameplay Working,” you will probably

need to have one level in progress while you work on implementing the gameplay,

so you can test out different behaviors as they are added. But working on more than

that one particular level is a waste of time which may be detrimental to the project

in the long run. Furthermore, it may make sense to scrap the test level once the

gameplay is firmly established, since that preliminary level usually turns out to be

426 Chapter 21: Level Design

Before starting
development on
an action/
exploration
game such as
those found in
the Tomb Raider
series, it is
important to
have a clearly
defined set of
moves for the
player.

far from the best work you are capable of.

step 2. Conceptual and Sketched Outline

Before beginning work on a level, I think it is very important to understand what

that level is going to need to do from a gameplay and story perspective. What sort

of challenges will the player be facing here, and what sort of environments best

facilitate those challenges? How exciting and nerve-racking is the gameplay in this

level? Where will the player need to be rewarded? What story elements need to be

conveyed through the level? At all times, but especially during the planning stage,

you must keep in mind the game’s focus and how your level will work to support

that focus.

Once the designer has some grasp of what the level is supposed to accomplish,

a pencil and paper sketch of the level’s general layout is a very good idea. This

avoids the perils of “designing yourself into a corner.” Say you are designing a

building in a military compound for a fully 3D first-person shooter. In your com-

pound you need to include a room with a large generator. When you start making

the architecture for the building, you first lay out all the halls, then start working on

some of the cooler rooms before you finally get to the generator room. Then,

whoops, it turns out you failed to leave as much space as necessary for the genera-

tor. The room is now too small to be able to be easily navigable. Unfortunately, the

only way to make it big enough involves ripping up a lot of the halls you had made

already. At this point, some designers would just move the generator room to a

less-logical or less-optimal location rather than having to redo a lot of geometry

they already spent time building. Of course, a level sketch might not always prevent

this problem, but if done correctly it might point out to the designer how small the

generator room was at a time when making it bigger only involves using the eraser.

Changes to a sketch are much easier to make than changes to a fully constructed

level. A sketch may also be valuable as something that you can show to your team

leader, who may want to look it over to make sure you are on the right track with

the rest of the team and the game as a whole.

step 3. Base Architecture

Once you are happy with your sketch, the actual construction of the level can begin.

This construction stage varies in time and scope depending on the complexity of the

level being created. For instance, a 2D, tile-based engine will allow for much

quicker construction of a level than a 3D engine. Similarly, the complexity of the

3D engine being used will radically alter how much time is required to build out the

level. An excellent map made with the Doom engine can be pounded out in a day or

two. A level of similar quality made with the much more sophisticated Quake III

engine can easily take weeks of hard work.

Chapter 21: Level Design 427

At this point, keep in mind that you are just creating the base layout for your

level. You are not adding niceties such as lighting or texturing, nor are you concen-

trating on making the geometry as pretty as possible. On this first pass you want to

get the level to the point where the player can navigate through it and all of the

locations the player will be able to go are accessible. This allows you to get a sense

for whether the level’s layout feels right.

step 4. Refine Architecture Until It is Fun

At this point you need to repeat step three until your level starts feeling good and

navigating it starts to be fun. For instance, if you are working on a first-person

shooter, you should experiment with navigating your character around the 3D

world, and see if the corners are fun to swing around, if the jumps are of just about

the right difficulty, and if the areas come out at the size you had wanted them to.

Take a look at the level as a whole and see if it makes sense and flows as you hoped

it would. Once you actually spend time looking at and navigating the level as the

player would, instead of just fiddling with it in the level editor, you stand a better

chance of determining if your level is working out. If the level is not working out as

you want, now is the time to make changes until it does.

428 Chapter 21: Level Design

As game engines
become more
sophisticated,
the amount of
time required to
build a level
increases
dramatically. For
example, a
professional
level using the
Quake III Arena
engine will easily
take weeks to
complete. TE

AM
FL
Y

Team-Fly®

step 5. Base Gameplay

Now that your level feels right in terms of player navigation, it is time to start

implementing the gameplay your level will use. Certainly you had the gameplay in

mind through all of the steps of this process, but now is the time to see if it will

actually work out as you had hoped. The best designers can come up with ideas and

sketches for levels that successfully translate into fun levels in the end. Others start

with a sketch, build some architecture, and when it comes time to add the gameplay,

find they need to make some significant modifications to what they have already

built. With experience as a designer comes the ability to predict whether abstract

ideas will turn out to be any fun or not. Before you become experienced, however,

the process involves a great deal of trial and error.

A level’s gameplay consists of whatever actions the player is allowed to per-

form in that level. In a first-person shooter such as Duke Nukem 3D, this means

placing the monsters the player will shoot and the items the player will pick up. In

a role-playing or adventure game, this is expanded to include whatever puzzles the

player will need to solve, the characters to which the player may talk, and the

quests on which these NPCs send the player. In a real-time strategy game, the

designer will need to figure out starting unit placement and quantities for the player

and his opponent, as well as whatever reinforcements may appear later in the level.

In a way, sports and racing titles have an easier time with this step, since their

gameplay is the same from level to level and therefore does not need much setup

for a particular stadium or track.

Chapter 21: Level Design 429

Setting up the
gameplay in a
level from a
game like Duke
Nukem 3D
consists of
placing monsters
and weapons,
and configuring
puzzles.

step 6. Refine Gameplay Until It is Fun

Of course, the gameplay is what makes or breaks the game, so it is absolutely essen-

tial that the designer repeat step five until the level is fun to play. Sometimes,

refining the gameplay may take you all the way back to step number three. It may

turn out that the area you thought would play well just is not suited to the capabili-

ties of the AI. Or that the creature you thought would be able to spring out at the

player from a fissure in a cliff does not really have enough space to hide. You may

need to change the layout of your level to compensate for the problems you dis-

cover once you start implementing the gameplay.

For some designers, modifying existing level architecture to suit the gameplay

can be quite a painful process. For instance, suppose a designer builds some archi-

tecture she is happy with from an aesthetic standpoint. If the gameplay then does

not work in that space, the designer may be reluctant to go back and rework that

geometry and may instead settle for substandard gameplay. Of course, this is the

wrong choice to make. As painful as it may be, in order to get the best gameplay

you may need to throw out some of your work. This is why I suggested only mak-

ing base architecture without refining it too much; that way making radical changes

to the level will not mean that too much work was wasted.

This is the step where your level really comes together and you start to get a

sense of whether it is a success. Now you can take this space you created and really

start to play in it. If you do not start enjoying yourself at this point, you may need to

take a look at your level and ask yourself why it is not fun to play. In the worst

case, you may realize that the level will never be fun, and as a result you need to

start fresh. Ideally, however, this stage can be truly revelatory, as all of the work

you put into the level starts to pay off.

step 7. Refine Aesthetics

Now that the level is playing well, you have an opportunity to make it look good as

well. You may recall that in steps three and four we just set up base architecture,

enough to allow the player to navigate and to give you a feel for the level. Now is

the time to texture your level as needed, apply lighting effects, add decorative

objects, and really flesh out your level from a visual standpoint. Many level design-

ers spend the bulk of their time working on aesthetics for their levels, and certainly

you should put in the time to make the level look as good as possible. But, as I have

emphasized, it is crucial that you put off finessing the level until you are confident

that the level plays well and that it accomplishes its gameplay objectives. Other-

wise, you may waste your time making areas look nice which end up being

scrapped. As you are finessing the level aesthetically, you must always remember

not to break any of the gameplay you have already set up.

430 Chapter 21: Level Design

step 8. Playtesting

Now that all the parts of your level are in place, it is time to show it to some other

people, let them play it, and get some feedback. Playtesting is a crucial part of game

design, and level design is no different. These test subjects may include other mem-

bers of your team, but should also include people less intimately involved with your

project. A lot can be said for a fresh pair of eyes looking at your game and your

level and giving you feedback on whether what you think is fun is also fun to them.

Playtesting a level can be as easy as handing over a level to someone, asking

him to play it, and having him tell you what he thinks. Another useful method,

especially for level testing, is to actually be there with the tester when he tries to

play your level and observe how he plays it. Does he get stuck in locations you had

not thought of? Does he have trouble finding his way around? Do the gameplay sit-

uations provide him with enough challenge? Watching other people play your level

can be extremely educational and informative as to whether the level flows and

plays well.

In the worst case, playtesting may reveal that your level is not as fun to play as

you had thought, and that major reworking will be necessary to make it fun. As a

designer you must not be resistant when someone tells you your level is hard to

navigate or confusing or just no fun. Certainly, get a second and third and fourth

opinion on it, but when you start hearing the same complaints from a number of dif-

ferent people, you need to realize that there may be some truth to what they are

saying and that your level may need some serious reworking. Many designers who

have invested a lot of time and energy in a level find it very difficult to then take

criticism on their work. There is no denying that hearing someone tear apart a

month’s worth of work can be disheartening, but this is the purpose of playtesting.

You need to take your testers’ comments to heart, recognize the problems with your

level, and start working on the level again. Thorough playtesting can often be the

difference between a merely good level and a truly great one.

Process Variations

Of course, the process for level design I outline above is not the only way to make a

level. Like the “dos” and “don’ts” of level design I described earlier, each level

designer needs to find the method that works best for herself and her team. Many

good designers use a method not entirely different from what I have outlined above,

but with variations that better suit their own style of designing.

One potentially useful variation is to incorporate steps three through six.

Instead of laying out the entire level, you can start with a particular room or area.

Then, before moving on to set up the rest of the level, try to set up gameplay in just

that area. Once you are happy with how well that section plays, move on to setting

up the rest of the level, adding gameplay to the areas as you create them. This way,

Chapter 21: Level Design 431

if an area has to be enlarged to make the gameplay work properly, less work is

wasted since the areas around may not have been built yet. As I mentioned before,

it is important to be careful to not design yourself into a corner. You do not want to

spend a lot of time working on the gameplay for a specific area only to have to

remove it later since the rest of the level no longer fits in the space available. If you

are going to set up gameplay for particular areas before the entire level is built, it

makes the most sense to build the architecture for an entire, discrete play-space,

such as a specific building or structure. Then you can make the gameplay work in

that entire area before moving on to the next.

Another useful idea is to incorporate playtesting earlier in the process, perhaps

after step six. Once you have your level playable, have some people whose opin-

ions you trust try playing the level. The aesthetics may not be fully refined yet, and

you should certainly explain this to them as they play, but if you are able to get

feedback at this early stage, you may be able to make important changes before you

have spent a lot of time refining the aesthetics of the level. A possible drawback to

testing the level this early is that others may not be able to understand that visually

the level is not yet done. As a result they may get hung up on criticizing the appear-

ance of your level instead of providing feedback about the gameplay. Be sure to

communicate what type of feedback you are looking for at this stage and hope that

the playtesters can see beyond the lack of fancy lighting effects. Testing at this

early stage does not replace testing after the level is more final, but it may prevent

some unpleasant surprises and can make the final testing go more smoothly.

Who Does Level Design?

Throughout this chapter, I have spoken as if you are responsible for all aspects of

your level. Many development studios do still operate on the “one designer, one

level” method of level design. This has many advantages, of course, since it helps to

keep the levels focused. That one designer is constantly aware of what his level

requires in terms of gameplay, art, and programming, and can keep that level on

track. When it comes time to set up the level’s lighting, for instance, the designer

will remember that he thought that gameplay in one part of the level would play

best in the dark with disorienting flashing light. Having one person working on one

level from start to finish helps to ensure the level has a consistency of vision that

can lead to great gameplay.

But the “one designer, one level” technique is not the only method which may

work, and many developers have adopted more of a “team” approach to level

design. If your team has one designer who is particularly good at making pretty

architecture but is less skilled at getting the AI agents to work, it may make sense to

have a different designer set up the gameplay on that designer’s levels. One

designer may be particularly good at lighting effects, while another may be adept at

432 Chapter 21: Level Design

the scripted sequences. You may want the sound designer to set up your sound

effects, since he will be better at correctly placing the audio effects he created. Of

course, as with any task that is divided among several people, when putting multi-

ple personnel on a single level, you need to make sure that they are all “on the same

page” in terms of what that level is trying to accomplish. For instance, the architec-

ture designer may have built a canyon that he thought would be ideal for an

ambush, but when the designer who sets up the gameplay comes along, he may not

notice that particular canyon and might set up encounters in less optimal locations.

Communication between the different people working on a particular level is essen-

tial, just as it is between the programming, art, and design teams.

As I stated previously, as games become more complex, it becomes necessary

to divide tasks that used to be accomplished by one person between multiple peo-

ple. As games continue to become more complicated, designers will specialize

more and more, and having multiple people working on a single level will become

increasingly common. Keeping the game focused on such a project will be quite a

challenge, which emphasizes the importance of project leaders and lead level

designers. However, as people specialize in a particular area of level design, the

possibility exists that they can become better at their specific area of expertise as a

result. Furthermore, if one person sets up the AI and gameplay for all of the levels

in the game, those levels as a whole may achieve a greater gameplay consistency

than if each level designer was setting up his own gameplay. If managed correctly,

these highly specialized level designers can lead to better levels in the final game.

Collaboration

As games have grown in complexity, the number of level designers required for a

particular game has increased. Whereas one designer used to be able to truly control

every last facet of a game’s design, now a lead designer must find level designers

she can trust to build levels which will make a significant contribution to the game’s

design. Though a lead designer may be able to look over the shoulder of these level

designers and do her best to direct the efforts, in the end she has delegated a large

part of the gameplay’s creation to these invaluable members of her team. This can

have both a good side, as more voices in the game’s design may make the game a

more robust experience, and a bad side, as the clearness of artistic vision becomes

diluted by so many different people working on the project. Such are the perils of

most modern commercial game development.

Chapter 21: Level Design 433

Chapter 22

Interview: Will Wright

It is hard to measure the impact Will Wright’s game SimCity has had on the

industry. At the time of its release in 1989, the game was so radically differ-

ent from any other piece of interactive computer entertainment that for many

years the project had trouble finding a publisher. Now the game’s influence

can be seen in the countless “builder” games released every year. Sid Meier

readily admits that SimCity was one of his primary inspirations in making

Civilization. With his latest game, The Sims, Wright has come totally out of

left field again with a game that he also had to fight to get made. While the

majority of games released today take only evolutionary baby steps of

improvement, with The Sims Wright has released something truly revolution-

ary that represents the most original game design to be seen in years.

Talking with Wright is an experience in itself, as one is instantly made keenly

aware of why he has developed such brilliant and innovative games.

434

How did you first become interested in game development?

I got totally into computers shortly after I bought an Apple II around 1980. I

just got infatuated with games. As a kid I spent a lot of time building models, and I

bought some of the very early games, such as the very first version of Flight Simu-

lator with the wire-frame graphics. You had to write your own machine language

patch to get it to run, that was funny. But just the idea that you could build your own

little micro-world inside the computer intrigued me. So I saw it as a kind of model-

ing tool. At some point I just got so into these things that I decided I would try to

make one myself, and that was right around the time the Commodore 64 was first

coming out. So I bought one of those, figuring that it would be better to start on a

new machine where everybody was on a level playing field, because other people

had learned the Apple II years before I decided to do this. So, I bought a Commo-

dore as soon as it came out and just dove into it, and learned it as quickly as I could.

And that’s what I did my first game on.

So how did you come up with the design for Raid Over Bungeling Bay?

Back then just about all the games were arcade games, you know. I had always

loved helicopters, so I wanted to do a little helicopter game. And then I was looking

at the Commodore. It was driven probably more by the technology than the game

design side. I found that the Commodore had this really cool trick where you could

redefine a character set, make it look like graphics, and then smoothly scroll it

around the screen. So you could give the impression that you were scrolling over

this huge bitmap, when in fact all you were doing is moving ASCII characters

around on the screen. And when I saw that feature, I thought that would be really

cool looking, because I knew the Apple couldn’t begin to move that much in the

way of graphics around the screen that smoothly. So I designed the game around

that feature in a way.

I understand the game was much more popular in Japan than it was in the States.

I think that was right when piracy was probably at its peak. We sold around

30,000 copies in the U.S., which was average for a game like that. But then every-

body I’ve talked to who had a Commodore back then had played it. Whereas the

same game on the Nintendo in Japan sold about 750,000 copies. It was a cartridge

system, so there was no piracy.

Do you still look back on the game positively?

Oh yeah. I look back on it with fond memories, it was a learning experience. It

was one of those times where you realize that the last ten percent, getting the game

out the door, that’s the really hard part. And unless you plan for that last ten percent,

it’s just a killer. So I learned a lot of lessons from it. And back then programming

wasn’t nearly as elaborate as it is now. Every game was written by one person and

Chapter 22: Interview: Will Wright 435

that game was about eight thousand lines of machine language. So you could totally

control the memory and totally control the machine. It was a good learning vehicle.

It’s kind of a shame that the programmers who learn to program nowadays are com-

ing at it from a totally different point of view.

You mean because they’re using higher level programming languages?

Oh yeah. Which isn’t necessarily bad, I guess. But you still have the old hacks

like myself. There were eight bytes of memory free on that machine when I finished

that game, and I felt bad that I didn’t use those last eight. And there are a lot of

tricks you do when you’re running out of memory, because the memory was the

ultimate concern. There were some cool little tricks for that.

I read that the level editing tool for Bungeling Bay was your inspiration for

SimCity.

It was a character set that actually described a bunch of islands with little roads

and cities on them. And so there was such a big area that I developed my own little

character editing program to draw this scene that I could scroll around really

smoothly, like a paint program. I found that I was having so much more fun with the

paint program than I was with the game that after I finished the game I kept playing

with the paint program. And it eventually evolved into SimCity.

So you wouldn’t cite any other games that inspired SimCity?

I’d say the big-

gest inspiration, if

there had to be one,

was the work of Jay

Forester, who is con-

sidered the father of

system dynamics,

and one of the very

first people to use a

computer for simula-

tion. So when I

started getting the

idea for SimCity, I

started going to the

library and reading.

He did a lot of his

work back in the

’50s, working with very primitive computers and very primitive models, but yet he

was the first person to try to simulate a city. And he did it with like twenty

436 Chapter 22: Interview: Will Wright

SimCity

variables: one was population, one was production, one was birth rate, stuff like

that. Very simple models.

System dynamics is a way to look at a system and divide it into, basically,

stocks and flows. Stocks are quantities, like population, and flows are rates, like the

death rate, the birth rate, immigration. You can model almost anything just using

those two features. That was how he started system dynamics and that was the

approach he took to his modeling. I uncovered his stuff when I started working on

SimCity and started teaching myself modeling techniques. I also came across the

more recent stuff with cellular automata, and SimCity is really a hybrid of those two

approaches. Because his approach was not spatial at all, whereas the cellular autom-

ata gives you a lot of really interesting spatial tools for propagation, network flow,

proximity, and so forth. So the fact that pollution starts here, spreads over here, and

slowly gets less and less, and you can actually simulate propagation waves through

these spatial structures. So SimCity in some sense is like a big three-dimensional

cellular automata, with each layer being some feature of the landscape like crime or

pollution or land value. But the layers can interact on the third dimension. So the

layers of crime and pollution can impact the land value layer.

What made you think that such scholarly techniques could lead to something that

people would find fun?

At that point I wasn’t trying to build something that people would play for

entertainment value. It’s more like I was just having fun doing this on my own. At

the same time I was reading about urban dynamics, just on the theoretical side. And

having this little guinea pig city on my computer while I was reading about the sub-

ject made the subject so much more interesting. So I could read a theory and then

try to figure out how to formalize it, code it, put it in the model, and see what the

results of it were.

At what point did you start to think it might be something that other people could

have fun with?

After about six months or so I started attaching some graphics to it. It was fairly

abstract to begin with. And then I started thinking, you know, this might be an inter-

esting game. I had actually done my first game with Broderbund Software, and I

showed it to some people there and they thought it was pretty cool. They agreed to

pick it up, and we had a contract for it and everything. And I worked on it for about

a year to the point where it was where I wanted it to be. And they kept thinking it

wasn’t finished. They kept saying, “When is it going to be a game? When is it going

to have a win/lose situation?” It was very unusual for its time, and this was about

five years before it was actually released. This was around 1985, and we didn’t

actually release it until ’89.

Chapter 22: Interview: Will Wright 437

They didn’t think it was enough of a game to fit in with their other products?

They just didn’t see how they could possibly sell it. And I just left it there, and

they left it there, and that was that.

So were you pretty discouraged?

I always thought it was a cool little thing I did, I never really thought it would

be a mainstream thing. But I thought it would be worthwhile getting it on the mar-

ket. So later I met my eventual partner, Jeff Braun, and I showed it to him. And he

thought it was really cool. He really, really was into it. He, in fact, thought there was

probably a big market for something like that. At that point, the two of us decided to

start a company ourselves, and that’s when we started Maxis.

So it had sat around, unpublished, for a number of years?

Yeah, for a couple of years. About the time we decided to start Maxis, the

Macintosh had just come out, and the Amiga was coming out, and we decided we

would rewrite the game for those computers. So we hired a couple of programmers,

and I recoded the simulator in C. It had all been in assembly before. We had these

other programmers helping on the graphical front ends on the Mac and on the

Amiga, and those were actually the first versions that were released. We actually did

go back and release the Commodore version about a month after we released those.

So originally SimCity didn’t have a mouse-based, point-and-click interface?

No, actually it did. The Lisa had come out while I was doing it on the Commo-

dore, and I actually

had implemented a

cursor-based system

with icons. The inter-

face was on a

Commodore, but it

still had that iconic,

paint-program kind

of feel. It looked like

MacPaint in a way.

So, in fact, it did

have a similar

graphic front end but

at a much lower

resolution.

438 Chapter 22: Interview: Will Wright

SimCity

TE
AM
FL
Y

Team-Fly®

Did the design change much from what you had originally done?

It got more elaborate, more layers were added, and there was higher resolution

on the map, but it had the same basic structure for the simulation and the same basic

sets of tools. But, for instance, there were only roads, there weren’t roads and high-

ways. The map was 80 by 90, instead of 128 by 128. Of course, the graphics were

much lower resolution; they were about four pixels square for a tile, instead of the

eventual sixteen. But the core of the model and the tuning of the model didn’t actu-

ally change that much. And it actually didn’t change all that much for SimCity 2000

or 3000.

So Maxis finally got it out to the market by self publishing it?

It’s actually kind of interesting. After we had redone it on the Mac and the

Amiga, we knew we could afford to produce it in the boxes and all that, but we had

to have a distributor. And in fact we came back to Broderbund and showed it to

them, and when they saw the Mac and Amiga versions they were much more

impressed. Plus it was years later, at which point the market was getting into much

more interesting games. At that point they offered to become our distributor, and so

we had an affiliate publishing relationship with Broderbund. We were incurring

most of the financial risk because we were the ones paying for the boxes and all

that, so they weren’t really risking that much on it. The people at Broderbund were

really nice people and I hold no grudges against them at all. They helped us a lot in

getting Maxis off the ground. And the Carlstons, the people who started

Broderbund, were my role models for business people. They were just really nice

people to deal with.

Did you come up with the term “software toy”?

I think I did, because I was giving a talk at the Game Developer’s Conference,

way back, and I decided that would be the name of my talk. It was “Software Toys:

The Intersection of Creativity, Empathy, and . . . ” something. Some high-falutin’

sounding talk.

How would you distinguish between a software toy and a game?

Toys can be used to build games. You can play games with toys. But you can

also engage in more freeform play with toys. It doesn’t have to be a goal directed

activity. I think of toys as being more open-ended than games. We can use a ball to

play a game such as basketball, or we can just toss the ball back and forth, or I can

experiment with the ball, bouncing it off of different things. So, I would think of

toys as a broader category. Also, toys can be combined. I can strap Barbie to my

R.C. car and drive her around, thus making up a new activity by combining toys.

Games tend to be isolated universes where there’s a rule set, and once you leave that

universe the rule set is meaningless. Another way to think about it, and this is a

Chapter 22: Interview: Will Wright 439

more recent version of the same idea, is that I tend to think of the games we do in

more of a hobby kind of way, whereas most games are thought about more in terms

of a movie or cinematic form. Movies have a beginning and an end, there’s a cli-

max, there’s one particular story line, and a lot of games are built more on that

model.

Our games are more like a hobby, which you approach in a different way. Like

with a model train set, some people get totally into the scenery and the details on the

cliffs and the hills. Other people get into the little village in the middle. Other peo-

ple get into the switching on the tracks. And sometimes these will play off of each

other when a community builds around a hobby. You’ll have certain people in the

community who are very into certain aspects of the hobby and they have expertise

which they can teach to other people. And you have sub-specializations within the

community. People can create things and trade them, or they can just share ideas. I

tend to think of hobbies as being a bit more community based than the cinematic

model. That’s more of a shared experience, it’s a kind of cultural currency. “Oh, did

you see that movie last night, what did you think?”

But with a software toy like SimCity, only one person is really playing it at any

one time.

The community I’m referring to now more than ever is the online community. I

can go online and I can start trading strategies with people, or I can upload my city

or my family or my stories, or I can make skins for The Sims. And if someone gets

really good at it they can have a standing in the community: “Oh, he makes the best

skins.” So there’s this whole community on the web that develops around the game,

with people creating things and sharing things.

Which is more possible now than when SimCity originally came out.

Back when SimCity came out, it was really just a few sporadic message boards

on some of the online services like CompuServe or later AOL. It was mostly just

chat discussions and things like that. There wasn’t really a forum, where people

could meet. It wasn’t really a very involving online community. But even before we

had our first web site, people were already uploading their cities to AOL and trading

them. There were big sections with hundreds of cities trading. CompuServe was the

first place where large collections of cities started to appear, not too long after the

game came out.

The biggest complaint I’ve seen about SimCity, and I’ve seen this mostly from

other game developers, is that since it is not a game and there aren’t any goals, it

doesn’t hold the player’s attention very well.

I think it attracts a different kind of player. In fact, some people play it very goal

directed. What it really does is it forces you to determine the goals. So when you

440 Chapter 22: Interview: Will Wright

start SimCity, one of the most interesting things that happens is that you have to

decide “What do I want to make? Do I want to make the biggest possible city, or the

city with the happiest residents, or the most parks, or the lowest crime?” Every time

you have to idealize in your head, “What does the ideal city mean to me?” It

requires a bit more motivated player. What that buys you in a sense is more

replayability because we’re not enforcing any strict goal on you. We could have

said, “Get your city to 10,000 people in ten years or you lose.” And you would

always have to play it that way. And there would be strategies to get there, and peo-

ple would figure out the strategies, and that would be that. By leaving it more

open-ended, people can play the game a lot of different ways. And that’s where it’s

become more like a toy.

Simulations in general give you a much wider game-space to explore. There are

probably no two cities in SimCity that are identical and created by different people.

Whereas, if you look at a game like Zelda, I’m sure there are tens of thousands of

saved Zelda games that are identical. Computationally you can look at this as the

phase-space of the system, or how many variables does it take to describe a current

state of the system.

Another way of look-

ing at that is it’s how

much creative explo-

ration the player is

allowed. How unique

is your game from

my game? In some

sense that implies a

certain level of cre-

ativity available to

you. In some situa-

tions that can also be

interpreted as how

many different ways

there are to solve a

given problem. So if

we start with the same exact city that has a lot of traffic, there are a huge variety of

ways that we can attack that problem successfully. In a lot of games there’s a locked

door and until you find that key you’re not going to be able to unlock that door.

So it provides the player with a lot more variety.

There’s a lot more variety, but also, because every player can take a unique

approach, they can be more creative. And the more creativity the player can realize

in a game, the more empathy they tend to feel with that game. Especially you see

Chapter 22: Interview: Will Wright 441

SimCity

that in The Sims. If they spend all this time building up a family and running their

lives for months, people really start to empathize with those characters because they

have invested so much time in the creation of them. And the characters, in that

sense, are a reflection not only of themselves, but it’s a reflection of their current

understanding of the game. Same with SimCity. You can look at somebody’s city in

SimCity at any time, and the design of the city is a reflection of what they under-

stand about the model. From their understanding that was the best way to build a

road network at that point.

But once they come to understand the game better. . .

It changes, exactly. You can go back to an old city and say, “Oh, right, that’s

when I thought highways really worked well, before I learned that they didn’t.” So

in some sense it reflects your mental model of the game.

But if you play Zelda a second time . . .

Your mental model doesn’t really evolve that much. You learn the surprises, but

your model of the underlying mechanisms isn’t really all that different once you’ve

played the game through.

I’m a bit curious about the disaster feature in SimCity. It seems strange that play-

ers would want to spend a lot of time building something up and then just destroy

it with a tidal wave or a fire.

Yeah, I always thought that was kind of curious myself.

You must have anticipated it, though, since you put it in the game from the very

beginning.

No, actually, it wasn’t in the original Commodore version. I later added it,

though. When I first started showing the Commodore version, the only thing that

was in there was a bulldozer, basically to erase mistakes. So if you accidentally built

a road or a building in the wrong place you could erase it with the bulldozer. What I

found was that, invariably, in the first five minutes people would discover the bull-

dozer, and they would blow up a building with it by accident. And then they would

laugh. And then they would go and attack the city with the bulldozer. And they’d

blow up all the buildings, and they’d be laughing their heads off. And it really

intrigued me, because it was like someone coming across an ant pile and poking it

with a stick to see what happens. And they would get that out of their system in ten

minutes, and then they would realize that the hard part wasn’t destroying it, but

building it back up. And so people would have a great time destroying the city with

a bulldozer, and then they would discover, “Wow, the power’s out. Wow, there’s a

fire starting.” And that’s when they would start the rebuilding process, and that’s

what would really hook them. Because they would realize that the destruction was

442 Chapter 22: Interview: Will Wright

so easy in this game, it was the creation that was the hard part. And this is back

when all of the games were about destruction. After seeing that happen with so

many people, I finally decided, “Well, I might as well really let them get it out of

their systems, I’ll add some disasters to the game.” And that’s what gave me the

idea for the disaster menu.

Plus you had the disasters randomly occur.

Yeah, that seemed obvious after I had the disaster menu, that they should ran-

domly happen, but I didn’t originally have that.

SimEarth seems to be a logical extension from SimCity. How did you come up with

the idea for that game?

It was more my interest in certain subjects that drove me to it. I was very inter-

ested in certain theories, most notably the Gaia hypothesis, and also general

environmental issues that a lot of times are counterintuitive. I thought it would be

interesting to have a model of a global ecosystem. I learned a lot from SimEarth.

Actually, I was very proud of the simulation of SimEarth, and pretty disappointed in

the game design.

Chapter 22: Interview: Will Wright 443

SimEarth

How do you mean?

It wasn’t a terribly fun game. It’s actually a very nice model, and we did a lot of

research of the current climatic models, and I have still never seen anyone do an

integrated model with an integrated lithosphere, hydrosphere, and atmosphere

together like that. And we were getting some effects in the model that were real

effects, that really show up, that even some of the more elaborate models that

NCAR [National Center for Atmospheric Research] makes weren’t capturing. But

as far as the game goes, I started realizing that you can roughly look at all of our

Sim games and divide them into one of two categories: the economic ones and the

biological ones. And, in general, the economic ones have always done better.

Which ones would you include in that group?

SimCity, SimTower, SimCity 2000, The Sims, and SimFarm, though that’s a bit

of both. The biologicals would be SimAnt, SimEarth, and SimLife, roughly.

Why do you think the economic ones have been more successful?

I think it has a lot to do with how much control you have over the systems. The

biological systems tend to be very soft, squishy things that you can do something to,

and then it kind of reacts and adapts. It’s not really clear what you did to it, because

it’ll then evolve around you. Whereas in the economic ones you have much better

credit assignment. When something goes wrong, you can say, “Oh, it’s because I

forgot to do this. I should have bought one of those.” I think people can reason

through their failures and assign credit to the failures more easily with the economic

models. Plus the idea that you have money and you make money this way and you

spend money on that all seems very natural to people, whereas when you get into

the complex things like diversity, food webs, and things like that, people just don’t

have an instinct for it.

And nothing’s more frustrating than playing and not understanding why

you’re losing . . .

Right, exactly. And so in SimEarth people would be playing and all of sudden

their planet would freeze up and they’d have no clue why it happened. And I, as the

simulation engineer, couldn’t tell them either!

One thing I like about SimEarth was how it could play tones that would commu-

nicate information about the state of your planet.

I always wanted to do more with that, but I never really got around to it. There’s

been some interesting work on data auralization. Instead of visualization, you can

take complex data and map it to sound, because there are certain sound ranges that

we’re incredibly good at discriminating. There was actually some work done at the

Santa Fe Research Institute in those areas. One of the things that they did that was

444 Chapter 22: Interview: Will Wright

remarkable was taking seis-

mograph data, from

earthquakes and whatnot, and

mapping it into sound waves,

using pretty much the same

waveform just mapped to a

different frequency. And they

did the same thing with under-

ground nuclear tests. From the

seismograph, if you look at

the waveforms, they’re pretty

much identical. It’s really

hard to tell any difference at

all between the nuclear test

and the earthquake. But when

you map it to sound, there’s a

very definite tinniness to the

nuclear test which you can

instantly recognize. And it’s

interesting that, no matter

how they mapped the waves

visually, they couldn’t find a

way to discriminate between them. But as soon as they mapped it to sound it was

obvious.

So you thought you could better communicate to the player the condition of their

planet through sound?

Well, it was just kind of a stupid little experiment in that direction. At some

point I’d like to sit down and do it right. The one that I thought worked pretty well

was where it would map your atmosphere into tones ongoingly, starting at the North

Pole and going to the South Pole. And if you left that in the background with the

volume down, it was pretty useful, because you could tell changes from that much

sooner than you could actually see them reflected on the visual graphs. And so, as a

kind of threshold alarm, I thought that worked pretty well. Because you could actu-

ally be doing that subconsciously. After a while, you start getting used to this little

tune, and then all of a sudden when the tune changes, it comes to the foreground of

your mind. And it can be doing that while you’re doing other things, so you don’t

have to be sitting there staring at the display all the time. I always thought that was

pretty cool.

Chapter 22: Interview: Will Wright 445

SimEarth

SimEarth is a pretty serious game compared to many of your other titles. Why did

you opt for that approach?

I didn’t want to do too much anthropomorphizing in the game. One of the pre-

cepts of the game is that humans just happened to be the evolved intelligence on this

planet. It could have just as easily been trichordates or something else. So I was

really trying to avoid a human-centered approach to the game. And, really, the focus

of the game was supposed to be on the planet. I’m trying to put myself back in my

mind-set back when I worked on that, it was so long ago. I mean, it’s one of those

things that once you get into the subject you’re just fascinated by it. I’m still to this

day just blown away by continental drift and things like that, stuff that most people

think sounds pretty boring. So it’s kind of hard to express the passion I had for that

subject. SimAnt was the exact same way. Still, I think ants are just the coolest thing

around, and I don’t think I clearly communicated that with the game.

SimAnt does seem to be a lot wackier than SimEarth or even SimCity.

It’s hard to take

ants too seriously.

Also, SimAnt really

surprised me. It’s the

first time I did a

game that appealed

to a totally different

demographic than I

was expecting.

SimAnt was actually

a big hit with ten- to

thirteen-year-olds.

Parents would buy it,

and the kids would

play it, and the kids

just loved it. Still to

this day a lot of peo-

ple tell me, “I loved SimAnt, it was my favorite game.” And it did very well. It’s just

that I was expecting it to be more older people that would appreciate how amaz-

ingly interesting ants are as an example of distributed intelligence. In some sense, I

was trying to use a wacky approach to show how intrinsically interesting ants are as

an information processing system. But in fact, I ended up appealing to twelve-year-

olds who just loved playing with ants.

446 Chapter 22: Interview: Will Wright

SimAnt

An ant simulator seems to be a pretty strange premise for a game. Why did you

choose to do it?

I’d have to go into why I love ants. SimAnt always seemed obvious to me. I was

always wondering why no one had ever done a computerized ant farm, and I kept

expecting someone to do it for years but they never did. The time just seemed right.

Most of my games have been influenced heavily by things that I have read. So,

SimEarth was kind of inspired by James Lovelock and the Gaia hypothesis. SimAnt

was definitely inspired by the work of Edward Wilson, who is kind of like the myr-

mecologist. He’s written a lot of books. He actually wrote a Pulitzer Prize-winning

book the year that SimAnt came out called The Ants, which was just an amazing

resource. We used a lot of his books heavily in building the model for SimAnt. In

fact, we probably couldn’t have engineered the model without his work, as we prob-

ably could not have done SimEarth without James Lovelock’s work.

Did you encounter any resistance to doing as unique and strange a game as

SimAnt?

No, not at all. I think I met more resistance on SimEarth because everybody was

expecting SimCity 2 and I really didn’t want to do SimCity 2, I wanted to do some-

thing different.

SimAnt seems to be a lot more of a game than SimCity or SimEarth.

I think probably SimAnt was my slight overreaction to SimEarth. When

SimEarth came out I realized at the end that, God, this is like sitting in the cockpit

of a 747 in a nose dive. That’s what it feels like to most players. So I wanted SimAnt

to go in the opposite direction: something non-intimidating, something lighthearted,

something fun, something where it was really clear what went wrong. Though I

never could quite tell how successful it was, one of the things I really wanted to do

with SimAnt was to have the idea that you have this light, easy to get into game, but

you get more and more serious about it. That’s why we had this little online data-

base about ants, the little encyclopedia. And the idea was to get people interested

enough, just through the game, that they would actually start reading this little ency-

clopedia and a lot of it would pertain to the gameplay. So you could actually learn

new strategies for the game while at the same absorbing all this cool information

about ants.

The game reminds me of a very strange wargame.

It’s kind of like an RTS game. In SimAnt we did some wacky things. SimAnt in

some sense was very experimental. There were some weird things in there, like the

mystery button. On the interface, there’s one button that has this big question mark,

and it’s the mystery button. Every time you press that button something very strange

happens, and usually it’s different. There are thirty different things that can happen,

Chapter 22: Interview: Will Wright 447

and they’re totally

weird things. Like, all

your ants die. Or your

ants double. Or a

giant rainstorm starts.

Or you switch sides.

Totally non-linear,

random things hap-

pen when you click

that button.

Kind of like the disas-

ters from SimCity taken to an extreme . . .

It’s almost meta-level disasters. Things that would all of a sudden erase your

game, or give you twice the number of your opponents. Like the disasters in

SimCity, what a lot of people would do is they would play and play and play for

hours and when they were ready to stop, just before they would quit they would

burn the city down just for the hell of it. In SimAnt people would play the game for

a while and then, just before they quit, they would hit the mystery button to see

what it did today.

Your next project was SimCity 2000. How did that come about?

Well, actually, before I did that, I had spent about six months working on the

very first incarnation of The Sims. I had actually done a little prototype and some

coding. At that point Fred Haslam was working on SimCity 2000. He was the guy

who I ended up doing it with and who had done SimEarth with me. SimCity 2000

wasn’t going nearly as fast as everybody liked, and they didn’t like the graphics and

all this stuff, so I got dragged into it. At this point, the company was really depend-

ing on SimCity 2000 being a best-seller and all that, so I basically dropped

everything I was doing on The Sims and dove in with Fred. And, in fact, I took the

code shell I had written for The Sims, and we actually ended up using it for SimCity

2000. In fact, if you go back and look at the source code for SimCity 2000, to this

day the draw routines say DrawHouse and DrawYard, because it was the original

code shell for The Sims. So then I got into that, and Fred and I, basically we started

from scratch. Fred and I work together really well, and we did it in almost record

time, for that complexity of a game. We did it in about twelve months flat.

448 Chapter 22: Interview: Will Wright

SimAnt

TE
AM
FL
Y

Team-Fly®

So the idea was to improve on what had worked well in the original SimCity?

Roughly. Also, at

that point, we had

hundreds and hun-

dreds of fan letters

saying, “Oh, you

should do SimCity

again and add this

and add that and add

the other.” And I read

through all those let-

ters. And there were

a few things that

were very common.

And so we added the

really common and

obvious suggestions:

altitude, mountains, a

water system, more road types, that type of thing. Beyond that it was all of the

things I wished I could have done in SimCity that, now that computers were faster

and graphics were better, we could do.

So, compared to SimAnt, it seems a lot less wacky. Was that because you were

working with the company’s prize franchise?

It was wacky enough I think, in its own way. It had the expected SimCity wacki-

ness, plus a lot of things that were not in the original SimCity. We had a lot of

hidden things in SimCity 2000 that people didn’t realize for a long time that helped

its longevity. There was the Loch Ness Monster in there. It would only appear every

two or three months that you played the game, and it would only appear for about

four seconds. And so there were a lot of rumors about it. Two months after the game

had shipped, people started saying they had seen this monster in the water, and most

people didn’t believe them because it was so infrequent. And it was almost a year

after we shipped the game that someone actually managed to take a screenshot of it.

And then you had Captain Hero. Only under certain weird conditions you would get

this superhero that would fly around and fight your disasters for you. So we had a

lot of stuff like that hidden in the game. The original SimCity didn’t really have that

level of depth.

Did you feel constrained since you were just doing a sequel?

Not really. At that point I was more in project management mode. I had a pretty

clear idea of what the design would be, since we were basically just doing a sequel,

Chapter 22: Interview: Will Wright 449

SimCity 2000

which is always easier. It was more just making sure the engineering was good and

the performance was decent. It was a pretty tight piece of code. The original

SimCity 2000 ran in 1.3 megs on a Mac. So, for what it was, it was actually pretty

tight to work in that little memory.

Was SimCopter your next project?

That came quite

a bit afterward, since

I was actually work-

ing on The Sims in

the background while

I was working on

SimCopter. So, at that

point I had a pro-

grammer dedicated

to The Sims. In fact,

in SimCopter, the

behavior of the peo-

ple that walked

around were actually

using a very early

form of Edith, which

was the program-

ming language we developed for The Sims. A lot of people at Maxis decided we

really wanted to try something where you were doing a 3D game inside of SimCity.

So that was the original premise for SimCopter. They asked me: “Can you design a

game where you’re doing something in 3D in SimCity? Whatever it is, driving

around, flying around, whatever.” So SimCopter was the design I came up with. It

was the first 3D game I ever did, and actually the first 3D game a lot of our team

ever did as well. So we were definitely going up a learning curve a couple of years

behind a lot of other people. The biggest problem with SimCopter I don’t think was

in the game design, it was in the graphics. They were really sub-standard for when it

came out.

Did you like the way it turned out? Or did you not care so much since you were

more interested in working on The Sims?

Well, I was actually concentrating on SimCopter. We didn’t have a big enough

team on it, we basically had four people doing it. And to do a 3D product at that

point in time, that was just not enough at all. So I felt like I was really resource con-

strained on the product, plus we had this hard schedule that we absolutely had to

make. For various reasons we could not miss Christmas, which meant we really

450 Chapter 22: Interview: Will Wright

SimCopter

couldn’t aim too high. Had we had another six to eight months to work on it, graphi-

cally I think it would have turned out much, much better. The gameplay and tuning

I’m still pretty happy with. It could have used a few more missions. But there was

something really neat about having a city that you’d built in SimCity over many

hours, and then all of a sudden being in it in 3D and seeing the people and the cars

and flying around it. There was a real eerie quality to that. It worked well.

Now, you weren’t involved at all with SimCity 3000. Were you just burned out on

the whole idea of doing another city simulator?

Yeah, that’s pretty much it. You hit the nail on the head with that. It was a run-

ning joke around Maxis that whenever the SimCity team would come to ask me for

advice I would go running. They finally gave up. You know, the day they shipped

SimCity 3000 was one of the happiest days of my life. They proved that we have a

team within Maxis that knows how to build SimCity without my involvement. And

before, when 2000 came around, there was just nobody else to turn to. I had to work

on it or it just wasn’t going to happen. Whereas now we have the expertise in-house

to do SimCity, a really great, talented team. The franchise is in good hands from my

point of view.

So you were pleased to not have to be involved with that.

That’s an understatement. Just doing one sequel for me was excruciating. Once

I got into it, I had fun with SimCity 2000. But there are just so many games that

haven’t been done at all that I’d like to do, as opposed to going back and redoing

games I’ve already done. Probably my favorite part of designing a game is the

research and learning a new subject, and just totally diving into it. And, I’ve spent a

lot of time reading about urban dynamics and city planning. I still love the subject,

but I’m kind of burned out on the research in that area. There are so many other

subjects I’d love to dive into and learn right now.

I do have one question about SimCity 3000. When I originally saw a prototype for

the game it was fully 3D. But when it shipped it was back to the classic isometric

viewpoint. Why did that change so radically?

Well, for a number of reasons, and it was a pretty hard decision to make. In

retrospect, I’m convinced it was the right decision. Part of it had to do with user

interface. A lot of people who play SimCity, who tend to be a much broader group, a

lot of the more casual gamers, have a hard time moving around and controlling a 3D

camera. And when you put on top of that the idea of editing a system and then give

them a three-dimensional camera, it takes what used to be a very simple, Lego-like

thing, and turns it into an AutoCAD. “What am I looking at? Oh, I see, I’m facing

the building two inches away.” It becomes that kind of experience. So that was part

of it. The other part was the technology. Without going with really severe

Chapter 22: Interview: Will Wright 451

restrictions on what

you could build, we

just couldn’t have a

decent frame rate and

have the level of

detail that we could

have in an isometric

viewpoint. We’re get-

ting to the point

today where it’s

pretty much feasible.

But you deal with

real RAM limitations

of texture memory

and real polygonal

limitations. At the

time that we were

working on it, there weren’t enough people out there with 3D hardware to require

that. So we would have had to have a software solution that was acceptable. There

were a lot of reasons, but I’d say the two primary ones were performance and user

interface.

So you actually started The Sims right after you finished SimAnt.

A long time ago, yeah. I also had a couple of projects that I started and then

killed along the way.

Anything of interest?

Well, I had project Z. For a while there I had project X, Y, and Z. X was what

we were calling The Sims for the longest time. Y was SimCopter. For Z, I wanted to

do a simulation of the Hindenburg. And I really researched that and really enjoyed

it. This was a really odd idea. But it was a combination of Myst and a flight simula-

tor, if you can imagine that. It was going to be a very elaborately rendered,

beautifully, meticulously drawn virtual Hindenburg that you could walk through and

explore, every little nook and cranny. But it would also be completely functional, so

every valve that you would turn would have the real effect, and every switch that

you would flip would do what the real switch did. And you would find yourself all

of a sudden, on the Hindenburg, over the Atlantic, heading to Lakehurst. You would

be the only one aboard, you’d be on this ghost ship. Basically, history would keep

repeating itself, and if you didn’t do the right thing you would always blow up when

you got to Lakehurst. And so it was going to be kind of a mystery game. And we

were going to take the top ten or twenty theories for why the Hindenburg blew up,

452 Chapter 22: Interview: Will Wright

SimCity 3000

there are quite a few of them actually. And every time you started a new game it

would pick one of those at random. So every time you played the game it wouldn’t

be the same reason why it blew up. So there’d be a totally different set of things

you’d have to do to prevent it. In fact, you could also go up to the control cabin and

pilot the thing, you could fly it around to different areas. You’d actually have to

learn how to fly a zeppelin from scratch, which for one person is quite difficult.

That’s really quite different from any of your other games.

Yeah. You know what really killed that project the most, the reason why I

really gave up on it? It seems like a really minor reason, but it was the fact that the

Hindenburg had a swastika on its tail. And even if we took the swastika off, a lot of

people have this association in their mind of the Hindenburg as a Nazi symbol.

Which is unfortunate, because the guy who designed and built the Hindenburg was

one of the fiercest opponents of the Nazis, and he actually had to sign this pact with

the devil to get the thing built. And so the Nazis actually paid for its final construc-

tion. So, anyway, that was one of my failed game designs.

So did The Sims stay pretty much the same throughout its development?

It definitely went through a focus change, from architecture to more about the

people, but not a major one. In fact, I uncovered a tape, just before we finished The

Sims, which I had forgotten I had. It was a tape of one of the very first focus groups

we did back in ’93. And on the focus group tape, the moderator describes the con-

cept that I had written down of The Sims, and it’s remarkably close to what we

ended up shipping.

Did the focus group like the idea?

No, actually, this was probably the most negative focus group experience I have

ever seen. It was actually quite remarkable. They universally hated it.

Was that why you couldn’t get staff for the project at first?

Yeah, that was part of it, that certainly didn’t help. It wasn’t my idea to have the

focus group in the first place. Our marketing people said, “Hey, let’s have a focus

group and make sure about this.” Of course, when everybody in the focus group

said, “There’s no way I’d buy that,” that made it a little more difficult for me to sell

the idea.

So how did you finally get a chance to make it?

I convinced everybody to at least give me one programmer to work on it in the

background. It was a guy named Jamie Doornbos, who was the eventual lead pro-

grammer. A really bright, young guy out of Stanford, a good science student. He

was the one that was developing the behavior model with me in the background. We

Chapter 22: Interview: Will Wright 453

were trying to figure out how we could simulate an open-ended system where the

behaviors were expandable and they had the level of intelligence that we would

require for the game, so that they could basically live out their whole home life and

we could simulate it reasonably. So Jamie and I probably spent a year and a half just

working on the behavior model, as a little research project. At some point it just

started really working out, and really looking pretty good. And that’s the point at

which I started getting more people on the team. And even then, I had to fight and

kick and struggle for every person I got.

After your success with SimCity, it’s surprising that no one trusted you.

But in fact, it’s funny, because just recently I started on a couple of other

back-burner type things. The last one I did, I started telling people this idea, and

everybody said, “That’s great, that’s great, go do it, here’s a programmer.” And in a

sense it was disappointing. It’s much more satisfying when everybody says, “That

sucks, no way that will work out” and then you go disprove them, rather than if

everybody says, “Oh, that’ll be great” and then if it doesn’t turn out to be great . . .

So in some sense I miss the struggle.

What was your original inspiration for The Sims?

I think the original inspiration for The Sims came from a book called A Pattern

Language written by a Berkeley architecture professor named Christopher Alexan-

der. It’s a very interesting book, it’s kind of controversial in the architecture world.

It’s almost like the Western version of feng shui. He’s got two hundred fifty-six

design rules, and each one looks at some aspect of human behavior and then derives

a design rule that you

can use. And the

very first rules are

where cities should

be placed on a coun-

tryside. As you move

up the rules, to rule

ten or fifteen, it starts

talking about the

design of cities and

neighborhoods, and

circulation systems

within cities. And

then you move up to

the higher rules and

it’s about how to

design a

454 Chapter 22: Interview: Will Wright

The Sims

neighborhood block and where you should put the schools and play-centers. And

then it moves in closer, and it’s about how you should place your house in the yard,

and how you do private and public areas in the house. And as you move up to the

highest level, it’s about where you should put your flower planters on the window

sill and how to place a park bench. So the rules go through all these different scales,

but they’re all based on aspects of human behavior. And they try to extrapolate. The

fact that we like to have private spaces, and a lot of our activities at home we con-

sider private activities, and other ones are public activities. And so the design of the

house should reflect that. There should be some pretty clearly private areas in the

house and more clearly public areas. So, that’s the way he looks at an aspect of

human behavior and then extrapolates a design rule from it. And then he gives

examples of how you might implement that design rule. So basically he’s coming

up with one proposal for a grammar of design. And a lot of people have odds with

the particular grammar he came up with, but I always thought his attempt was very

noble.

So you thought you could come up with a simulation that would simulate his

rules.

It wasn’t even his rules I was after. What I was after was trying to get this link-

age between human behavior and design. If you look at most architecture magazines

nowadays they’re about what textures are in this year, what colors, what fabrics, or

what decorating styles. They have very little to do with human behavior. Architec-

ture used to be about how you design spaces to facilitate human actions, tasks, and

activities. He wrote an earlier book called Notes on the Synthesis of Form which

drove home the point a little more clearly. He actually did a lot of third world

design, where he would go in and study these tribes or cultures, fairly primitive peo-

ple, and look at their activities. Which activities did they do together and what

groups of people collaborated on these activities. And from this he was actually able

to extrapolate some design rules for their culture. How their houses should be laid

out and how their towns and villages should be arranged. And I just thought that

was a very refreshing approach to architecture, getting back to the functional rea-

sons for and requirements of architecture as opposed to the aesthetic and

“architecture as modern art” sort of approach. If you look at a lot of these modern

architecture books you see these houses in there that I would not want to live in.

They’re really cool looking, and they look really pretty, especially when they’re

empty and they’re so stark. But I couldn’t imagine living in them. There’s this big

disconnect.

So originally it had to do more with building your house?

It had more to do with enabling behavior and interaction through design. And in

some sense it still retains that. Just with not quite the same amount of focus.

Chapter 22: Interview: Will Wright 455

When I played the game, I got much more wrapped up in the interpersonal

interactions.

Yeah, I think that’s where the focus really changed. We didn’t realize how

engaging the social part of the game would be. The original concept was that you

were trying to keep this family happy at home. The idea that you would have these

visitors that you would develop these long-term relationships with was definitely a

later concept.

So that just grew organically out of other aspects of the game?

It had a lot to do with the success of our behavioral model which was working

better than we thought it would. Or, at least, people’s interpretation of our behav-

ioral model. Which is to say we were fooling them better than we thought we

would.

So you’re saying that people perceive the behavioral model as more impressive

than it actually is?

In fact, that became also a big focus of the design. There was another book that

became very influential later in the design, a book called Understanding Comics by

Scott McCloud. And he makes some very good points that are very applicable to

game design. One of the ones that we used the most is the idea that the activity is a

collaboration, in this case, between the game designer and the player. And also that

the level of abstraction that you present to the player gives them a very significant

clue as to how much of this they should be modeling in their head versus on the

computer. So, in fact, when somebody’s playing The Sims and interpreting the expe-

rience, they may not

realize it but they’re

doing a lot of the

modeling in their

head, not on the com-

puter. The computer

will sit there and it

will pop up this gib-

berish conversation.

Most people will

actually sit there and

roughly interpret

what they’re saying.

They’ll say, “Oh, I

see, he’s upset

because she didn’t

take the trash out.”

456 Chapter 22: Interview: Will Wright

The Sims

And they’ll be simulating in their heads the other side of the model to a greater level

of detail than the computer ever could. People can’t help but look at a sequence of

events and overlay some kind of narrative on it.

We noticed that a while back, so we really decided to make use of that. And so

when we designed their conversations and the iconic language and even their ges-

tures, we tried to leave them open to interpretation so that the players can come in

and have fairly creative interpretations of what they’re seeing on the screen. And

then later we were watching people play the game in early playtest sessions and

some of the narratives they were creating were so entertaining and funny that that’s

what gave us the idea to put in the scrapbook feature. With that, they can actually

record their particular narrative of what is going on and then share it.

Did you think The Sims was going to be such a big success?

I always thought The Sims seemed to have much more potential than SimCity

ever did. I was never that confident about SimCity. And I’m not sure why I was that

confident about The Sims, but just because it hit so close to home with human

nature, I always suspected that people would like playing with people, as close as

they could possibly get. And most games don’t let you get that close to people, or if

they do it’s in a very scripted, linear format. It’s not in an open-ended format.

Usually it’s more in a Zelda sort of way, where you can talk to this character but

they always say the same thing.

Exactly, and instantly the model breaks in your head and you say, “Oh, it’s just

a robot and it’s repeating the same thing over and over.” And if we could keep it

open-ended, and we didn’t try to get too close to the people and left the interpreta-

tion in there, people could reasonably believe that these were little creatures with

desires and relationships and all these things.

Amongst all the praise, I’ve seen a lot of little complaints about the game. Like

there aren’t any weekends, or you can never play with your sims outside of the

home environment. Do you often hear such complaints about your games?

That happens a lot. It’s happened probably more with The Sims than any other

title I’ve worked on, probably because more people consider themselves an expert

on the subject than they do on ants or planet thermodynamics. It’s hard to look at

SimEarth and say, “Well, I really don’t think ocean currents have that much of a

thermal transfer rate with the atmosphere.” But anybody can look at The Sims and

say, “Well, I don’t think we would slap her for that.” We’re more experts in that

field, so that’s kind of natural. The other thing though, is that, judging by the things

that they feel that they’re missing, people don’t realize how much of it is actually

clicking and working. Because there were so many hundreds of things that had to

work before they were complaining about weekends. For weekends to be the big

Chapter 22: Interview: Will Wright 457

concern, that implies that a lot of the other stuff that we were sweating over is actu-

ally working.

Was deciding what to include and what to leave out a function of how much time

you had to complete the game?

That was certainly a big part of it, although whenever we hit one of those situa-

tions we tried to leave the game open-ended so that we could expand it in that

direction with a download. We haven’t fully demonstrated how much we can

expand the game with downloaded objects. Also, it’s easy for people to say that

they want weekends, but they’re not thinking through all of the ramifications of it,

which we did. And most people, when I sit and explain why we don’t have week-

ends, all of a sudden they realize why not and say, “Oh, you’re right, I guess I don’t

want weekends.”

So how did you decide what limits to put on the simulation?

That very much was a resource issue. We could have put in the nightclub and

the work and all that and added another year to the game’s development. At which

point it would have been past its best time. Another thing is, we could have done all

that on a similar schedule, but done everything a lot worse. I figured I would much

rather do the house really well than do everything poorly. Which I think is what

would have happened, realistically, knowing how projects go.

So your advice to game designers is to focus their designs?

You also really have to understand what the core of the fun is going to be in the

game. And if you’re adding this stuff just so you can put more bullet points on the

back of the box, but it’s not actually making the game more fun, it’s totally wasted

effort. There’s an old Japanese saying that I love, and it’s about gardening: “Your

garden is not complete until there’s nothing else you can remove.”

So you think that adage applies to game design?

Oh, very much. If you look at the amount of stuff we took out of this game, it

would probably surprise you. Like the needs, for instance. You know, we have the

eight needs. At some point it was twelve, and then it was ten, and then it was even-

tually eight. We were actually much more concerned with simplifying the game

than we were with expanding it. And our interface. Our interface went through

eleven iterations; total, complete redesigns of the interface. And each one ended up

dropping a button here, a button there, or we found ways to combine functionality. I

really thought that The Sims, if it was accessible, would appeal to a very wide audi-

ence, but it had to be incredibly accessible, through the interface. It couldn’t be your

standard strategy game interface, or we would turn off most of our customer base.

So we went way out of our way to do that interface. Most people don’t even realize

458 Chapter 22: Interview: Will Wright

TE
AM
FL
Y

Team-Fly®

how elegant parts of it are. I mean, parts of it are still fairly clumsy, but there are

some things that we really sweated over, that are minor, minor details, but ended up

making a huge difference. A lot of it is minor things that add up, like the pie menus.

You can either click, drag, and release an object, or you can click, release, move

over, and click again. So we’re basically mirroring the Windows functionality that

most people are used to.

Having the 3D head come up and respond, look in the direction you move the

mouse. The fact that every single bit of text in the interface has embedded help. A

lot of people don’t realize this, but you can roll over any word down in that inter-

face, and it will actually highlight as you roll over it, and if you click it comes up

with a pretty elaborate explanation of what it is. So we did a lot of embedded help.

And things like that just add up. There’s no one thing that really makes it work. We

probably ran a hundred playtesters through this thing in the last year of develop-

ment. And these were things where one of the other designers or I would sit down

and watch them play it for an hour and write notes about all the mistakes they made

and misconceptions they had. So we did a lot of playtesting on the interface. If it

turns out that five people made the same conceptual mistake that you rotate by

doing this, or they were trying to drag an object by doing that, then we would try to

figure out a way to solve that without breaking it for all the other people.

You’ve always had the iconic interface for your games, but yet each interface is

quite a bit different than the one before it. Why is that?

It’s really hard to just do an interface out of context. You really have to take a

look at what the game needs, and how you’re going to interact with things in the

game. That’s going to determine a lot of your interface. You also have to take a look

at the environment you’re living in, which is to say, what are the other applications

and the other games doing? There were things that we did in The Sims to maintain

consistency with SimCity 3000. Like the right button scrolling, where you

right-click and drag, and the edge scrolling, we tried to mirror SimCity there. And in

general you just learn. I think that each interface I’ve worked on for a game has

been better than the last one. Also, as games reach a wider and wider audience of

more casual people, that puts even more requirements on that interface. It just has to

be that much easier if you’re going to capture these people. It used to be hard-core

computer people playing these games, and they would put up with anything. Now

it’s people who are much more casual, and if they find the interface frustrating in

two minutes, they’re going to put the game down.

In general, I’d say the PC designers, myself included, are still catching up to the

console developers. This is something the console people learned a long time ago

on the Nintendo and Sega because they were dealing with a casual, wide audience,

younger kids for the most part. So they’ve had much more accessible, simple, and

understandable interfaces long before we have on the computer side.

Chapter 22: Interview: Will Wright 459

For The Sims you have

a hybrid world with

3D characters walking

around in an isometric

world. Was that for

the same reasons as in

SimCity 3000?

Yeah, since the

editing and building

of the house and all

that, if we had a full

3D camera and all

that I don’t think

there’s any way we

would have made it

as easy as it is now.

Also we would have

had some real graphic load issues. We could not have gotten the detail we had on

the objects, if they were geometry.

Was there ever pressure to make the game 3D since so many other games were

3D?

About three years ago it seemed like everything was going to 3D, and if you

weren’t 3D you were just dead. At some point that kind of hysteria passed and peo-

ple started looking at the top-selling games and realizing, hey, you still had Age of

Empires, SimCity, and all these very good selling games that were not 3D. In fact, if

you look at the top-selling games, a minority of them are 3D. So now the idea that

consumers would accept a non-3D game is a given. There isn’t this idea that it has

to be 3D whether it makes sense or not.

I very much enjoyed the way the characters talk in The Sims. Was that a

disc-space limitation, or did you go with the gibberish speak in order to leave it

open to interpretation to the player?

Even if we had had five CDs worth of recorded voice, that stuff would have

gotten really repetitive. And my biggest concern was that it didn’t get repetitive and

that you didn’t hear the same string over and over and over. In fact, we recorded

hundreds and hundreds of voice strings, each one with different emotional nuances.

And we decided that the voice was entirely for the emotional content: you could tell

if the person was flirtatious, upset, laid back, or tired by the tone of the voice and

the cadence. But the way it works out is, because you don’t get the semantics,

because you’re not hearing the words, you naturally sit there and imagine the words

460 Chapter 22: Interview: Will Wright

The Sims

fairly fluidly. But the emotional context you get very easily. You know: “Wow, she

sounds pissed.”

So, yeah, I’m actually really happy with the way that worked out. You hear

them talking over and over and over, but it’s very hard to hear the exact repeats.

Because in fact you are hearing a lot of the waveforms repeat eventually. But we

actually designed that language so it was very hard to detect. And that was a long

slow process, figuring out how to do that. Originally, we were planning to use a real

language, but a really obscure one that people didn’t understand. And we did a lot

of tests with Navajo and Estonian. And they were still too recognizable. Even

though you wouldn’t understand the language, you would still recognize that, “Oh,

that was the thing I just heard.” A lot of it had to do with the number of hard conso-

nants in an utterance, and also the cadence and rate at which it was going. It was a

long process to get that figured out.

It seems remarkably progressive for a game to include the homosexual possibili-

ties that The Sims does. Why did you choose to allow that?

One of the things we knew that a lot of people were going to do with this game

was model their real family. And the last thing I wanted to go in and do was say,

“Oh, we’re not going to recognize your family.” So we wanted to give people a rea-

sonably, fairly open-ended way to construct whatever family they came from or

could imagine or wanted to play with. But we were dealing with an ethical and

moral minefield that we had to thread very carefully. And there were a lot of things

that we left out of the game on purpose. And there were a lot of things that we really

wanted to have in the game at various levels, and homosexuality was one of the

things that we really

wanted to have in the

game, in some way.

What sort of things

did you leave out on

purpose?

There were a

couple of things that

became somewhat

issues and we did

slight modifications.

One of them was the

domestic violence

issue. When the char-

acters get upset, they

can slap each other. I

Chapter 22: Interview: Will Wright 461

The Sims

don’t know if you’ve noticed, but there are two types of slap. There’s one slap

where they rear their arm back and then whack and it’s as if they’re breaking their

jaw. And there’s another one that’s kind of an insulting British Army slap. When-

ever you have people of the same gender slapping, they use the really hard slap, like

a man slapping another man or a woman slapping another woman. But whenever

you have a man slapping a woman, or a woman slapping a man they use the polite

slap. Because before, when we had the strong-arm slap, and you had a husband

slapping his wife, it rubbed a lot of people the wrong way, just from the domestic

violence point of view. And that was one of those things where we were right on the

edge and being very careful, but not losing the feature.

So it retains the emotional content without being too violent.

Right, and it doesn’t make people think about serious domestic abuse. And, in

fact, it was funny, because we also have an attack interaction. If they really don’t

like each other they can actually get in a fistfight. But because we did the fistfight

like a cartoon fistfight, there’s this big cloud and you see arms and legs poking out,

no one had any problem with that. Even if it was a man and woman, it was always

so cartoonish that it was never an issue compared to the slap. There were certain

places that we just didn’t want to go with the game at all. For example, pedophilia.

And in general they don’t kill each other. The Sims will not directly kill each other,

though objects can kill them and various disasters can kill them. So, yeah, there

were certain things we decided we would leave out, certain things we wanted to get

in, and others that we had to be very careful how we treated.

With the inclusion of homosexuality, were there ever any concerns that senators

who up until then had been concerned with violence would now be outraged by

The Sims?

Actually, there was and it’s very surprising to me that it hasn’t materialized in

the least. Not at all. There has just been no reaction to that, and it just really sur-

prised me. I thought primarily if it came it would come from the Christian

conservatives or some other group like that. Maybe they just don’t play these

games, maybe they could care less, I don’t know. Yeah, but we’ve had absolutely no

problems with that at all. We’ve had a couple of people on the bulletin boards, prob-

ably fourteen-year-old kids complaining, but you can tell their age by their spelling.

It seems like there were a lot of moral decisions you made in designing the game.

For instance, the gameplay seems to be geared toward improving your career so

you can get more stuff. It seems pretty materialistic.

Yeah, that was actually the intent. That’s what most people interpret when they

see the game, and even when they play it for a while they think it’s very materialis-

tic. It’s only the people that play it a long time that start realizing the downside. Just

462 Chapter 22: Interview: Will Wright

about every object has some built-in failure state or maintenance requirement. If

you keep buying stuff, it will eventually go bad or die or need to be cleaned or

whatever. So in some sense it’s like you’re filling up your house with all these

potential time-bombs. And so at some point you end up spending so much time fix-

ing these things and doing this, that, and the other, that these objects you originally

bought to save you time end up sucking up all your time. And this is pretty long into

the gameplay that you start realizing this. But it was very definitely engineered that

way. So in some sense it’s the people who first start playing the game who say,

“God, I can’t believe how materialistic this game is.” But then it’s the hard-core

players that say, “God, I’m not going to buy that much crap next time I play.”

I guess it’s open-ended enough that players can try to concentrate on the social

aspects instead of object acquisition.

In some sense the social side has the same dynamic, where you make these

friends, but the friendships decay over time. And your friends, once they decay to a

certain point, will actually call you up and say, “Hey, you better invite me over, I

haven’t seen you in a while.” So once you make about twenty friends, you’ll start

noticing that every day they’re clamoring to come over, and that they’re sucking up

your time in a different way.

What can you tell me about the scripting language Edith?

Well, that was the thing that Jamie and I were working on for the longest time.

It’s a programming scripting language, it’s visual, and we actually developed our

own editor and debugger, all integrated with the game. So, in fact, you run this from

within the game and you can program and debug and step through objects while

you’re playing.

So you can use it to add new objects to the world?

In fact, almost all the behavior in the game is in these objects, including the

social interactions of the people, and it’s all programmed in this language. The

primitives of this language all sit atop C level code routines. The C level code

routines are things like routing primitives, variable peeks and pokes, and things

like that. But the language itself is very clean, and there are about thirty or forty

primitives that it’s all built out of. The main thing, though, is that it’s all machine-

independent tokenized code that travels with the object. Which means that you can

drop a new object into the game and instantly the people know when to use it, when

it’s appropriate to use it, and how to use it. And the animations, sound effects, code,

and everything is all contained within the object that you download.

Chapter 22: Interview: Will Wright 463

So you created the language to make it easy to add new objects.

Yeah, that was the original specification of the language. We wanted to have a

language we could write all the behavior in that was totally expandable, at the

object level. That way the behavior of the people within the house is totally a func-

tion of the stuff in their house and we could always add new things, even Trojan

Horse things, into the house.

Such as the guinea pig object.

Yeah, the guinea pig object is an example. Actually, in the design we were

thinking that they should get sick, and we had planned to do sickness, but we just

ran out of time. But then we realized, “Hey, we could just make that a download.”

Of course, nobody’s going to download sickness, so we hid it in the guinea pig. It’s

funny, because some of the early reviews of the game said, “It’s got all this stuff,

but it doesn’t have sickness. I don’t know why.” Of course, those are probably the

same people that complained when we gave it to them. The reason we’re releasing

this language is that eventually I want the users to start making these things.

And you made it simple enough so that you wouldn’t have to be a hard-core pro-

grammer to use it?

You’d have to know how to program, but you wouldn’t have to be a hard-core

programmer at all. I mean, this is a much simpler language than Visual Basic.

Doesn’t it bother you that, with a tool like that, the game is never completely

“done”?

Yeah, I think, again, if you go back to the hobby model, hobbies are never done.

They’re just a continually growing thing. And they grow pretty much as a function

of the amount of people involved in it and how committed they are. And the more

powerful tools they have, the stronger the hobby itself becomes, and it infects more

people.

I also read a quote from you where you said: “The real long-term attraction of

The Sims is as a storytelling platform.” Now, when most game developers talk

about stories in games, they’re talking about them in that Zelda sense. To those

people, something like The Sims doesn’t have any story at all.

There’s a big distinction between Zelda and The Sims. You’re creating the story

in The Sims; in Zelda you’re uncovering the story. In some sense, the stories are just

one aspect of player involvement. There are actually all these different levels. Some

casual people will just play the game a few hours and have a good time and put it

down. Other people will play it longer, and get into designing really cool houses,

and maybe even uploading them on the web site, for people to see. Other people

that get into the game even deeper will not only build interesting families and cool

464 Chapter 22: Interview: Will Wright

houses, but will use that to tell a story and upload it to share it with other people.

And the even more hard-core people will start editing custom skins or wallpapers

for the game and start sharing them. And then pretty soon they’ll be able to create

their own objects, custom objects, and put them on the web to share. So there are

these different levels

of player involve-

ment. And each level

higher is a much

smaller number of

people. But in some

sense they’re feeding

the people beneath

them. We have some-

thing like ten

thousand homes on

our web site that peo-

ple have uploaded,

but those ten thou-

sand homes have

been viewed over

one hundred thou-

sand times.

So it’s like a pyramid scheme.

Exactly. There are like thirty people out there making really good skins for the

game. But there are probably thirty thousand that are downloading them and using

them. So, for your really hard-core, talented fans, if you give them the tools and the

ability to create content for the other ninety-nine percent, they will. And it will just

benefit both sides. It gives them an audience to build these things for, and gives the

audience cool stuff for the game that might eventually draw them in deeper. It’ll

increase the likelihood that these casual people eventually become those hard-core

people.

So someday everyone on the planet has to be playing The Sims.

Right, so this is kind of like the zombie scheme, where the zombies go around,

and then they start eating brains and turning the other people into zombies . . . At

some point when it’s five zombies against the world it doesn’t look too good, but

once you get a critical mass of zombies and they start converting other people into

zombies fast enough . . .

Chapter 22: Interview: Will Wright 465

The Sims

On The Sims you are listed as just a game designer, while in the past you had

served as both a programmer and a designer. Did you do any programming on

the project?

I did quite a bit of programming in the Edith code. I didn’t touch the C code in

The Sims. It’s probably the first project that I didn’t do any of the C coding in. I did

a lot of programming of the social interactions and stuff in Edith, but for the most

part, even then, it was more a question of me going in and tweaking and tuning the

algorithms the way I wanted. We had a really good team on The Sims, a really great

team of engineers. So I didn’t feel any need at all to go into the code.

It’s not something you miss?

Oh, I kind of missed it. I enjoyed going into Edith and hacking stuff. But there

was just so much to be done on the design side that I didn’t have the time to waste

programming. Not to say that programming is a waste of time, but I was never a

great programmer. I was always persistent, and I could always make cool stuff out

of computer code just because I was persistent. I mean, I know great programmers,

and I’m not one.

So you didn’t have any trouble communicating your vision for the design to the

engineering team?

There were problems, but not for any lack of foresight or intelligence. Just

because it was a complex thing. In fact, I didn’t know what we were building for a

long time myself, a lot of it was experimental. But yeah, in terms of the program-

ming staff, I could always sit down and explain the dynamics I was looking for and

be very confident of getting them.

You also made the transition from doing everything yourself on SimCity to work-

ing on a large team for The Sims. How big was the team?

It depends on what you count as the team. You know, there were probably sixty

people who worked on it at some point, but what I would consider the team grew to

about thirty.

So that’s a pretty big shift from working in a small group. And the management

required for that big a team is quite significant.

It is, and it has a huge amount to do with the quality of the people involved.

And Electronic Arts also, they came in with a totally different orientation. Before

they came in, I had about four or five people working on The Sims. And it was actu-

ally a very good little group and it was working out great, but I just couldn’t get any

more resources. When Electronic Arts came in, they came in and said, “What do

you need?” And that was the point at which we just started really building the team

up. But Electronic Arts also has a very strong concept of production, and what

466 Chapter 22: Interview: Will Wright

producers do. They have like ten levels of producers, and they put a very heavy load

on the producers. So it’s one of those things where if you get the right people in

those slots, this stuff works pretty well; you can actually manage a pretty large team

efficiently. If you get the wrong people in those slots, it’s a total disaster, absolutely

unmitigated disaster. At that point hiring practices become important, and how do

you interview and make sure you get the right people, and how do you quickly find

out if you don’t have the right person. So it’s a model that works with the right com-

ponents and the right people, but if you get the wrong people, you’ve blown it.

We basically got the right people. At the same time, in our situation at Maxis,

Electronic Arts brought in this one guy to run the studio, to replace most of our old

management. His name was Luc Barthelet. And Luc and I hit it off from day one.

We get along great. Luc is not your typical manager in any possible sense. I mean,

he’s very technically literate. So for SimCity 3000, they were having problems with

the traffic model, and he came in and wrote the traffic code.

Really?

Yeah, the C level code. So it’s unusual that you can have somebody running a

studio that can also write some of the trickiest code in one of your simulations. And

Luc’s that kind of guy. There’s really an art to management, and what Luc is great at

is knowing exactly at what level you need to be concentrating on any given day.

And so there was this point when it was crucial that we got this one feature in

SimCity 3000. It was going to have a big impact on the success of the product, and

that was the day he pulled out his compiler and started working on the traffic code.

In most of the cases, it was, “How does the German distributor feel about this prod-

uct?” and he’d be on the phone to the German distributor. You really have to pick

your battles. And if you pick the right battles, you’ll only have to win five percent

of them. So anyway, there’s this certain business savvy that certain people that Elec-

tronic Arts brought in had in abundance, that I was very impressed to learn from.

Were there guiding principles that people had to follow when designing and

developing the Sim family of games?

Well, we basically always saw them as being for the most part non-violent,

although we have broken that rule on occasion. But for the most part we’ve consid-

ered that one of our distinguishing features. A lot of our employees who work for us

really want to work for Maxis because Maxis is known for their non-violent games.

I don’t want to sound like I’m making some moralistic statement, because I love

Doom and Quake and those things myself. Some of my favorite games are war-

games, I play wargames heavily. I just think that there are so many people making

those games that we don’t need to, and they’re doing a good job of it too. So I’d

rather be making games that nobody’s making. But from the public’s point of view,

we do have this reputation for tending towards the more non-violent, more

Chapter 22: Interview: Will Wright 467

educational, more socially relevant games.

Do you ever feel constrained by making Maxis-style simulation games? Do you

ever want to make Raid Over Bungeling Bay II?

In some sense SimCopter was almost Raid Over Bungeling Bay II. There were a

lot of Easter eggs hidden in SimCopter. In fact, you could get an Apache and lay

waste to the city. In fact, if you had the Apache and you came across a nuclear

power plant, you could blow up the entire city. Even in The Sims, a couple of times,

I tried to get away from the political correctness here and there. So there are a lot of

things we did in The Sims that aren’t terribly politically correct, that didn’t even

make sense, you know, more of the wacky side. We didn’t try to let the Maxis thing

constrain us, but the domestic violence thing was probably a good example. You’ll

see a lot of games where there’s a much higher level of violence, much higher than

a man slapping a woman. But we were sensitive to how people would be interpret-

ing this, knowing that families would be playing it.

Your games always

seem to have this

strong educational

component. I was won-

dering, how do you

balance that with

making the game

entertaining?

I was never con-

cerned with

education until the

game was fun. Any

educational value a

program might have

is totally wasted if

people won’t play it.

Probably the one

game which I learned that the most from was SimEarth. SimEarth was potentially

the most educational game I ever made, but yet it wasn’t fun. A surprising number

of people bought it; I’m still surprised by the sales figures. I think most of them

played it for two hours and then put it away. So I really think the fun has to come

first. And the educational side, it’s not something that you tack on, it’s got to be fun-

damental to the design. In The Sims, it was all about learning to extrapolate design

from behavior. That’s a fairly deep lesson, it’s not just a fact that I’m going to teach

you. It’s more like a way of looking at things. If the entire design is true to that, it

468 Chapter 22: Interview: Will Wright

SimCopter

TE
AM
FL
Y

Team-Fly®

might be educational at some deep level even though you might play the game for

hours and not think of it as educational even once. One of the main things that

SimCity teaches, it’s not explicit but it’s there, is the shape of chaos. The fact that

the best-laid plans can always go wrong, and that the system is more complex than

you think it is. Building a road to solve traffic doesn’t always solve traffic, it fre-

quently breeds traffic. Those types of lessons are hard to explain in other media. But

when you’ve experienced them through a process like SimCity, you really get the

lesson much deeper. It’s experience rather than exposition.

Do you ever have to compromise realism to make the game fun?

Oh, all the time. There’s also a frequent thing that we did in our games where

we would decide to match expectation and not reality. In fact, nuclear power plants

don’t blow up. They just don’t. But when everybody saw it, they said, “Oh, a

nuclear power plant, can I make it blow up?” It’s just what they thought of. So there

are a lot of things we do just because people expect them to happen that way for

fun, even though it’s not realistic.

With the open-ended nature of your games, do you have to spend a lot of time in

playtesting them?

We do, but it’s invaluable time. You spend that time, or else you go spend

months building the wrong thing and solving the wrong problems. We just had what

we call “kleenex” testing on one little component of The Sims multi-player that

we’re working on. We have this one data display that’s convoluted and twisted. And

the programmer just got it implemented a few days ago, so we scheduled five peo-

ple to come in today. We call them kleenex playtesters because we use them once

and then they never come back, just because we want people who have never seen it

before, with totally no preconceptions about it. We don’t even tell them what it is,

we just say, “Look at that, play with it” and have them describe to us what they’re

seeing and what that represents. We got some very consistent feedback from all five

people today where we understood that three of the variables we were communicat-

ing they all understood, the other three they had no clue about. So for the last tester,

we turned off the last three variables that everybody was having trouble with and it

was perfect. We do this at every stage of the project now. It’s not just at the end

when we have the whole thing working, we do this with little components, even the

art prototypes. And this was a lesson that was really driven home to me by the late

Dani Berry. She’s the one who did M.U.L.E. and all those things. She was drilling

this into me years ago, that playtesting is probably the most undervalued thing that

any game designer can use, and you really have to do it. And I started taking her

advice and she was right. It’s just invaluable.

Chapter 22: Interview: Will Wright 469

For both SimCity and The Sims, you had trouble convincing anybody that they

would be popular. Do you think there are many games out there with the same

problem that never see the light of day? What do you recommend someone with a

wacky game idea should do?

Oh, I’m sure they’re all over the place. It’s kind of depressing to think about it,

how many wonderful masterpieces there are out there. For me, it’s just that I am a

very, very persistent guy. I think if you’re really, really persistent, if you really want

something, you can make it happen. It might take years. With SimCity it was like

five years to actually get the first version out. With The Sims it was like seven.

Aside from that, based on my track record, I don’t know if I’m the one to be offer-

ing advice there. Whenever something unusual comes out like The Sims, I like to

think that all of a sudden people say, “Hey, that was really off-the-wall, and it sold

great!” Maybe that might help to green-light some other off-the-wall projects at

other companies that were having problems getting approved. But I think realisti-

cally they’re more likely to say, “Oh, we want a game just like The Sims.”

Unfortunately, that’s

probably the lesson

they’re going to carry

from it.

470 Chapter 22: Interview: Will Wright

The Sims

Will Wright Gameography

Raid Over Bungeling Bay, 1984

SimCity, 1989

SimEarth, 1990

SimAnt, 1992

SimCity 2000, 1994

SimCopter, 1997

The Sims, 2000

Chapter 22: Interview: Will Wright 471

Chapter 23

Playtesting

“The common denominator, I would guess, is passion. Everyone says,

‘Well, why aren’t games better—why aren’t there more really good

games?’ And I think that the answer is that what this industry doesn’t do,

amazingly, is play the games it makes. We create a game, we ask the

teams to work all the hours God sends, and we don’t give them time to

play the game. That’s really what makes the difference—sitting down and

playing for hours and hours and hours.”

— Peter Molyneux

472

P
laytesting can be one of the most exhilarating parts of the game development

cycle. It is then that you take the project you have been working on for

months or years, during which time only the development team has played

the game, and show it to people outside the team. And, if all goes well, you can

watch as they are entertained by your work, want to play it more, compliment you

on what you have done, and have suggestions for how you might make it better.

Playtesting is not just a minor stepping-stone to getting the game shipped to the

duplicators or uploaded to the Internet. Instead, playtesting is a key time during

which you can transform your game from average to excellent, from something

which shows promise to a game that is truly great. No game ever came out of the

developer’s hands in absolutely perfect shape. Ideally, it is the playtesting cycle that

gives your game the extra push to be the best it possibly can.

It is worth clarifying what exactly I mean when I say playtesting. This is not the

same as debugging. Debugging is a more programming-oriented task in which all

of the inherently broken aspects of the game are tracked down and fixed. This can

be anything from the improper implementation of some game mechanics to graphi-

cal snafus to problems that actually crash the game. Certainly these bugs must be

eliminated, but this is more a matter of concern for the programming team.

Playtesting is the design equivalent of bug fixing. When playtesters look at a

game, they try to see if the game is any fun and try to find faults in the game

mechanics themselves. This can be anything from a unit in an RTS game that is too

powerful and allows the player who first acquires it to totally dominate the game, to

the illogical nature of how one enemy AI agent attacks the player, to an unintuitive

and difficult-to-use control system. It is in the playtesting stage that the game

mechanics themselves are tested and refined. Unfortunately, some game developers

focus entirely on fixing bugs and too little on determining if the game is actually

any fun to play. As a result there may be nothing actually wrong with the game, and

it may be completely stable on all the systems it is supposed to run on. Too bad that

no one wants to play the game. Every player would rather have a game that plays

really well and crashes occasionally than one that runs flawlessly but is not worth

the time it takes to play it. At least the former game is fun some of the time, while

the latter game is boring all of the time.

Finding the Right Testers

Finding the right testers is perhaps one of a game designer’s biggest challenges in

playtesting her game. Not just anyone will be able to playtest a game effectively.

Almost any player can tell you whether he likes your game or not, but a surprisingly

small number will be able to explain why they do not like it and what you might do

to improve it. Of course, getting feedback from someone’s general impression of the

Chapter 23: Playtesting 473

game can be useful: “that was fun” or “that was tedious” or “that was too hard” are

all pieces of information you will be able to apply to your work in order to make

your game better. Truly useful advice, however, comes in a more constructive form:

“When I was fighting the twelfth clown on level three, I thought he was too hard to

kill. I had no idea what I was supposed to do to kill him, or whether the attacks I

was attempting were having any effect at all. I thought maybe I was supposed to roll

the boulder at him, but I could not figure out how to do so.” In this example, the

playtester has provided the designer with very specific information about the prob-

lem and a detailed explanation of why he thought it was not much fun to play.

Playtesters who can do that sort of analysis consistently are extremely rare, making

a talented playtester a truly priceless asset for your team.

A key part of working with testers effectively is knowing them well enough to

know how seriously to take their opinions and what biases they might have. Differ-

ent testers will have different motivations which will necessarily color the opinions

they give you. This is why picking a random person off the street to test your game

can sometimes be ineffective, since you have no past experience with her and hence

do not know whether you can trust her opinion or not. When you do have experi-

ence with a particular tester, you will be able to know if that person has any

shortcomings. For example, some testers can be best described as “whiners” who

complain about everything, even things that do not need fixing. Other testers may

be shy, only saying, “Maybe you should look at the power of the Elephant Rider

unit,” when what they truly mean is, “Obviously, the Elephant Rider completely

throws off the game.” Try your best to understand the personalities of the testers

you will be working with; it is key to effectively using the feedback they give you.

Who Should Test

There are various different types of playtesters a project may have, and it is a good

idea to have some from each group working on your project. No one type of tester

can provide all of the feedback you need for your project, hence the need for a vari-

ety of testers. Indeed, it makes sense for there to be a good number of testers, since

having a broad range of opinions can be essential to getting beyond individual bias

and understanding if your game plays well or not. While arguments can be made for

keeping the size of your team small, especially in terms of designers and program-

mers, with playtesters more truly are merrier.

The first type of playtester is a member of the development team. Throughout

the project, it is important to have your team members playing your game. This

serves multiple purposes. First, it keeps them enthused about the project. They see

to what end their art, sound, code, or level construction is being used. Second, as

they see their work in action, they are better able to understand how it might be

improved. And third, they can provide you feedback about how the game is

474 Chapter 23: Playtesting

working and what you might do to improve it. Towards the end of the project, in

particular, as all of the art, most of the code, and the levels are completed, the mem-

bers of the development team will be able to provide essential feedback about

sections of the game that might need some last-minute improvements. Of course,

members of the development team are very close to the project, and as a result may

be far from objective in their comments about it. Furthermore, since they have been

playing the game for so long, they will have trouble seeing it with a fresh set of

eyes; their opinions will be skewed accordingly. Also, since they have contributed

to the project, they may tend to like or dislike their own work for personal reasons.

Similarly, they may like or dislike the ideas of other members of the team not

because of the merits of the ideas themselves but rather because of their personal

opinion of that person. Despite these drawbacks, getting playtesting feedback from

the members of your team is essential.

The second type of playtester to have is the traditional playtester. This is some-

one who starts playtesting your game around the stage it enters “alpha” and is

actually fully playable, and continues until the project ships. Often these playtesters

spend half of their time tracking down bugs in the code, but they also provide vital

feedback about how the game is playing, whether it is too easy or too difficult, if

the controls are intuitive or obtuse, and so forth. On fully funded projects, these

testers are typically paid employees who spend a full workweek playtesting your

game and providing bug reports. Typically these testers love computer games and

play a lot of them, both as part of their job and in their off time. Therefore, their

opinions of how the gameplay needs to change are understandably skewed to the

perspective of the hard-core gamer. Also, since these testers work on the project for

such a long time, they can become used to certain inherent problems with the game,

and may stop complaining about those shortcomings.

The third class of playtesters are first-impression testers. Will Wright, in his

interview in Chapter 22, refers to these people as “kleenex testers” since at Maxis

they are used once and then never used again. Wright used them extensively to test

the GUI for The Sims. These are people who are neither on the development team

nor testing the game full-time. Instead, these testers come in and play the game for

a short period of time and provide their gut reaction as to how well the game plays.

This may be for a few hours or a few days. These first-impression testers are useful

because they see the game as a first-time player would. They can provide essential

feedback about unintuitive controls, unclear presentation of information, or unfairly

difficult portions of the game. The important point about first-impression testers is

that you must keep bringing in new ones, since a human can only truly have a first

impression of a game once; after that they are “tainted” by their knowledge of how

the game works. Especially toward the end of the project, when the development

team is extremely familiar with the game and the traditional playtesters have played

it for a thousand hours or more, first-impression testers can be essential to making

Chapter 23: Playtesting 475

sure the game is not too hard to learn to play.

The fourth type of playtesters are game designers or developers not actually

working on your project. These are people whom you know and trust and whose

opinions you respect. They may not be able to test your project full-time as tradi-

tional testers can, but the feedback they provide can be extremely useful. Fellow

game designers who are not working on your project will be able to play your game

and provide insight about its strengths and weaknesses in ways that other testers

cannot. These testers understand game design in a way which allows them to ana-

lyze how your project may come up short and how it might be improved. Many

experienced game designers will use these testers particularly early in the process,

when they are still trying to get a sense of whether their new game design is truly

compelling or not. These game designers turned testers will be better able to over-

look the game’s obvious shortcomings at this early stage, such as bugs or

incomplete features, and look beyond to see if the game shows the promise of

becoming a good game in the future. Steve Meretzky, in Chapter 10, mentions how

useful the “Imp Lunches” were. At these lunches, the Infocom implementors would

gather to discuss their different game design ideas. When a new Infocom title first

became playable, other implementors would be the first to start testing the game,

while there was still time to make any fundamental changes necessary. Of course,

fellow game designers will typically be too busy to spend a lot of time playing your

game and giving you feedback. Whatever feedback these fellow designers give you

can be extremely helpful, both in helping you pinpoint problem areas you had not

476 Chapter 23: Playtesting

Many first-
impression
testers were
used to refine
and perfect the
interface in The
Sims.

anticipated, as well as reassuring you that your design is on the right course, if it

actually is.

The fifth class of testers that I find to be of particular value are non-gamers. All

of the types of testers I have discussed thus far have, for the most part, been pretty

big fans of games. They will have an especially high tolerance for the things that

games traditionally do badly, such as having overly complex controls or simply

being too hard to play. Having some people who are not very big gamers can pro-

vide fabulous feedback, pointing out fundamental problems that hard-core gamers

will overlook and forgive. These testers can be literally anyone: the guy who comes

to fix the coffee machine, a neighbor, a team member’s parent, or literally someone

right off the street. As long as they will be honest about what they think of your

game, anyone’s opinion can be valuable here. Combining the third group,

first-impression testers, with non-gamer testers can be particularly useful in deter-

mining if an interface is too confusing or the game is too unforgiving. These testers

will seldom be able to provide constructive feedback on how you might improve

your game, but they will be able to point out fundamental problems in a way that

other testers cannot.

Who Should Not Test

There are a number of people or groups of people whom you typically cannot trust

as playtesters. These are people whose opinions are colored by their own personal

motivations, or who may be unwilling to provide truly objective opinions. Though

you may be forced to hear the feedback of these people, it is important to under-

stand the motivations behind their comments so that you can apply their advice

appropriately.

The first of these inappropriate testers is your boss. A key part of the game

designer’s relationship with a playtester is being able to get the playtester’s feed-

back and then apply it as the designer sees fit, not as the playtester dictates.

Playtesters often do not understand the game well enough to provide the best solu-

tion for a problem they encounter, and if your boss is the person who has found the

problem it is likely she will try to impose a solution on you, even if it is not the best

one for the situation. Some bosses may be wise enough to understand that, as the

game’s designer, you know how best to fix the problem. Nonetheless, getting

advice from someone who is signing your paycheck cannot be the same as advice

from someone who is in a less dominant position.

The second class of people ill-suited to testing your game is anyone from the

marketing department. Marketing people have too many conflicting agendas when

looking at your game and are unlikely to tell you what they actually think of it.

Instead, they will attempt to figure out what the “target demographic” wants. As I

have mentioned repeatedly in this book, it is extremely hard to anticipate what an

Chapter 23: Playtesting 477

audience other than yourself will like or dislike, yet this is what marketing people

attempt to do. You do not want their second-guessing, which when it comes to

gameplay is wrong as often as it is right, to muddle up your game.

A third group of people who should not test your game consists of people who

are too close to you personally, be they your close friends from way back, your

family, or your significant other. When these people look at your game, though they

may claim they are being objective, their true agenda is often to strengthen their

relationship with you. As a result they will be hesitant to criticize your game too

harshly. Some friends may understand that the best way they can strengthen their

friendship with you is to tell you the truth, but many will sugarcoat their opinions in

a feeble attempt to make you like them more. It is true that many authors use their

spouses as their first and most effective line of criticism, and if you can develop a

relationship that is that honest it can be a wonderful thing. But the fact remains that

many relationships are not that honest.

The fourth type of people that you do not want to have testing your game is idi-

ots. Idiots tend to say idiotic things and have idiotic opinions, and as a result will

not be of much help to you. It is best to notice and isolate idiots as soon as possible

and, if you must work with them, learn to ignore everything they say. Of course, I

am exaggerating; idiots certainly do not dominate testing teams. But every so often

you will come across a tester whom you are better off ignoring completely.

The fifth group is testers who think that they are designing your game for you.

These testers may have some useful suggestions, but mostly will try to get you to

change aspects of your game not because they are wrong but simply because they

would have done it differently. A truly good tester will recognize that you are the

driving artistic force behind the project and that the game will reflect your individ-

ual preferences. They will suggest ways to strengthen the game, instead of ways to

simply change it.

A sixth group to be wary of are extremely hard-core fans, particularly those

who are fanatical about your game’s genre or, in the case of a sequel, the previous

version of the game. These testers will tend to see every difference in your game

from other games in the same genre as being a serious design flaw and will, as a

result, stifle whatever creativity you may try to incorporate in your new game.

Appealing to the established fans of your franchise can be quite important for

sequels, yet following every bit of their advice may result in a game that is not suf-

ficiently different from its predecessors.

478 Chapter 23: Playtesting

TE
AM
FL
Y

Team-Fly®

When to Test

When is the right time to start playtesting your game? As I have discussed earlier in

this chapter, playtesting can be a key part of your game’s development cycle from as

soon as you get your game playable until it is finally released. That said, there are

specific times when particular types of testing are best applied, and other times

when certain types of testing may be ineffective or even pointless. Knowing when

to use each type of tester is key to not wasting your testers’ time.

Of course, your development team should be playing the game as much as

possible through all the phases of its development. As I have mentioned, this is

essential to keep them interested in the project and to enable them to do the best

work possible. Assuming the game is not falling apart, a developer who knows

exactly how he is contributing to the project and how that project is turning out will

be better informed and motivated to do his best work possible.

Early playtesting is best done by people experienced in game development,

whom you know very well, and whose opinions you hold in high regard. Early

playtesting requires that the tester overlook many problems: the game crashes

frequently, all of the art is place-holder, sections of the game are obviously incom-

plete, there is only one level to play, and so forth. Many people, when given such a

game, will be unable to look beyond these extreme shortcomings. For instance, tra-

ditional testers, even if you tell them to ignore the large sections of the game that

are missing, will most likely start pointing out the completely obvious bugs that

need fixing. On the other hand, a friend who is also a game designer will be able to

look at the work and see beyond its current shortcomings, seeing instead if the

game shows promise. These designers have seen their own projects in the state

yours is currently in, and understand why not everything works yet. These experi-

enced professionals will be able to recognize and explain fundamental problems

your game design contains better than anyone else.

It makes good sense to establish a small group of people whose opinions you

trust and whom you can show your game to at various stages of development.

These may be fellow game designers, as discussed above, or friends who under-

stand the game development process and will be able to provide you with useful

feedback. Over the course of the project, you may want to keep showing your game

to this trusted group, so they can see how the game is progressing and give you

their opinions on whether they like where the game is going and if they think that

direction is the best one possible. Since these testers will work with you over the

course of the project, they will have a better understanding of the game and why it

has developed as it has.

As you are implementing the GUI and the controls, it will make sense to bring

in some first-impression testers to experiment with these new controls. Set up a

simple test level, area, or situation where the player can attempt to use the controls

Chapter 23: Playtesting 479

and GUI, and see how well these testers fare. This makes sense since the most

important aspect of interface and control design is that these systems are as intuitive

as possible, and the best way to determine that is by having some first-time players

try them out. It should not take very long to determine if your I/O systems are intu-

itive, since if the player does not figure them out immediately, you will know your

game needs work.

As the game becomes more complete, when a majority of the features are com-

plete and a large section of the game is playable, it makes sense to bring in the

traditional testers to go over the work. This period is typically called “alpha,”

though this definition varies from company to company. When they first start test-

ing, the traditional testers will find a seemingly endless number of bugs in the code,

as they try all manner of actions that the development team had never anticipated,

but you should encourage them to look beyond the bugs and give you feedback

about the gameplay itself if they can. Of course, getting feedback at this early stage

is much better than in “beta” when, if the project is on a tight schedule, the focus

will be less on refining the game and more on getting it out the door. At some point,

you stop being able to make fundamental changes to the gameplay for fear it will

break the game in some major way. As a result, you will need to make large-scale

alterations while there is still plenty of time to track down all the bugs they may

cause.

On projects with tight deadlines and “must ship by Christmas” edicts, manage-

ment sometimes likes to think that they can speed up development by bringing in

testers early, sometimes long before the game has even reached alpha. This way,

they erroneously think, once the game finally gets to beta it will already have had

most of its bugs removed and can be shipped immediately. Of course, what they fail

to understand is that, before a game is “feature complete,” it is likely to change fun-

damentally from a code point of view. As that code changes in major ways, old

bugs are eliminated completely while new ones are introduced. If the testers point

out bugs in old code and the programmers have to spend time fixing them, this is

essentially wasted time since those bugs would have been eliminated completely

later when chunks of the code were rewritten, and you are still left with the new

bugs that the restructuring of the code will bring about.

To some extent, the same holds true for gameplay. When large parts of the

game are missing, having testers report problems like “Levels 10, 12, and 17 have

no enemies to fight and are therefore not much fun to play” is far from useful.

Forcing designers to go through these meaningless bugs will waste far more time

than it may save. It makes the most sense to bring in the traditional testers only

when the game is in a state that is truly appropriate for testing. In the end, bringing

them in too early will only delay the game’s progress.

480 Chapter 23: Playtesting

How to Test

How you have your playtesters work on your game is as important as who you have

testing and when you have them do it. Game designers will often ruin the effective-

ness of their playtesters by making a number of fundamental errors in how they

interact with the testers. These are all problems that can be easily avoided, as long

as the designer is conscious of the way he deals with his testers and what he does

and does not tell them.

The most important part of interacting with playtesters is to actually spend most

of your time watching them play instead of telling them how to play. Let them play

the game their own way and see how they fare. The temptation to correct the

playtester’s actions is great and can be hard to resist. By the time the traditional

playtesters start on the game, the designer has already played the game so much

that she is intimately familiar with what the player is “supposed” to do in a given

situation and how the game is “supposed” to be played in general. When watching

over the shoulder of a playtester for the first time, the temptation is to say, “Go over

there next,” or “You want to use the strafe buttons for that,” or “Why don’t you try

to get the power-foozle?” Watching someone stumble while playing a game the

designer is intimately familiar with can quickly turn her into a teacher.

But the point of the playtesting is to see how the player will actually play the

game without the game’s designer coaching his every move. Certainly, the designer

cannot fit in the box the game comes in or even be downloaded over the Internet. A

certain amount of stumbling about and learning the controls is to be expected, and

the best way to playtest is to let the testers do this initial exploration on their own.

And if the player truly does get stuck or if he never seems to be able to master the

controls, the designer needs to ask herself what is causing these problems. Is the

game too hard or too confusing? How can it be made simpler so that the player has

a fair chance of understanding it and learning how to play? These are the lessons a

designer is supposed to take away from playtesting, but they are lessons which the

designer is never going to learn if she corrects the tester’s playing at every step.

While watching the testers play, the designer should try to observe the way in

which they try to play the game. Players may not try the approach or solution the

designer had thought of to a particular situation. The designer must then ask, does

the game support what the tester is trying to do, and if not, could it and should it?

The testing period is a time when the designer can add a breadth of content to the

game that will allow the game to truly be accepting of multiple playing styles. Up

until this point, the people playing the game have been limited to the development

team and whatever preliminary testers may have been brought in. Now that there is

a broader range of people playing the game, the designer will likely observe a

broader range of playing styles than he had anticipated. The testing period is when

the designer can make the game accepting of these playing styles, allowing players

Chapter 23: Playtesting 481

to truly play the game their own way on their own terms.

Of course, the designer cannot be present for all of the playtesting the game

will undergo, not if the game is going to be thoroughly tested and released in a rea-

sonable time frame. Often you will need to rely on what the testers report to you

about their playing experiences. Though not as useful as watching the testers play

first hand, this information can nonetheless be quite helpful. When you do get this

feedback, it is crucial to truly listen to what the testers tell you. This may seem

obvious, but it is surprising how many designers prefer to ignore the feedback they

get on their game. Often most of a game’s testing, particularly that done by tradi-

tional testers, takes place late in the development process, after a good deal of work

has gone into the project. At this point the designer is probably fairly confident that

the game is working as he wants it to work. Therefore, it can be difficult for the

designer to hear testers contradict this, perhaps pointing out fundamental problems

in the game that the designer has overlooked for months of development.

The designer’s first defense is often to claim that the testers do not know what

they are talking about. Excuses can range from the tester being a fool to the tester

not being the target audience for the game to the tester just complaining for the sake

of it. Granted, often testers do make suggestions for changes to the gameplay that

are best avoided, and if only one tester out of ten suggests that a certain piece of

gameplay needs to be changed it may be because of that tester’s personal prefer-

ence. But when the designer hears the same complaint from a number of different

testers, he needs to realize that there probably is something wrong with the game

that needs to be addressed. The designer must avoid dismissing the complaints of

testers and to honestly look at each complaint they make to see if it has any merit. It

is amazing the number of designers who will resist any and all suggestions the test-

ers make. Often, these same designers come to regret their obstinancy later when

the game is finally released, only to have players and members of the press com-

plain about the same issues the testers had complained about earlier. Of course,

once the game is released, it is too late to do anything about the problems.

Guided and Unguided Testing

One can divide the kind of testing being done on the project into two distinct

classes: guided and unguided. Guided testing customarily happens earlier in the pro-

ject, when the game is not yet completely functional. In that period, the designer

knows what portions of the game are clearly incomplete, but wants to get some

feedback on a section of the game he thinks is working fairly well. Then the

designer may direct the testers to try a particular level or section of gameplay.

Directed testing may also occur later in the project, when the entire game is func-

tioning, but a particular section has just been changed or reworked. At this point the

designer may need feedback on just that section, to see if the changes made fix an

482 Chapter 23: Playtesting

existing problem or break the game in some major way.

It is essential to allow and encourage your testers to do unguided testing as

well. Give them the game, tell them to start playing it, observe what they do, and

listen to their feedback. Many designers will often make the mistake of using only

guided testing, usually having the testers test only the system on which they are

currently working. When the testers bring up complaints about some other portion

of the game, the designer will complain that he is not interested in working on that

now, or that the problematic part of the game is already “done.” Directed testing

has its place, but if it is all the designer ever does, then he is likely to miss larger

problems in the game that he may not have even realized were problematic. Undi-

rected testing gives the designer feedback about the game holistically, something

that is essential to resolving all of its problems.

Of course, even when you do direct your testers to test only a certain section of

your game, often they will not be able to resist pointing out the other problems they

see along the way. It takes an extremely disciplined tester to truly test only the sys-

tem that the designer requests. Getting feedback on parts of the game that you are

not currently working on may be frustrating but can be useful in the long run. When

testers give you off-topic suggestions about how to improve the game, even if you

do not want to address those issues immediately, be careful to take note of them to

come back to later. Nothing is more frustrating than recognizing a problem in the

game after it has shipped, only to realize that one of your testers had told you about

the problem in plenty of time to fix it.

Balancing

The only time you can properly balance a game is when most of the game is done.

Balancing your game ahead of time, before all of the gameplay is working and all

the levels, if any, are made, can only be considered to be preliminary balancing. You

cannot truly get a sense for how the entire game needs to function and how the diffi-

culty must escalate over the course of the entire game until the game’s content is

complete. You can view your game as a collection of different systems that make up

one large system. For a level-based game, each level can be considered to be a sys-

tem in itself. Then, within each level, each combat encounter or puzzle can be

considered to be a system itself. In order for the game to be balanced, all of these

systems must be in place, since changing one system impacts how the other systems

must be set up in order to achieve the overall balance you are seeking.

The time at which the game is largely complete and true balancing becomes

possible usually coincides with the time when the game is in full-on testing. This

works out for the best, since balancing and testing are closely intertwined activities.

Balancing often involves changing some settings in the game and then playing it to

see if those changes create the amount of challenge you are interested in. For each

Chapter 23: Playtesting 483

pass on the balancing, both you and the playtesters should try to play the game.

Then the testers can give you feedback about just how effective your efforts to bal-

ance the game have been and, combined with your own analysis of the game’s

condition, you can make more changes and iterate through the process again. Peo-

ple who can successfully balance a game by themselves, without the input of other

playtesters, are rare. Often designers who attempt to balance a game by themselves

succeed in balancing the game only for themselves, usually resulting in the game

being too hard.

The best way to balance the game is to break down different systems into

groups of numbers that can be easily adjusted and tweaked. For instance, suppose

you were making a melee combat action game of some sort. If the player uses a

baseball bat in the game, that bat will have a number of different attributes associ-

ated with it, such as how much damage it does, how fast it attacks, how many times

it can be used before it breaks, how much it costs to buy, how many hands are

required to hold it, and so forth. Similarly, one can also break down enemy, player,

and other system attributes into collections of numbers which can then be adjusted

to vary the usefulness or challenge of that object. It is these values that you will

continually adjust and massage in order to achieve the balance you are seeking.

As you are balancing, you must be keenly aware of how the different values

you change affect each other. You may change one weapon in order to make one

combat situation a lot of fun but end up making another location in the game actu-

ally unbeatable. The more complex your game, the more impact the changes you

make may have on systems you might overlook. As you are balancing you must

fully consider every part of the game that your changes are affecting and make sure

you do not break the game. The only way to be truly sure you have not thrown off

the entire game is by testing it thoroughly. As a result, making significant changes

close to your ship date is a nerve-racking experience. What if the changes you make

break something that no one catches before the game is sent to the duplicator?

Of course, the method for balancing I have described above necessitates that

the data which affects the behavior of the game’s different entities be accessible and

modifiable by the designer. This means that the code needs to be written in such a

way that makes changing this information easy. This last point may seem obvious,

but I have seen many engines in which changing information such as weapon statis-

tics was far from easy to outright impossible. From the very beginning of the

game’s development, the programmers must keep in mind how the designers will

go about balancing the game at the end of the project. If, instead, they bury a col-

lection of “magic numbers” in the code, the game will become “locked” in a

particular state, making balancing it impossible. Though balancing can only take

place once the game is largely complete, the programming team must start prepar-

ing for that balancing from the very beginning of the project or effective balancing

will be impossible. If the designer is to have any chance of balancing the game

484 Chapter 23: Playtesting

well, this balancing information must be broken out of the code through configura-

tion files, level editing tools, or other designer-accessible formats.

Your Game is Too Hard

While balancing your game you should keep one rule of thumb in mind at all times:

your game is too hard. Regardless of the type of game you are making or how tal-

ented your development team may be, by the time your game nears completion and

enters testing it will be too hard. This is usually because, up to this point, only the

development team has been playing the game consistently. The development team

has been working on the project anywhere from nine to eighteen months and during

that time they have honed their gameplaying skills and have become quite good at

the game, probably better than 90 percent of the players who will ever play the

game. In order to keep the gameplay interesting for themselves, the development

team has made the game somewhat challenging for themselves to play, which in

turn means it will be too hard for 90 percent of the players out there.

The first comment testers will often make is, “This game is too hard.” As I dis-

cussed above, your first reaction will be to ignore this complaint, to chalk it up to

their incompetence or inexperience with the game. “They’ll get better,” you may

say. And, unfortunately, that is true. If the game spends three months in testing, the

testers will be just as good at the game as the rest of the development team. Then

they too will probably stop thinking that the game is hard. It is entirely likely that

the game will ship with the development team, including the testers, having no clue

just how difficult it is.

As a designer you must be very careful to maintain an honest sense of how hard

your game is, and during the balancing phase you must concentrate on making the

game something that a first-time player will have a reasonable chance of succeed-

ing at when he first starts playing. Always remember what the first impression of

the testers was, and ask yourself if you have addressed the problems they immedi-

ately identified. If necessary, you should bring in new first-impression testers to see

if the game is still too difficult.

Unfortunately, sometimes you may not always be able to make your game eas-

ier through balancing alone. You may have created a game design which, on a

fundamental level, is hard to play. If you truly want your game to be something

first-time players have an easy time getting into, you need to concentrate on this

from the very beginning of your game design. My project Centipede 3D is a good

example of how a game can become far more difficult than the development team

ever anticipated. Attempts were made to balance the game to make it easier, but the

gameplay was intrinsically designed to match that of the original arcade game. As a

direct result, Centipede 3D did everything it could to make the player’s game short

and fast paced. Unfortunately, players of home games want their games to last a

Chapter 23: Playtesting 485

little longer than what they get for twenty-five cents at the arcade. As hard as the

game was in its shipping version, it is chilling to think that before it went into the

balancing phase the game was easily ten times as hard.

When designer Jason Jones was balancing the Marathon games, he had an

interesting technique for making sure the game was not too hard. If he and other

members of the development team could play through the entire game on its hardest

setting using only the game’s “fist” weapon, he figured that the game would be rea-

sonably challenging for other players. Of course, other players get weapons far

more powerful and easy to use than the fist, and they do not have to play it on the

hardest difficulty setting. Jones handicapped himself in order to see how hard the

game would be to a normal player. Techniques like this are smart to use. If the

designer can win the game with both arms tied behind his back, other players will

probably have a fair chance of playing it through with both arms at their disposal.

In the end, balancing your game is often more of a “gut feeling” than anything

else. Though you may always be able to assume that your game is too hard, there

are not many other rules you can follow to balance your game. You need to be able

to see your game holistically, to understand how players who have much less expe-

rience with the title than you will play it, and to realize what will challenge them

without being unfair or even sadistic. Knowing how to balance a game is a skill that

comes with experience, both from playing other games and from designing your

own. In order to become truly skilled at balancing, you must do both as much as

possible.

486 Chapter 23: Playtesting

The Marathon
games were
tested for
difficulty by
forcing the
development
team to play
through the
game on the
hardest difficulty
setting using only
the weakest
weapon, the fist.
Pictured here:
Marathon 2.

The Artistic Vision

I have mentioned at various points throughout this book the evil that is known as the

focus group. It is important to understand the distinction between playtesting and a

focus group. Focus groups are customarily a group of “off the street” people who

are given a one- or two-hour presentation, often on a series of different games.

Many times they are not allowed to play the games, as often the games have not

even been developed yet. They hear about game concepts and, based on the descrip-

tions, are asked whether they would be interested in buying such a game or not.

Playtesters, on the other hand, are people whom members of the development team

know or whom they at least have a chance to get to know. Knowing a person is cru-

cial to understanding how seriously you should take their opinion. Furthermore,

playtesters get to play the games in question, while focus group members often do

not. As a result of these key differences, focus groups tend to be antithetical to the

creation of original, creative games and encourage the development of safe,

uninnovative games. One can only imagine how the focus group for games like

Pac-Man, Tetris, or Civilization would go. We know from the interview with Will

Wright in Chapter 22 that the focus group for The Sims went so poorly that the

game was nearly canceled. It should be telling that focus groups are run by the mar-

keting department, while playtesting is handled by the development team. One

group’s primary interest lies in making money for the company in the simplest way

possible, while the second, it is hoped, is interested in producing compelling and

stimulating games. Of course, the two motives need not necessarily be at odds, but

Chapter 23: Playtesting 487

When released,
Tetris was an
extremely unique
game. Chances
are, an early
focus group for
the game would
have gone
terribly. Pictured
here: classic
mode in The
Next Tetris.

when one aims primarily for the former instead of the latter, one is likely to end up

with neither.

As you are testing, it is important to remember that you cannot please every-

one. Given a large enough testing team, there are bound to be people who do not

like portions of your game, or even who do not like the entire game. If you start try-

ing to make every single person on the testing team happy you often end up making

the game less fun for other people. While you may have started with a game that a

bunch of people liked a great deal and a few people thought was dull, if you start

trying to please everyone you may end up with a game that everyone thinks is OK,

but which no one is truly enthusiastic about. Given the choice, I always prefer to

give a certain group of people an experience they truly love than try to give every-

one something they like only marginally.

Testing should also not mean game design by committee. You do not have to

take every suggestion that your development team presents and implement it. Some

of these ideas may be perfectly reasonable but you may feel that they just do not fit

with your game. That is a perfectly reasonable response to have. In the end, it may

be that every single playtester you have tells you that some part of the game must

change, but if you feel, in your gut, as an artist, that you do not want to change that

portion of the game, then leave it as it is. In the end you must be the final arbiter of

what happens in the game. A committee, whether it consists of executives, testers,

or even members of the development team, can never have the unity of vision and

certainty of purpose that can be maintained by a single person.

488 Chapter 23: Playtesting

TE
AM
FL
Y

Team-Fly®

Conclusion

As I stated in the introduction, this book is not a definitive guide to computer game

design. No book can be. But it has attempted to inform the reader of what I know

about game design, in addition to sharing the thoughts of six of game design’s most

accomplished masters. Of course, none of the information in this book will amount

to much if the reader is not prepared to use it to the right ends. As with any art form,

computer games demand that their authors have a personal investment in their cre-

ations if the games are to be truly worthwhile. I feel that computer games have a

great power to affect their audience, and a game designer has a tremendous respon-

sibility to use that power wisely.

Art

The game development industry seems to be constantly involving itself with discus-

sions of whether computer games qualify as an art form. Some other discussions

center around whether computer games will ever be “legitimate” art. Such argu-

ments are completely fruitless. We cannot make the public see us as legitimate

merely by tooting our own horn and bragging of our accomplishments. Some people

still fail to see film or jazz music or comic books as “legitimate” art and those forms

have a body of work which, due in part to their age, dwarfs what computer games

have produced. The question must be asked, “Would you do anything differently if

computer games were or were not art?” Surely the best way to convince the public

that we are legitimate is to act like it by producing works as compelling as those

found in any other media.

Of course computer games are art. Could anything be more obvious? This is

especially true if one uses the definition of art that I am most fond of, from Scott

McCloud’s magnificent book Understanding Comics: “Art, as I see it, is any human

activity which doesn’t grow out of either of our species’ two basic instincts: sur-

vival and reproduction.” It would appear that many game developers who

constantly scream “games are art” have a certain insecurity complex and feel the

need to justify working in games to their family or friends, to the public as a whole,

or even to themselves. Such insecurities seldom lead to an artist working at his full

capacity, since he is constantly going out of his way to prove himself. This seldom

leads to great work; more often it leads to pretentious trash. When asked if he

489

agreed with critics who said his films qualified as art, Alfred Hitchcock replied,

“Oh, I’m very glad when they do, but it’s not like taking page one of a script and

then saying, ‘I will now start a work of art.’ It’s ridiculous—you can’t do it.” Qual-

ity games are most likely produced when those developing them have no motives

other than creating the most compelling experience for the player.

The Medium

So often, we in the game development community are envious of other media. In

part, this may be game designers wishing for the respect that other media command

in society, the “legitimacy” that I spoke of earlier. Others may secretly, subcon-

sciously, or even openly wish they were working on something other than games. A

game designer may say, “I want my game to have a similar effect on the audience as

the movie The Godfather!” or “I want people to enjoy playing this game the same

way they enjoy listening to The Jimi Hendrix Experience’s Electric Ladyland!” But

this is the wrong approach to take. The strength of our medium lies in what it does

differently from other media and the emotions it can evoke in the audience that no

other art form can. If we endlessly try to ape other media we will forever be stuck

with second-class, derivative works. Surely Jimi Hendrix did not try to emulate a

movie he had seen when he recorded Electric Ladyland. Similarly, Francis Ford

Coppola knew he would have to radically alter Mario Puzo’s book The Godfather in

order to make a good movie out of it. Indeed, Coppola’s mastery of film allowed

him to create a movie significantly better than the book upon which it is based. Both

have nearly the same story, characters, and even dialog, yet Coppola’s telling of the

story cinematically outdid Puzo’s literary telling in nearly every way. Though the

effect a game has on a player may be different than a book has on a reader, a film

has on a viewer, or a song has on a listener, it is not necessarily a worse effect,

merely a different one. Computer games have strengths of their own which we must

master if we are to produce the best work possible. Surely our medium presents

challenges for those who choose to work with it, challenges not to be found in other

art forms, challenges we have a duty to face if we hope to be more than charlatans

and conmen.

In his book Understanding Media, Marshall McLuhan is famous for saying,

“ . . . the medium is the message. This is merely to say that the personal and social

consequences of any medium—that is, of any extension of ourselves—results from

the new scale that is introduced into our affairs by each extension of ourselves, or

by any new technology.” McLuhan argues that while people concern themselves

with the content of television shows or plays or music, a medium’s true message

comes not from the content but from the medium itself. Now, I certainly do not

claim to be a McLuhan scholar, yet I cannot help postulating what the nature of our

medium of computer games is, a medium which did not exist when McLuhan wrote

490 Conclusion

those words. The inherently interactive nature of computer games creates a mass

medium that encourages players to be active participants in art in ways other media

cannot. I cannot help but conclude that the fundamental message of our medium is

one of participation and empowerment.

Game designers make a product which either facilitates the interaction between

others, in the case of multi-player games, or sets up an interaction between a single

person and the computer, for solo games. In the latter case, it is somewhat incorrect

to say that the true interaction takes place between the person and computer, since

the computer is nothing more than a medium for the interaction; the interaction

actually takes place between the player and the game’s creator. When I spent weeks

of my early life alone in the dark computer room in the back of my parents’ house

playing The Bard’s Tale and The Bard’s Tale II, I never thought of myself as being

alone. In a way I was there with Michael Cranford, the games’ creator, playing in

the world he had made, exploring the piece of himself he had put into the game.

This medium seemed so powerful I knew immediately that I wanted to work with it

to create my own games, so I could put a part of myself in games for players to

experience.

The Motive

I have talked at length in this book about why players play games, but perhaps the

most important question you as a game developer should ask is why you make

them. The film director Krzysztof Kieslowski said that no artist has a chance of

understanding his work if he does not understand himself and his own life, and what

events have brought him to where he is. As you embark on your life as a game

designer, questioning your own motivations in your work is vital to effectively

using your medium.

The first question a designer should ask himself is how he came to work in

computer games. Was it happenstance? Did a friend in the business happen to know

of a position that was open? Was he aimlessly searching the classifieds only to find

an ad about game development to which he responded, “Hey, that might be fun”?

Did he see game development as something cool to do, much hipper than his sorry

friends who have to shuffle papers for a living? Did he really want to work in some

other field, such as film or television, and when that career did not work out as

planned he found that he could earn a living in the gaming business in order to pay

the bills until something better came along? Or did gaming just turn out to be the

profession which, given his skill set, would pay the most money?

As the reader might guess, none of the above are among the best motivations

for working in games. There are people who come to gaming with more pure moti-

vations, people who pursue it because it is what they want to do more than anything

else. Of course, a designer might come into the world of game development with

Conclusion 491

the wrong motivations only to find a passion for creating games stirred inside him-

self. Regardless of why he started working in games, what is essential is that now

that he is developing games, he wants to truly make the best games possible.

I am continually surprised and disappointed by the number of people working

in games for all the wrong reasons: because it is cool, because it pays well, because

they do not have anything better to do. Game development may be more fun, styl-

ish, and potentially profitable than many other professions, but these are side

benefits that cannot distract from the true goal a designer must have: to make com-

pelling interactive experiences. When other motives become a designer’s primary

guiding directives, her work is hopelessly compromised in a way that will hinder it

from achieving its full potential.

The most likely person to make really brilliant games is a game designer with a

dream. A dream that involves advancing the art of games beyond the more puerile

and trivial concerns it may be seen wallowing in from time to time. A dream that

involves a game-world so compelling players lose track of their regular lives as

they play it. A dream which involves creating a work that captivates and involves

players in the art as no other media can. A dream of computer games that enrich

their players’ lives for the better. Do you have such a dream?

492 Conclusion

Appendix

Sample Design
Document:
Atomic Sam

T
he following design document is for a simple console action game called

Atomic Sam. The game itself is far from revolutionary and, from a design

standpoint, part of its appeal is its simple nature. It is part of a project I was

previously involved with that was never developed into a finished game. Despite

this, the reader can consider the document to be “authentic,” since it is written in the

exact style and format I have used in design documents for projects which have

been developed.

493

As a result of its simplicity, the design document for Atomic Sam is not very

large. I have written documents five times the length of this one for other projects,

and even those documents were not as big as others in the industry. Parts of this

document were deliberately kept short, since it was not intended to be a complete

design document, but rather to give its reader an idea of what Atomic Sam would

be. In particular, certain sections have deliberately been kept short. For instance, the

listing of enemy robots is much smaller than it would be if the document actually

described all of the enemies in the game. Similarly, a full version of this design

document would include descriptions of more projectiles for Sam to throw, more

devices and contraptions for him to manipulate, and more of the characters he

would meet in the game-world. The game might even be expanded to include more

areas than just the five described here.

In fact, more detail could be used throughout the document. The way this docu-

ment is written assumes that the author is going to be involved throughout the

development process, guiding the design in the correct direction. As I have stated

elsewhere in this book, as a game designer I am only interested in being involved

with projects that I can see through from beginning to end. If this document were

for a project that the author did not expect to be actively working on, it would make

sense to add more detail throughout in order to be completely clear about the direc-

tion the project should take.

For example, the section about level design could be significantly more

detailed. However, if one has a team of level designers who understand the

gameplay and can be trusted with the responsibilities of designing a fun level, the

descriptions contained in the document could be a sufficient starting point for level

design. From this document, the level designers are given a great deal of freedom in

terms of how to build their levels, a system that works well if the level designers

are up to the challenge. Certainly, if you will be designing many of the levels your-

self, you do not need to plan everything out in minute detail in advance. Many

successful games have been made this way, including a number of the projects I

have worked on. For instance, Centipede 3D had only a general notion of the AI,

mushroom types, and power-ups designed before the level construction process

began, and it was a system that ended up working quite well.

Of course, before writing a design document, the designer should have a good

idea of the focus of the gameplay, as I have discussed elsewhere in this book. Here,

for example, is the focus statement I had in mind when I started working on the

design document for Atomic Sam.

494 Appendix: Sample Design Document: Atomic Sam

Atomic Sam: Focus

Atomic Sam is a non-violent, fast-paced action game whose gameplay

centers on defeating various villainous robots in creative and inventive

ways, using a variety of projectiles and environmental devices. The story

is one of a young boy separated from his parents for the first time who

learns about the world through mentors, friends, and new experiences.

Atomic Sam takes place in a unique “retro-future” with whimsical, non-

sensical devices providing a unique backdrop to the unfolding of the story

and action.

Armed with the direction provided by the focus, the game design grew organi-

cally from there into the design you will read below. As I have stated before, there

is no set-in-stone format for design documents. It is the designer’s responsibility to

present the design in as much detail as is necessary, in a manner which clearly com-

municates that design to all the members of the team.

Appendix: Sample Design Document: Atomic Sam 495

Atomic Sam

Design Document

Version 2.0

This document and Atomic Sam are TM and © 2000 Richard Rouse III, all rights

reserved.

Atomic Sam character designed by Richard Rouse III and Steve Ogden

Table of Contents

I. Overview . 499

II. Game Mechanics . 500

Overview. 500

Camera . 501

In-Game GUI . 502

Replaying and Saving . 502

Control Summary . 503

General Movement . 503

Moving in a Direction . 504

Variable Movement Speed . 504

Flying Movement . 504

Moving Up and Down . 504

Stopping. 504

Flight Speed. 505

Directional Flying. 505

Burst Speed . 505

Limited Flight Time. 505

Landing . 506

Falling to the Ground . 506

Limited Altitude . 506

Rocket-Pack Upgrades . 506

Surfaces . 507

Picking Up Objects . 507

Throwing Projectiles. 508

Inventory . 508

Picking Up Projectiles . 508

Readying Projectiles . 509

496 Appendix: Sample Design Document: Atomic Sam

Throwing the Projectile . 509

Throwing Speed and Distance . 509

Projectile Capabilities. 510

Electric Piranha . 510

Actions . 510

Flipping Switches and Pressing Buttons 511

Pushing and Manipulating . 511

Picking Up, Carrying, and Dropping 511

Talking . 511

Reading . 511

Interactive Combat Environments . 512

Looking . 513

Friends . 513

Speaking . 514

Cut-Scenes . 515

Storytelling. 515

Environments . 516

Friends . 516

Radio . 516

Signs . 516

Levels . 516

Critical Path . 517

Training Level . 517

The Electric Priestess’ Home . 517

World Order . 518

III. Artificial Intelligence . 518

Enemy AI . 519

Player Detection . 519

Motion . 519

Flying . 520

Pathfinding. 520

Taking Damage . 520

Combat Attacks . 520

Evading . 521

Special Actions . 521

Taking Hostages . 521

Internal Repair Arms . 521

Collaboration . 521

Trash Talking . 522

Falling into Traps . 522

Appendix: Sample Design Document: Atomic Sam 497

Non-Combatant Agents . 523

Fleeing . 523

Talking To and Helping Sam . 523

Friends . 523

Invincible . 523

Following Sam . 524

Guarding Sam’s Back . 524

Providing Advice . 524

Storytelling . 525

IV. Game Elements . 525

Items . 525

Sam’s Projectiles . 525

Rocket Enhancements . 526

Miscellaneous . 527

Characters . 527

Atomic Sam . 527

Friends . 528

Other Characters . 529

Enemies . 530

V. Story Overview . 536

VI. Game Progression . 538

Setting . 538

Introduction . 540

Gargantuopolis. 540

The Electric Priestess’ Bubble Home 540

Benthos . 541

Harmony . 542

New Boston . 543

The Electric Priestess’ Bubble Home 544

The Ikairus . 545

VII. Bibliography . 545

498 Appendix: Sample Design Document: Atomic Sam

TE
AM
FL
Y

Team-Fly®

I. Overview

Atomic Sam is an action game with a strong storytelling component. In it the player

controls Sam, a young boy separated from his parents, who must battle his way

through hostile environments and defeat the robots that try to prevent him from

finding out what happened to his mother and father. The game is one of quick reac-

tions and clever planning in a whimsical futuristic world, a setting which will

appeal not only to children but to game players of all ages who enjoy fast-action

gameplay. The game is suitable for any modern console system.

The player’s main task in Atomic Sam will be to navigate young Sam through

the various environments of the game while defeating the robots he encounters.

Though the game is centered around this combat, it is a non-violent game from start

to finish, with Sam incapacitating but not destroying the robots that try to stop him.

Whenever Sam is defeated, he is always stunned or trapped, never actually killed.

The whimsical and optimistic nature of Atomic Sam requires that the game not play

up any sort of gore-factor and that violence be kept to an absolute minimum.

The game will reward the player’s creativity by setting up situations where the

player can use environmental objects to defeat the robots that come after him. Rube

Goldberg-esque contraptions will be everywhere, providing whimsical ways for

Sam to incapacitate the many mechanized adversaries he will face. Figuring out

what to do in different situations will be just as important as quick reactions and

manual dexterity.

Atomic Sam is easy to pick up and play with simple, intuitive controls. An

in-game tutorial section at the beginning of the game will provide an easy way for

new, inexperienced players to learn how to play the game. In each of the middle

three sections of the game, Sam will be accompanied by special friends who will

help him defeat the enemies he faces. All the while, these friends will tell Sam

interesting stories about this world of the future.

The setting of Atomic Sam is in the Earth of the future, but not exactly the

future as we imagine it now. This is the future as foretold in the first half of the

twentieth century, a world where all of the optimistic predictions about how tech-

nology would change our lives have come true. Atomic energy has created a

pleasant, trouble-free world, with robots answering to humans’ every beck and call

and mankind the happiest it has ever been. Yet, key advances from the latter half of

the twentieth century are notably absent in this world. For instance, jet-propelled

airplanes have not been popularized, and as a result citizens travel on giant propel-

ler craft and zeppelins from one mammoth metropolis to another. Similarly, no one

has ever heard of a compact disc, microwave, personal computer, or video game.

Appendix: Sample Design Document: Atomic Sam 499

The game’s story starts with Sam returning from school only to find his parents

strangely missing. Setting out to find them at their office using the rocket-pack they

gave him, Sam finds himself attacked by menacing robots along the way. Finding

his parents not at their office either, Sam meets up with the mysterious Electric

Priestess. She sends Sam to look for his parents in the underwater city of Benthos,

the robot city called Harmony, and all the way to the Moon colony named New

Boston. On the way, Sam gathers evidence and discovers that Max Zeffir, one of

the world’s richest men and also his parents’ boss, had them kidnapped when they

learned something they shouldn’t have. Sam then goes to confront Zeffir in his

giant propeller-driven and atomic-powered airship the Ikairus. Finally, Sam defeats

him and is happily reunited with his parents.

Because of its whimsical nature and youthful protagonist, the most obvious

appeal of Atomic Sam might appear to be to a young demographic. Parents will cer-

tainly be pleased that the game has the player capturing enemies rather than killing

them, and that when the player loses in a particular situation, Sam is always inca-

pacitated in some non-lethal manner. But due to its sharp, frantic gameplay,

assortment of unique environments, and inventive adversaries, the game will also

appeal to young adults. And with Atomic Sam’s retro-futuristic look and emphasis

on story line, the game will also appeal to older players, those who may well

remember how differently we thought of the future fifty years ago.

II. Game Mechanics

Overview

Atomic Sam is a third-person, floating camera 3D action game in the tradition of

Super Mario 64 or Spyro the Dragon. Atomic Sam is different, however, in that the

gameplay focuses less on exploration but instead on the player battling his way

through the levels, avoiding the robots and other adversaries that try to block his

progress. That being the case, the game mechanics are designed in such a way as to

allow the player intuitive and extensive control of his game-world character while

enabling the player to appreciate the interesting and compelling game-world in

which he is placed.

500 Appendix: Sample Design Document: Atomic Sam

Camera

In the game, the player will control the character Atomic Sam. At all times, Sam

appears in the center of the screen, with a “floating” camera above and behind the

character, in an “over the shoulder” type of view. The camera will be at such a dis-

tance that the player has a reasonable view of Sam and his current environment. The

camera will be “smart” enough to avoid penetrating objects in the world and will

always give the player a clear view of Sam. If necessary, in tight situations, the cam-

era will zoom up closer to Sam. If Sam is too large on the screen and prevents the

player from viewing the world adequately, Sam will appear translucent to the

player, thus giving the player a clear view of the world. This translucency is appar-

ent only to the player, and has no effect on the game-world or how the enemies react

to Sam.

The camera will try to stay behind Sam as much as possible while providing a

smooth visual experience for the player. If Sam turns around in a hurry, the camera

will slowly catch up with his new direction instead of suddenly jerking into the new

position. If the player changes Sam’s direction for only a brief period of time before

returning to the original position, the camera’s orientation will not change at all.

This allows the player to make minor adjustments to Sam’s positions without hav-

ing the camera swinging around wildly.

Appendix: Sample Design Document: Atomic Sam 501

In-Game GUI

The majority of the player’s screen will be taken up by a view of the game-world

with the player’s character, Atomic Sam, near the center of that screen. A few other

elements will be overlaid on top of this view in order to provide the player with

information about Sam’s status and goings on in the game-world.

� Current Projectile + Count: In the lower left corner will be displayed an

iconic representation of Sam’s currently readied projectile. Next to this will be

a series of “chits” or “ticks” representing how many of that projectile Sam has

in his inventory. More information about the projectiles used in the game can

be found in the Projectiles description below and the Game Elements section.

� Selecting the Current Projectile: When the player presses and holds the Next

Projectile button, the player will see a horizontal display of the projectiles in

Sam’s inventory along the top of the screen. The player can then scroll through

this list and select the object he wants Sam to ready. The weapons will be

represented as icons. Once the player releases the Next Projectile button, this

display will disappear.

� Flight Time: Sam’s rocket-pack has a limited amount of flight time. This will

be represented by a horizontal bar next to an iconic picture of Sam’s rocket-

pack in the lower right corner of the screen. The bar will appear full when

Sam’s rocket-pack is fully charged and will slowly go down the longer Sam

stays airborne. For more information about the rocket-pack and its

functionality, see the Flying Movement section below.

� Current Dialog: Different people will talk to Sam during gameplay; the

friends Sam has accompanying him on his adventures, the Electric Priestess via

the radio she gave him, and other characters Sam encounters may all say things

to Sam. All of this dialog will be prerecorded and played back to the player. In

addition, however, in the upper left-hand corner of the screen a 2D cartoon

representation of the character will appear with the text appearing next to it.

This will be important for players playing with the sound off or who did not

manage to hear the dialog as it was spoken. This GUI element will disappear a

reasonable period of time after it appears, allowing enough time for the player

to read the text. When the game is in a non-interactive cut-scene, however, the

dialog will appear at the middle of the bottom of the screen, as it would in a

subtitled movie.

Replaying and Saving

The player has no “lives” in Atomic Sam. When Sam is incapacitated by one of the

robots or another adversary (always in a relatively non-violent way), the player is

able to go back to the last checkpoint and play that section again as many times as

502 Appendix: Sample Design Document: Atomic Sam

he wants until he passes it. Checkpoints are scattered throughout the levels, and the

game automatically and transparently remembers when the player has reached such

a checkpoint. The checkpoints will be carefully placed so as to enhance the chal-

lenge of the game without making it frustrating for the player.

During the gameplay, the player will be able to save at any time. However,

when the saved game is restored, it will only start the player back at the beginning

of whatever level the game was saved on, instead of at the exact location (or check-

point) Sam was at on that particular level. This encourages players to finish a given

level before they stop playing the game.

Control Summary

The player will use a number of different controls to maneuver Atomic Sam and to

navigate him through the game-world. These controls are discussed in detail below.

First, however, is a summary of the different commands, which will give the reader

an overview of Sam’s capabilities. The controls are designed with modern console

controllers in mind, and can be easily adapted for whichever system Atomic Sam is

developed.

� Up, Down, Left, Right (Analog Controller): The player will use this control

to maneuver Sam along the horizontal plane in the game-world. Utilizing its

analog nature, if the player presses the control a little bit Sam will move slowly,

while if he presses it all the way in a given direction Sam will move quickly in

that direction.

� Fly Up, Fly Down (Left and Right Back Triggers): The player will use these

controls to propel Sam vertically in the game-world.

� Throw (Right-Pad Down Button): This throws one of Sam’s currently readied

projectiles.

� Next Projectile (Right-Pad Right Button): The player uses this button to

scroll through Sam’s inventory of projectiles.

� Action (Right-Pad Up Button): The player uses this control to perform

miscellaneous actions in the game-world, such as flipping a switch, talking to a

character, or picking up a large object.

� Look (Right-Pad Left Button): The player uses this button to activate the

camera-look functionality.

General Movement

While Sam is on the ground or in the air, the player can move Sam forward, back-

ward, left, and right in the game-world. The player will control Sam’s movement in

these directions using the analog controller on the game-pad. Control is always

Appendix: Sample Design Document: Atomic Sam 503

relative to the camera’s view of the world. Therefore, pressing forward or up on the

controller will move Sam away from the camera while pressing backward will

move Sam toward it. Similarly, pressing left or right will cause Sam to move in the

corresponding direction in the game-world relative to the camera.

Moving in a Direction

When Sam starts moving in a direction, he will at first maintain his current facing

before turning to move in the new direction. For instance, if Sam is facing away

from the camera and the player presses to the left, then Sam will start side-stepping

or side-flying in that direction. Only after the player holds that direction for a short

period of time (approximately one second) will Sam then turn his whole body to

face the new direction of movement. The same applies for moving backward from

the current facing: at first Sam moves backward, and then after a second he will

spin around 180 degrees and keep moving in this direction. This will allow Sam to

reposition in small amounts in any direction without actually changing his facing.

Variable Movement Speed

Use of the console system’s analog controller for movement in these directions will

allow Sam to move either slowly or quickly in a given direction. If the player

pushes the analog controller fully in a given direction, Sam will move in that direc-

tion at high speed. If the player presses it only a small amount in that direction, Sam

will move much slower. This will give the player precise control over Sam’s posi-

tion in the world.

Flying Movement

Key to Sam’s navigation of the game-world is the rocket-pack he wears on his back.

The player has Fly Up and Fly Down buttons to control this rocket-pack, which

allow Sam to move vertically in the game-world. Once in the air, Sam will hover at

a given altitude if neither button is pressed.

Moving Up and Down

Sam will not move up and down at a constant speed. When the player presses up, at

first Sam will move quickly, gaining speed the longer the player holds down the Fly

Up button. This speed will eventually (after about a second of upward movement)

reach a terminal velocity after which Sam will not gain any more speed. The down-

ward movement functions in much the same way.

Stopping

When the player stops flying either up or down or in a given direction, Sam will not

stop immediately, but instead will “coast” to a stop. Sam’s animation when stopping

504 Appendix: Sample Design Document: Atomic Sam

will show him quickly shifting his weight to change the direction the rocket-pack

faces. This means the player will have to practice flying Sam in order to get him to

stop precisely where she wants.

Flight Speed

Sam’s pack is not an extremely fast device, providing a maximum speed approxi-

mately 1.5 times Sam’s speed when he is jogging on the ground. Whenever the

player maneuvers Sam to the ground Sam will return to a walking/jogging anima-

tion and will move at the slower speed associated with being on the ground.

Directional Flying

Sam can, of course, move forward, backward, left, or right while also moving verti-

cally. The player can accomplish this simply by pressing the analog control in a

direction while also pressing the Fly Up or Fly Down buttons. Sam will appear to

pitch in the appropriate direction to correspond with his overall movement.

Burst Speed

The Fly Up and Fly Down buttons will both move Sam at the same maximum

speed, but tapping either button twice quickly will result in a “burst” of speed in

that direction, moving approximately 1.5 faster than the regular maximum speed for

a short period. But moving at this high speed will also use up more of the

rocket-pack’s charge. This can be helpful for quickly dodging enemy attacks.

Limited Flight Time

The rocket-pack has a limited amount of flight time, however, though fortunately it

can recharge simply through not being used. The rocket-pack’s charge is used up

whenever Sam is not standing on the ground, whether he is flying up, flying down,

or just hovering. The amount of charge remaining in the rocket-pack will be repre-

sented by a small bar drawn on top of the game-world view in the lower right-hand

corner of the screen, so the player will always be able to know when Sam’s flight

time is about to expire. The rocket-pack’s charge will be decreased different

amounts depending on how Sam is using his pack. The ratios of usage will be

approximately as follows:

Usage Charge Depletion

Flying Up 4

Flying Down 2

Hovering 1

Burst Up 6

Burst Down 6

On Ground –3

Appendix: Sample Design Document: Atomic Sam 505

Landing

Since the rocket-pack’s charge is limited, the player must land Sam periodically in

order to allow the pack to recharge. The player lands Sam simply by maneuvering

him close to the ground or any flat surface he can stand on. Because Sam has a lim-

ited flight range, the player will have to plan Sam’s movements accordingly in order

to get Sam from one location to another. This will allow for puzzle elements in the

levels where the player has to figure out how to navigate Sam to an area, given

Sam’s limited flying abilities. The “as the crow flies” route will often not be the

route that Sam must take to reach a far-off platform.

Falling to the Ground

Having the rocket-pack run out of charge while Sam is in midair will not result in

his death. Sam’s outfit includes specially made shock-absorbing boots with extra

thick soles which will allow Sam to land safely when falling from any height. But

when his rocket-pack’s charge runs out, Sam will plummet at a great speed, provid-

ing a very disorienting experience for the player when Sam falls from a great height.

Limited Altitude

The rocket-pack will also only be able to attain certain altitudes. If the player tries

to fly Sam too high, the rocket-pack will start to sputter, indicating that Sam cannot

fly any higher. Because of this limitation, the levels can have open skies without

allowing the player to actually fly out of the levels.

Rocket-Pack Upgrades

Throughout the game, Sam will periodically find rocket-pack upgrades. These will

either be attachments Sam can add on to his pack, or Sam may find game characters

who will be able to tinker with Sam’s pack in order to improve it. These changes

will provide a variety of enhancements to Sam’s flying ability.

� Longer Flight Time: Sam can fly for longer without having to land. This

means Sam may have to acquire certain upgrades in order to reach certain

locations.

� Faster Burst Speed: Sam can fly faster using the pack’s “burst” functionality.

� Faster Overall Speed: The pack’s maximum speed and acceleration are

increased, allowing Sam to move vertically faster.

� Improved Maneuverability: The pack is better able to “stop on a dime.”

Instead of coasting to a stop, Sam can now stop as soon as the player lets go of

the control stick.

506 Appendix: Sample Design Document: Atomic Sam

Surfaces

Generally Sam can walk or land on any flat surface, whether it is the sidewalk or

ground or a platform high in the air. Sam will be unable to land on surfaces that are

significantly rounded or sloped. If Sam tries to walk up or land on a curved or

sloped surface he will instead slide down the surface, stopping only when he

reaches flat terrain.

There will be certain substances Sam will not be able to land or walk on. These

include water, tar covered areas, or electrically charged floors. If the player navi-

gates Sam onto such a surface while on foot, Sam will start an animation indicating

the peril of the surface. For instance, if Sam comes up to an electrically charged

floor, he will play an animation of starting to be shocked by the floor. If the player

does not shift the direction of the controller to direct Sam out of the surface, Sam

will quickly become incapacitated. Similarly, if the player tries to land Sam on such

a surface while the rocket-pack still has charge remaining, Sam will start to be

shocked, playing an animation early enough to indicate that the surface is perilous

and to provide the player a chance to navigate him out of harm’s way.

If the player runs out of charge while over such a surface, Sam will fall onto the

surface and be incapacitated without any chance for the player to save him. Of

course, whenever Sam becomes incapacitated, the player will have to start playing

again from the last auto-save checkpoint. In order to succeed in the game, the

player will need to avoid navigating Sam onto such surfaces and from letting the

rocket-pack’s charge run out while Sam is over such surfaces.

Picking Up Objects

Whenever Sam flies close to an object he can pick up, he will automatically pick it

up if there is enough room in his inventory. The objects Sam can pick up include

projectiles, rocket-pack enhancements, and the Electric Piranha. Sam will play an

animation and a sound will be played to indicate that Sam has picked up the object.

Sam can also pick up certain larger objects but cannot add them to his inven-

tory. Sam may need to move these objects for puzzles or may want to drop them on

enemies to incapacitate them. The player can have Sam pick up these objects by

pressing and holding the Action key while Sam is near them, and then can drop the

object by releasing the Action key.

Appendix: Sample Design Document: Atomic Sam 507

Throwing Projectiles

Key to dealing with the robotic adversaries Atomic Sam will face throughout the

game are the different objects that Sam can find and throw. Though Sam will never

find or use any sort of a gun, he will obtain different objects that can be hurled at

enemies in order to incapacitate them.

Inventory

Sam will have a simple inventory which can hold up to fifty of each type of projec-

tile. This is where projectiles Sam picks up will be automatically stored. The

inventory is simple to use since the player cannot make room for another type of

projectile by carrying fewer of another type of projectile. Sam cannot remove items

from his inventory except by throwing them.

Picking Up Projectiles

In addition to starting the game with a small number of projectiles, Sam will find

more projectiles throughout the game. Usually when Sam finds a projectile, he will

find a group of them; for instance, ten Water Balloons or twenty Goo-Balls. Sam

will automatically pick up these projectiles by maneuvering close to them. If Sam

throws and misses with his projectiles, he may be able to retrieve them by going to

where they landed, ideally after that particular encounter with enemies is over. In

this way, players who are not very accurate at controlling Sam’s throwing will get to

retrieve their projectiles so they can try throwing them later.

508 Appendix: Sample Design Document: Atomic Sam

TE
AM
FL
Y

Team-Fly®

Readying Projectiles

When a projectile is readied, the player will see Sam holding whatever his current

projectile is, and an icon and counter in the lower right corner of the screen will

reveal how many shots are left of that particular projectile. The readied projectile is

the projectile that Sam is prepared to throw as soon as the player presses the Throw

button.

The player will be able to select the “readied” projectile with the Next Projec-

tile button. If the player quickly presses and releases this button, Sam will switch to

the next available projectile in his inventory, if any. If the player presses and holds

the Next Projectile button, the player will see a horizontal display of all the types of

projectiles currently in Sam’s inventory at the top of the screen, with the currently

selected weapon appearing in the center. The player can then use the left and right

directional controller to select previous and next projectiles, respectively, with the

list of projectiles sliding left or right accordingly. The list will “wrap around” such

that the player will be able to get to any projectile by pressing right or left repeat-

edly. Whatever projectile is in the center of the screen when the player releases the

Next Projectile button will be Sam’s new readied projectile.

Once selected, the player will see Sam holding whatever the current projectile

is. If the player then does not throw the projectile or select a new readied one, after

five seconds Sam will appear to put the projectile away. This is so that, visually,

Sam does not appear to travel everywhere ready to throw a projectile. However,

even if Sam does not appear to have a projectile ready, hitting the Throw key will

instantly throw the readied projectile, just as quickly as if Sam had his arm out

ready to throw.

Throwing the Projectile

The player will be able to throw Sam’s current projectile by using the Throw button.

The projectile will travel approximately in the direction the player is facing, though

Sam will not have to be “dead on” in order to hit a target; the game will auto-target

his shots at the closest adversary within the general direction Sam is facing. The

current target will be labeled with a cross-hair so that the player always knows what

target Sam will attack. It will be important to balance this auto-aiming so that it

does not result in the projectile hitting targets the player did not want to hit, or in

making the game too easy.

Throwing Speed and Distance

Releasing the Throw button will cause Sam to throw a projectile. A simple toss can

be accomplished by a simple press and release of the Throw button by the player.

However, if the player holds down the Throw button, Sam will be able to throw the

projectiles faster and farther. This will be represented by Sam’s arm starting to spin

Appendix: Sample Design Document: Atomic Sam 509

while the player holds down the Throw button, moving in a motion like a softball

pitcher’s windup, except continuing in a circle. Eventually, once Sam’s projectile is

going to leave his hand traveling at the maximum speed, Sam’s arm will appear as a

cartoon-style blur because it is revolving so fast. Though the auto-targeting will line

up the player’s shot with an adversary, if the player does not throw the projectile

with enough force it may fall short of hitting this target. Part of the game’s chal-

lenge for the player will be making sure the projectile is thrown hard enough to

reach its intended target.

Projectile Capabilities

All of the projectiles in the game will be able to disable different types of enemies.

For instance, the Goo-Ball projectile will cause enemies who are walking on the

ground or on the walls to stick to the surface they are on, rendering them immobile.

The Goo-Ball will be useless against flying adversaries. Another projectile, the

Water Balloon, will be best used against non-waterproof robots, causing their wiring

to short-circuit. Heavily armored robots or human adversaries will be invulnerable

to the Water Balloon. The player will have to pick carefully the correct projectile to

use in a given situation. A more detailed description of the capabilities of the pro-

jectiles can be found in the Game Elements section.

Electric Piranha

In addition to the projectiles and improved rocket-packs Sam will find in the

game-world, the player will also find a special object which works in a passive way

to protect the player against attacks. The Electric Piranha is a metallic green

fish-shaped mechanism which, when found and picked up by Sam, will float or

“swim” around him as if in orbit. This Piranha will be able to block incoming pro-

jectile attacks from adversaries by throwing itself in their path and “eating” the

projectile. If the enemies attempt melee attacks while Sam has an Electric Piranha

around him, the enemies themselves will be incapacitated when the Piranha sinks its

teeth into the attacker. A Piranha explodes when it successfully defends Sam from

an attack. Sam will be able to collect up to four of these Electric Piranha at any one

time, and they will be key for his surviving particularly hairy situations.

Actions

The player will have a special Action button that will cause Sam to perform differ-

ent actions in the game. The Action key will provide a variety of different actions,

and the game will automatically determine what the correct action is for Sam in a

given situation, if any.

510 Appendix: Sample Design Document: Atomic Sam

Flipping Switches and Pressing Buttons

If Sam is near a button or a switch and the player hits the Action key, that button

will be pressed or that lever will be thrown. The switch may do something as simple

as opening a door or raising a platform, or it may perform a more complex action

such as activating a crane or turning on a steam vent.

Pushing and Manipulating

Certain objects can be pushed by Sam, and pressing the Action key will allow him

to do so. This may include crates, barrels, and balls of various kinds that may need

to be pushed for a variety of reasons, including the blocking and unblocking of

passageways.

Picking Up, Carrying, and Dropping

Sam will be able to pick up certain large objects using the Action key. This is differ-

ent from the projectiles Sam will automatically pick up since he will not add these

objects to his inventory, and while Sam holds one of these objects, he will be unable

to throw any projectiles until he puts it down. When near such an object, the player

can have Sam try to pick it up by pressing and holding the Action key. Once Sam

has the object in his hands, he can carry it around with him, only dropping it once

the player releases the Action button. While Sam is holding an object, particularly a

heavy one, his movement may be slowed significantly. The player will want Sam to

carry objects in order to aid in defeating adversaries. For instance, Sam could pick

up a large anvil, fly with it up into the air, and then strategically drop it on a trouble-

some robot.

Talking

Some of the non-adversarial characters in Atomic Sam will be willing to talk to our

hero, if only for a sentence or two. If the player wants Sam to talk to a character, he

should press the Action key when near that character. These characters can fill in

some of the back-story of the world of Atomic Sam while making the levels seem

inhabited and interesting. Included among these characters will be “information

robots,” an invention of Sam’s age which provide helpful advice to humans. Beyond

just obtaining information, Sam will also want to talk to the characters who will be

able to provide him with rocket-pack upgrades.

Reading

The player may see different informational signs or posters displayed on walls. In

order to quickly zoom in and read these signs, the player can hit the Action key.

These signs may include maps, which will help the player navigate the levels, or

“tourist information,” which describes the history of the area that Sam is in.

Appendix: Sample Design Document: Atomic Sam 511

Interactive Combat Environments

In addition to throwing his projectiles at his enemies, Sam will also be able to defeat

them by using parts of the level against them. The player can use the Action key to

activate different events which will help incapacitate the various adversaries Sam is

battling. The levels in Atomic Sam will be full of these contraptions, some of which

may take on a Rube Goldberg-like level of complexity. Spotting and using these dif-

ferent setups correctly will be a major component of defeating the different robotic

adversaries throughout the game. Indeed, the player will be unable to defeat certain

adversaries without using these devices. In a way, these contraptions are “combat

puzzles” in that the player must solve them in real-time in order to figure out the

best way to defeat Sam’s enemies.

These contraptions will be designed and set up by the level designer in order to

best suit the level in which they are going to be used. Some key devices may be

repeated throughout a level, perhaps in different configurations. Some of the

devices will be usable only once, while others can be used repeatedly. The use of

devices that operate multiple times gives the player a better chance of figuring out

how to use the device through trial and error. When creating these contraptions and

environments, the level designer will need to set them up in such a way that the

player has a fair chance of figuring out what they do and how to use them correctly.

512 Appendix: Sample Design Document: Atomic Sam

A few examples of potential devices include:

� Steam Vent: A switch next to a hot steam vent may cause steam to shoot out,

stunning or melting whatever is in its path. If the player waits until the precise

moment when an adversary is in the path of the steam jet to flip the switch, the

adversary will be disabled by the steam.

� Fan: A switch next to a large fan will be able to turn that fan on for a moment.

This can be useful since it may blow whatever is in its path in a certain

direction. For instance, if a steam vent is in operation across from a fan, a

well-timed blast of the fan could force a creature into the steam vent.

� Oil Drum and Lever: Sam may come across a board laid across a steel box,

creating a simple lever. A large, empty oil drum could then be placed on the

lower end of the lever. If the player hits the Action key while Sam is near the

higher end of the lever, this will cause Sam to press down on the lever, thereby

causing the oil drum to flip through the air and possibly capture an enemy or

two in the process.

If any of these devices are used incorrectly, they may backfire and end up hurt-

ing Sam. For instance, if Sam hits the steam vent switch when he is in the path of

the steam, his rocket-pack may melt in the heat, sending him hurtling to the ground.

Of course, a big part of using these contraptions effectively will be getting the

enemy in the right place, and luring the robots and other adversaries into these traps

will provide an interesting challenge for the player.

Looking

The player will have a Look button he can press. This functions similarly to Look

buttons in other games such as Super Mario 64. While the player holds down the

Look button, the camera will zoom in to be inside of Atomic Sam’s head, and the

player’s forward/up, backward/down, left, and right controls will now pitch and turn

the camera in those directions while Sam stays in one place. This will allow the

player to get a clear view of Sam’s surrounding environment, without Sam getting

in the way of the visuals. This will be useful for examining puzzles and combat con-

traptions. As soon as the player releases the Look button, the camera will return to

its normal gameplay mode.

Friends

Atomic Sam will not have to battle his way through all the game’s levels alone. In

each of the three intermediary game sections—Benthos, Harmony, and New

Boston—Sam will meet game characters who will help him battle the robots and

other adversaries he encounters. In Benthos, Sam meets Xeraphina the flying girl, in

Appendix: Sample Design Document: Atomic Sam 513

Harmony he hooks up with Scrap the robot, and in New Boston he is helped by

Dulo the Moonie. (For more information about these particular characters, consult

the Game Progression section of this document.)

These friends will not be as good at defeating the robots as Sam, but they will

be helpful in taking out some of the enemies, warning Sam about impending

attacks, hinting at solutions to puzzles, pointing out items that Sam can pick up,

indicating hidden areas, or showing the best direction to go next. The friends will

talk to Sam frequently as they make their way through the levels, providing

back-story, useful information, and amusing chitchat. These friends will never actu-

ally die or become captured during regular gameplay; they will always be able to

fend off the enemy attacks directed against themselves. For more information about

the AI for these friends, consult the Artificial Intelligence section of this document.

Speaking

A big part of making Atomic Sam an appealing and memorable character for the

player will be the lines of dialog he speaks throughout the game. These won’t occur

just during cut-scenes, but also during actual gameplay. Not controlled by the player

but added in order to color the gaming experience, Sam will have a variety of

generic utterances he speaks as he defeats various adversaries. These will fit both

his age and the optimistic retro-futuristic setting of the game. Some of these slogans

514 Appendix: Sample Design Document: Atomic Sam

will include: “You can’t stop the future!”, “Atomic is the answer!”, “Infernal

machine!”, and “You’re outdated technology!” Sam may provide useful, informa-

tive comments when he’s running out of projectiles or his rocket-pack is close to

being out of energy. Sam will also have lines of dialog specific to special events in

the game, such as when he first walks on the Moon’s surface or when he first

encounters a particular boss monster. By keeping Sam talking during the actual

gameplay, the player will grow fond of the character and will be even more con-

cerned for his welfare in the game-world.

Cut-Scenes

Brief cut-scenes will be used in the game to help convey the story line to the player.

The game’s 3D engine will be used for these cut-scenes, so there will be a consis-

tent visual appearance between the interactive gameplay and the non-interactive

cut-scenes. The cut-scenes will include talking between Sam and different charac-

ters such as the Electric Priestess, the different friends Sam has accompanying him,

or other characters he finds in the different areas to which he travels. For particu-

larly short conversations consisting of only a few lines, conversations may happen

during gameplay without the use of a cut-scene.

Cut-scenes may take place between or during levels. Between levels they will

explain upcoming environments and challenges, usually through information pro-

vided by the Electric Priestess. Cut-scenes that briefly interrupt the gameplay

mid-level will include short, conversational exchanges between Sam and the char-

acters he encounters. These mid-level cut-scenes will be visually seamless with the

gameplay environment; their primary difference will be the change in camera

angles. When Sam first travels to a new area, the player will see Sam traveling by

blimp, auto-gyro, monorail, or other means of transport to the different locations in

the game. On the whole, the cut-scenes will be as short as possible in order to get

the player back into the gameplay quickly.

Storytelling

An important part of Atomic Sam is the story, and various devices will be used to

convey that story. One, of course, is the aforementioned cut-scenes. These will con-

vey all of the key information the player needs to be successful in the game.

However, since they are non-interactive, they will be strictly kept to a short length

so that the player can quickly get back to the gameplay. In order to convey more

story, more sections of the story will be revealed through devices used during the

actual gameplay.

Appendix: Sample Design Document: Atomic Sam 515

Environments

Of course, the environments (levels) themselves will provide a key storytelling

component by conveying a sense of setting. Special care must be taken to make sure

the levels fit with the world of Atomic Sam and do not conflict with any story

components.

Friends

The friends Sam meets and who accompany him in the various worlds will share the

information they have with Sam while they are flying around with him. The charac-

ters may explain the history of a particular environment or some interesting data

about the world of the future. Sam, after all, is a young child and still has much to

learn about life. Of course, these friends will only talk to Sam during non-combat

situations, when the player is focusing on exploration instead of defeating threaten-

ing robots. All of the speech that the friends speak will appear on the screen via the

in-game GUI, as discussed earlier in this document.

Radio

After they first meet, the Electric Priestess gives Sam a small radio which he can

wear clipped to his ear. The player will hear information broadcast to Sam via this

radio as he explores the levels. As with the friends, the Priestess may explain to

Sam about the culture of the areas he is navigating and the nature of the adversaries

he is facing. All of the dialog that the player hears over the radio will appear on the

screen via the in-game GUI, as discussed earlier in this document.

Signs

As discussed earlier in the Actions section, Sam will also find static information

displays which he will be able to read. These signs are yet another way to communi-

cate the story of the world of Atomic Sam.

Levels

Atomic Sam is different from other console third-person action/adventures in that

the gameplay focuses less on exploration and more on Sam’s battling his way

through the levels, avoiding the robots and other adversaries which try to block his

progress. Certainly the levels will be interestingly designed and appealing to look

at, but the player’s motivation for continuing in a level will be more to confront the

next interesting challenge than to merely uncover more of the level. Overall, the

gameplay in the levels will be frantic and harried, and the player’s split-second deci-

sions and manual dexterity will be key to Sam eventually finding his parents. Sam

will generally fight robots in two ways. The first way will be multiple robots at

once, with all of the robots being of lesser power. The second way will be fighting a

516 Appendix: Sample Design Document: Atomic Sam

single, much more powerful or “boss” enemy. Usually the battles with the boss ene-

mies will involve figuring out a particular method necessary to defeat the enemy,

and will involve a bit more thinking than the battles with multiple adversaries at

once. The method through which the player will maneuver Sam and the ways he

will interact with his environment have been discussed earlier in this document.

That said, not all of the game will be frantic and combat-oriented. Between the

battles with robots there will be calm, “safe” moments in the levels where the

player can rest and regain his bearings. It will be in these calmer sections that the

auto-save checkpoints (described later) will be included. This will allow the player

to restart her game in a relatively safe area. Some of these “safe” sections may also

require simple puzzle solving in order for the player to progress in the game.

Critical Path

All of the levels in Atomic Sam will have a definite “critical path” to them, a partic-

ular route the player is encouraged to travel in order to complete that level and

move on to the next one. Though there may be bonus or secret areas off to the side,

the critical path will remain strong throughout the levels. For each of the different

sections of the game—Gargantuopolis, Benthos, Harmony, New Boston, and The

Ikairus—the player will have to complete the levels within that section in a speci-

fied order; this will help to communicate the story line effectively, to build tension

appropriately, and to ramp up difficulty over the course of a series of levels.

Training Level

The very beginning of the game will also provide a special “training” opportunity

for players who want it. When Sam first returns to his apartment and finds his par-

ents missing, he will decide to don his rocket-pack to go after them. The rocket-

pack came with a helpful Instructobot, a pint-sized robot which speaks in robotic

tones and instructs Sam how to use his rocket-pack. In fact, the Instructobot will

encourage the player to experiment with the rocket-pack to get the hang of control-

ling it. In the safe environment of his house, the player will be able to experiment

with Sam’s different maneuvers before venturing into the more hazardous outside

world.

The Electric Priestess’ Home

The most “calm” section of the game is the Electric Priestess’ bubble home. A

mini-level where there is no combat, the bubble home acts as a “hub” between the

worlds of Benthos, Harmony, and New Boston. In the Electric Priestess’ home, the

player will talk to the Electric Priestess and will be able to choose one of the differ-

ent sections of the game to progress to next without any threat of harm. For more

information about the Electric Priestess and the different worlds found in the game,

consult the Game Progression section later in this document.

Appendix: Sample Design Document: Atomic Sam 517

World Order

The player will get some choice in the order he experiences the game’s different

main areas or “worlds.” After completing the Gargantuopolis levels at the beginning

of the game, the Electric Priestess will present Sam with a choice of which area he

will travel to next: Benthos, Harmony, or New Boston. Each of these areas will be

fairly equivalent in difficulty, though due to the different challenges present in each

area, different players may find one of the three harder or easier than the others. As

such, the player can choose the one they find easiest first. (In the middle of a given

section, the player will have the ability to instantly revert the game to the Electric

Priestess’ bubble home, from which the player can choose a different section, if the

one he was playing proves to be too challenging or he simply grows tired of it.) For

more on the flow of the game, consult the Game Progression section of this

document.

III. Artificial Intelligence

Since Atomic Sam is based around interesting combat scenarios, the primary func-

tion of the game’s AI is to support these conflicts, providing the player with a

compelling challenge. The AI will also be essential for imbuing the friends Atomic

518 Appendix: Sample Design Document: Atomic Sam

TE
AM
FL
Y

Team-Fly®

Sam encounters with some semblance of life, making them seem like more than just

automatons.

Enemy AI

Many of the adversaries Sam faces will be robots. As such, the AI for these adver-

saries can be quite simple-minded while still being believable. Indeed, the

simple-mindedness of some of his opponents will allow Sam to set traps for them

using the interactive environments found in the levels. Not all robots will be simple-

tons, however. As the game progresses and the levels ramp up in difficulty, the

robots will become more and more intelligent and thereby more and more challeng-

ing. Still later in the game, the player will fight human adversaries such as the

Merciless Mercenaries. These human opponents will need to appear as intelligent in

their combat decisions as a real-world human might be.

Player Detection

Different AI agents will have differing abilities to detect and track the player, which

will in turn affect how much of a challenge they present to the player. Some robots

will only be able to see in a very narrow cone in front of them, while others will

have full 360-degree vision. Also, the distance of detection can vary from adversary

to adversary; some can only see Sam when he is close to them, others can see him

before Sam can see them. Some of the robots may have “super-vision,” which

allows them to see through walls and to always find Sam, regardless of how he may

be hiding.

Some robots will also have very short memories. If Sam manages to run behind

these robots, fully out of their field of vision, they may forget entirely about Sam

and will return to an idle state. Other robots, once locked on to Sam’s position, will

never lose him. The player will need to figure out how well an adversary can detect

Sam and use that to his advantage.

Motion

All adversaries will move in believable ways, employing a simple physics system to

give the appearance that Sam’s world is a realistic one. However, the feel of Sam’s

gameplay is one of a console action game, and hence does not need to rely too

heavily on truly “authentic” motion systems. Indeed, the retro-future setting of

Atomic Sam with its fantastic, implausible flying machines suggests a world that

does not adhere to the laws of physics too closely.

Appendix: Sample Design Document: Atomic Sam 519

Flying

Many of the adversaries Sam fights will be airborne, and it will be important to con-

vey a sense of believable flight for these creatures. The type of flight motion

involved will vary significantly depending on what type of flying equipment that

enemy uses. An enemy kept aloft by a blimp will only be able to make slow turns

and will not be able to move up or down very quickly. A creature with wings and

propellers will be able to make turns, but will need to be able to bank to do so. Sam

is the only character in the game who will have a rocket-pack, and this pack grants

him a significant amount of maneuverability, something which will prove to be a

great advantage over many of the adversaries he will face. Again, the flight model

used by these creatures does not need to be truly authentic, but must be believable

enough that the player gets a sense that the enemies Sam is fighting are truly flying.

Pathfinding

Detecting Sam is only the first part of the challenge for the robots. Once they have

found Sam, the simpler robots may be too stupid to actually reach him. Pathfinding

ability will vary significantly from the dumbest robot to the smartest. The dumbest

robots will use a “beeline” technique and will be unable to maneuver around objects

that get in their way. Somewhat smarter robots will be able to navigate around

objects that they run into, but can still get hung up on corners. The smartest robots

and the humans will always be able to navigate to the player, including opening

doors and pushing obstacles out of the way as necessary. The player will need to

exploit the deficiencies in the robots’ pathfinding in order to succeed in the game.

Taking Damage

Many of the robots and other adversaries Sam faces will be incapacitated by a sin-

gle hit from one of Sam’s projectiles. Other, larger robots may take multiple hits

before they are actually incapacitated. For instance, an electrical robot with heavy

shielding may be able to survive three hits from water balloons before finally

short-circuiting. Of course, different projectiles will have different effectiveness on

different enemies, and some robots or enemies may be completely immune to cer-

tain attacks. See the Projectiles section under Game Elements for more information

about the projectiles.

Combat Attacks

The AI agents in Atomic Sam will have a variety of attacks they can use to try to

incapacitate young Sam. Many of the enemies will have multiple attacks to choose

from in a given situation; for instance, an NPC may have a melee, close-range

attack and several projectile, long-range attacks. The NPCs will be able to pick

520 Appendix: Sample Design Document: Atomic Sam

which attack is most effective, or, when several attacks may be equally effective,

will pick one at random or will cycle through them in series.

Evading

The projectiles Sam throws travel at a slow speed, and as a result some of the

smarter enemies will be able to dodge out of the way of incoming attacks. Of

course, the AI agents will not be so good at dodging that the player never has a

chance of hitting them, but just enough to provide an interesting challenge for the

player.

Special Actions

To keep the challenges fresh and interesting to the player, there will be a variety of

special behaviors that only the more advanced robots and human adversaries use.

These will appear later in the game, and will force the player to adapt to them in

order to succeed.

Taking Hostages

The battles the player fights with his enemies will often take place in inhabited

communities, with non-hostile characters walking around to provide color. Some of

the smarter AI agents will know to grab up some of these NPCs and hold them as

hostages. Sam will now need to avoid hitting these hostages with his projectiles. If

the player flies Sam up close to these hostages and presses the Action key, he will

be able to snatch them away and fly them to safety.

Internal Repair Arms

As some of the robots take damage from Sam’s projectile attacks, the more sophisti-

cated robots will be able to repair themselves. A common way for this to work is

that a special “repair arm” can spring from a compartment on the robot. This arm

can then bend around the robot’s body to weld broken parts back together. The

effect is more cartoonish than realistic, but conveys the sense that the robot is

repairing itself. Some robots may first retreat to a relatively safe location, such as

around a corner or far from Sam. Others robots will be able to multi-task by having

the repair arm work on them while continuing to fight Sam.

Collaboration

Some of the enemies, in particular the Merciless Mercenaries, will know how to

work together. Many of the robots will be singular in their purpose (attack Sam) and

will know nothing of the other robots who may simultaneously attack Sam. But the

significantly more intelligent Mercenaries will know that working collaboratively

will be much more effective in defeating Sam. For instance, while one Mercenary

Appendix: Sample Design Document: Atomic Sam 521

keeps Sam busy with attacks from the front, others may swing around to the flank

and attack Sam from there. Of course, having the enemies work together will allow

the enemies to provide a much greater challenge for the player.

Trash Talking

While Sam fights these adversaries, he will hear them making derogatory comments

about him, suggesting he can never win against their superior numbers: “Admit

defeat, human!”, “Your success is statistically unlikely,” and “Steel is stronger than

flesh, relent!” Not all of the robots are able to speak English, and some may utter

beeps and squawks as their means of communication. Others may be so cruel as to

taunt Sam that he will never see his parents again.

Falling into Traps

A big part of the game mechanics in Atomic Sam is the player using the environ-

ment to his advantage by triggering various traps and contraptions that will help to

defeat the robots Sam faces. The AI will actually facilitate the player using the traps

effectively, in part through the robots’ lack of intelligence. In addition, designers

522 Appendix: Sample Design Document: Atomic Sam

will be able to set up these adversaries to have a tendency to maneuver into areas

where the player will be able to incapacitate them if she is clever. For instance, if

there is an empty oil drum set on a lever that the player can activate, the robots will

have a tendency to fly by the potential trajectory of that oil drum.

Non-Combatant Agents

The various areas Sam travels to are places where the people of Sam’s world live

and work. As such, the areas will not only be inhabited by the enemies sent to cap-

ture Sam, but also by normal citizens. These citizens will not be very smart, and

their inclusion in the levels is not in order to create the impression of a “real” envi-

ronment. These citizens are mostly there for color, while also creating targets that

Sam must be careful not to accidentally hit with his projectiles.

Fleeing

Often, at the first sign of trouble, these citizens will run away, trying to find cover

away from the battles between Sam and the robots. Of course, the mere existence of

flying robots or a boy with a rocket-pack will not be anything too exciting to the

jaded people of the future; it is only when the fighting starts that the citizens will

realize the dangerous situation they are in. The level designers will be able to set up

paths for these citizens to walk along and positions they will try to flee to for safety.

Talking To and Helping Sam

Of course, certain citizens will be willing to talk to Sam, and may share information

about the area Sam is currently navigating. Others may even be willing to give Sam

objects, or to make improvements to Sam’s rocket-pack. Citizens who will be able

to help Sam will have a tendency to wave to Sam as he flies by, differentiating them

from the citizens who are merely there to add color and variety to the game

environment.

Friends

One of the most complicated pieces of AI that will be needed for Atomic Sam is that

which will control the friends he meets throughout the game. These agents need to

be able to follow along with Sam and provide him with help in key locations with-

out ever getting lost or stuck. Making a teammate AI that can support the player

without seeming stupid or canned will be quite a challenge, but will have a signifi-

cant payoff in terms of gameplay.

Invincible

The friends that follow Sam through the levels will not be able to be killed or cap-

tured by the robots and other hostile creatures found in the levels. First, the enemy

Appendix: Sample Design Document: Atomic Sam 523

creatures will have a tendency to attack Sam instead of the friends, since indeed it is

Sam that they have been sent to subdue. Second, the friend AI agents will be able to

defend against any attack that does happen to come their way. Similarly, if Sam

should happen to throw a projectile at a friend, the friend will easily be able to bat it

out of the way, saying something to the effect of “You’ve got to be careful with

those things!” The logistics in terms of the friend AI being defeated and what this

does to the gameplay is simply too complex to deal with. It may be useful, however,

for the friends to be temporarily stunned, only to return to full helpfulness within a

few seconds.

Following Sam

The most important task these friend AI agents must be able to perform is to follow

the player around the levels. This means the friends will have to be able to flaw-

lessly follow the player through the potentially complex 3D environments that make

up the Atomic Sam game-world. If the player ever turns around to find that a friend

got stuck a distance back on some sort of structure, the gaming experience will be

ruined.

The NPC will not necessarily be right on top of Sam at all times. Indeed, the

flying friends will be able to fly in and out of frame, giving the player the sense that

they are always close nearby without actually being on the screen constantly. Some-

times the friends will be just in front of Sam, sometimes just behind him, but

always close by.

Guarding Sam’s Back

These friends will play a crucial role in the gameplay by pointing out enemies who

may be attacking Sam from a given direction that Sam has not seen: “Watch out,

Sam, it’s coming up behind you!” In some cases, the AI agents will be able to use

their own attacks or projectiles to help defeat an enemy before it gets too close to

Sam, though in any given situation the agents will be far less successful than Sam. It

is important that the player will still have to fight robots on his own and will not be

able to just sit back and let the friends take care of everything for him.

Providing Advice

Similarly, the friends in Atomic Sam will be able to provide the player with advice

about different enemies as they arrive: “That one looks like trouble!” or “I don’t

think water balloons will work on that one!” In certain situations in the levels, the

friends will be able to point out secret areas or show Sam a cache of projectiles he

might otherwise have overlooked. The player will be able to navigate Sam close to a

given friend and then press the Action key, to which the friend will always provide

an answer. Sometimes the answers will not be useful: “I’m glad I met you, Sam” or

“You really showed that last robot!” Other times, having Sam talk to the friend will

524 Appendix: Sample Design Document: Atomic Sam

provoke them to provide a hint: “Take the fork to the left; that will get us there

faster” or “The best way to take care of these climbing robots is to throw something

sticky at them. Do you have anything like that?”

Storytelling

In addition to the snippets of advice the friends can provide, they will also be key in

communicating elements of the story to the player. When Sam reaches a certain part

of a level, a friend may start talking about the history of the area or about their own

past. This provides additional story content to the game in a non cut-scene format,

since Sam is still navigating the world while hearing about the story. The friends

will be smart enough to only talk in “safe” situations when Sam is not actively

being threatened by an enemy.

IV. Game Elements

Items

Sam’s Projectiles

As Sam flies through the levels, he will be able to pick up a variety of different pro-

jectiles he can use in defeating his enemies. Different projectiles will work better or

worse against different specific adversaries in different situations, and as such the

player will have to constantly be selecting the most effective projectile for any

given moment. The different projectiles are as follows:

� Goo-Balls: Greenish balls of a sticky substance which make ground-based or

wall-crawling monsters stick to their surface. Depending on the strength of the

creature, it may end up stuck there just briefly or forever.

� Water Balloons: Able to disable robots with exposed wiring by causing them

to short-circuit. Robots with protective coverings may require multiple hits to

short-circuit.

� Magneto-Mass: A powerful magnet attached to a heavy weight, which will

stick to metallic flying robots and drag them down to the ground.

� Spring-Cage: A small black cube with six rods sticking out of it. On impact

with a target the Spring-Cage will expand to surround the target, entrapping it

in a strong cage. Works best against small flying adversaries; larger enemies

will be able to smash out of the cage.

� EM Disrupter: A small sphere that, when thrown, will fly a distance and then

activate, rendering all electrical equipment within a certain radius of the

Disrupter immobile. Flying robots will plummet to the ground, robots that cling

to the walls will fall off, and ground robots will grind to a halt. The EM

Appendix: Sample Design Document: Atomic Sam 525

Disrupter does not work on humans or atomic-powered robots. The player will

have to be careful when using the EM Disrupter while he has Electric Piranha

(as described in the Game Mechanics section), as the device will also cause

Sam’s Piranha to cease functioning and clatter to the ground below.

� Bubble Wand: Similar to the bubble wands/rings used by children to blow

bubbles from bottles, this wand produces much stronger bubbles which will

envelop a target and prevent it from escaping, at least for a few minutes. One of

the more effective of Sam’s “throwable” objects in the game, the Bubble Wand

won’t work on enemies with sharp objects, spikes, or propellers on them.

� Atomic Bola: One of the most powerful projectiles in the game, this looks like

a traditional bola: two black spheres connected by wire. But these bolas are

powered, and when the bola starts to wrap around a target the engines in the

bola-balls activate, causing the bola to wrap around the target many times, very

tightly. The Atomic Bola will not work on any flying adversaries that have any

sort of propellers or rotor blades on them.

Rocket Enhancements

The player will be able to get various improvements to Sam’s rocket-pack through-

out the game, either through having an NPC tinker with the pack and make an

improvement, or through an add-on that Sam can find and simply install himself.

These enhancements provide a range of improvements to Sam’s abilities.

� Burst-Master: The Burst-Master is a simple modification to the pack that will

cause it to have much faster speed when the player uses the pack’s speed burst

functionality.

� Speedifier: The Speedifier will cause the overall speed of the rocket-pack to

improve, such that Sam can navigate the world at a higher speed than he could

before getting the enhancement.

� Gyromatic: The Gyromatic will grant Sam much more stable flight using the

rocket-pack, allowing him to stop and start much quicker, instead of having to

coast to a stop. The Gyromatic is a simple “snap-on” attachment to the pack

that Sam can easily install himself.

� Atomic Compressor: A simple box with a dial on it that can attach to the side

of the pack, this device will provide Sam with a longer flight time. The device

works using a unique method to “compress” the atomic energy the pack

constantly generates, thereby allowing the pack to store more of it at any one

time.

526 Appendix: Sample Design Document: Atomic Sam

Miscellaneous

Atomic Sam will also include other miscellaneous devices that Sam is able to pick

up. These devices have a variety of functionalities which will improve Sam’s abili-

ties to navigate and survive the levels.

� Electric Piranha: Throughout the levels Sam will find numerous Electric

Piranha, small devices that will “swim” through the air around Sam and deflect

attacks for him. The full functionality of the Electric Piranha is described in the

Game Mechanics section.

� The Spidersonic: The Spidersonic kit allows Sam to stick to any vertical

surface as a spider would. Using this kit, Sam can grab onto the side of a

building and stop flying, allowing his pack time to recharge before he flies on

to the next location.

� Moon Suit: Found in New Boston, this handy Moon Suit will allow Sam to

travel outside of the Moon colony and survive on the surface of the Moon.

Fortunately, Sam’s rocket-pack and utility belt can both be placed outside the

suit so that Sam will be able to continue to fly and throw projectiles, though

both will be affected differently by the Moon’s gravity.

Characters

Sam will encounter a variety of characters in Atomic Sam. These include both

friends and allies as well as enemies and, eventually, the man who kidnapped his

parents.

Atomic Sam

The player controls Atomic Sam, a ten-year-old with a rocket-pack who uses his

wits and dexterity to evade countless robotic and human adversaries throughout the

game, not to mention navigating tricky areas, all in order to find his parents. Sam is

about three feet tall and wears brown jodhpurs with a red aviator’s jacket, the latter

with gold trim. He also has a brown leather belt with various pouches on it. The

large, clunky, “moon boot” type boots that Sam wears are silver in color. On his

back is mounted the atomic-powered rocket-pack he uses to fly. It is a fairly small,

compact device that is several inches narrower than the width of his shoulders, and

several inches shorter than the distance from his belt to his neck. Sam has short

black hair and wears a pair of 1930s-style aviator goggles. Sam’s abilities are cov-

ered throughout this document. Sam’s personality is what would be expected of a

ten-year-old boy of the bright future: optimistic and smart. At the same time, Sam is

without his parents for the first time in his life, and is somewhat frightened of the

world he must now explore on his own.

Appendix: Sample Design Document: Atomic Sam 527

Friends

� Xeraphina: In Benthos, Sam will meet a twelve-year-old girl by the name of

Xeraphina. A daughter of artists, Xeraphina has grown up entirely in Benthos,

and has never seen the surface, a place she dearly longs to go. Xeraphina is able

to glide around the city using a unique set of wings her parents invented, and

will help Sam in his battles against his robotic adversaries. Xeraphina wears a

tight-fitting light green outfit, with semi-translucent green shawls flowing

around her body as she flies through the air. Her wings are made of a less

translucent crystalline substance, are a darker jade green color, and are a good

eight feet from tip to tip. Attached at her shoulder blades, they are a rigid

construction, but flap slightly when she flies. She has a very friendly smile and

wears her long brown hair in a bun behind her head, with a small paintbrush

stuck through it to keep it in place.

� Scrap: In Harmony, Sam will meet Scrap, a shiny-new, recently constructed

robot no more than a few weeks old. Scrap is a very friendly fellow who enjoys

using his high-pitched voice to tell jokes whenever he can; puns are his

specialty. In many ways, Scrap behaves like a robotic version of a ten-year-old,

and dreads the day that he will be sent off to his work assignment, though he

does not yet know what it is. Scrap is happy being a robot, but just wishes he

528 Appendix: Sample Design Document: Atomic Sam

TE
AM
FL
Y

Team-Fly®

would never have to “grow up,” and dreams of a life traveling the world. Scrap

is about Sam’s size and is humanoid in form, except that he has four arms and a

particularly small head. Scrap can use his pogo-stick-like legs to jump great

distances, helping Sam to defeat his robotic adversaries in whatever way he

can.

� Dulo: Dulo is Sam’s parents’ assistant. His general appearance as a Torso

Moonie is described fully in the Moonie description below. In particular, Dulo

wears special purple bracelets that he likes very much, which will help to make

him stand out from the other Moonies, who all pretty much look the same, at

least within the Torso or Bi-Header groups. Dulo is able to hop around and help

Sam in defeating the robotic adversaries; his long tentacles are well suited to

grabbing the robots out of the air and smashing them on the Moon’s surface.

Other Characters

� Electric Priestess: The Electric Priestess is the mysterious woman who helps

Sam to find out what happened to his parents and provides him with much

useful information about the world. By the end of the story, the player learns

that the Priestess is actually Max Zeffir’s sister and was also one of his chief

researchers. She lost her leg in a zeppelin accident due to Zeffir’s lax safety

standards. The Electric Priestess continues to love her brother, while despising

the money-hoarding madman that he has become. The Priestess dresses in a

long jade-green dress with a large black hat which partially obscures her face.

She has only one leg remaining, the other having been replaced by a clunky,

robotic prosthesis.

� Ike: In Harmony Sam meets Ike, an old robot assistant his parents had some

years ago of whom they grew very fond. Unlike many owners, when Ike got

old Sam’s parents released him from his work for them instead of just shutting

him off, and allowed him to return to Harmony to live out his time with other

robots. Ike is quite smart, though his memory is failing, as is explained in the

Game Progression section. Ike does not say much, but once his memory is

activated he will speak with great love and respect for Sam’s parents. Ike looks

a bit older in design than many of the other robots Sam will find, with a boxy,

clunky shape and a larger frame than many newer robots, such as Scrap. He is

also quite slow moving because of his age. Ike moves around on tank treads,

and was designed with only one arm, a long, five-jointed limb connected to his

torso in the middle of his chest.

� Tool: Tool is the “robot doctor” whom Sam will need to locate in Harmony in

order to save Ike. Tool is a huge robot who looks like he would be very violent

and destructive. Instead he is very kind and caring, in a “gentle giant” sort of

way. Tool is mute, and speaks only through a text display in the middle of his

Appendix: Sample Design Document: Atomic Sam 529

chest. Tool floats through the air a short distance above the ground using an

anti-gravity unit he wears around his waist. When “operating” on robots, Tool

does not use the massive arms and fists that are attached to his upper torso.

Instead, a small compartment springs open in his chest from which small,

spindly robotic arms pop out to do precision work.

� Moonies: “Moonies,” as earthlings call them, average about four feet in height

and hop around on the lower half of their bodies (they have no legs). For arms

they have two tentacles, one on either side, which are quite long and strong, yet

prehensile enough to use a human pen to write. Though the Moonies are

asexual, there are two different physical varieties of the creatures; one with two

heads that sit atop their bodies as humanoid heads do (which earthlings call

“Bi-Headers”), and another that has no head at all, but instead has its eyes and

mouth located on its torso (which earthlings call “Torsos”). The Moonies also

have white bumps on their bodies which can glow when necessary, allowing

them to maneuver through dark areas. This lighting is necessary for them to

navigate on the Dark Side of the Moon, where they have lived for all their

recorded history.

Enemies

Arctic Immobilizer Blimp The Arctic Immobilizer Blimp (AIB) is an easy to

middle difficulty robotic adversary that Sam will have to disable or evade. Shaped

like a cylinder, made of shiny, silvery metal, and suspended from a miniature zeppe-

lin, the AIB floats through the air at a relatively slow speed, being propelled

forward by a small rear propeller. Two metal claws extend from either side of the

tube, and the AIB will wiggle these claws menacingly at Sam. The front end of the

cylinder has four metal spikes which close over the front opening. The AIB will be

530 Appendix: Sample Design Document: Atomic Sam

able to move up and down (again, at slow velocity) in order to line up with Sam and

attempt to attack him, but its slow speed will prevent the AIB from giving chase if

Sam successfully evades it and flies away. Since the AIB flies, if Sam uses the

Goo-Balls on it they will have no effect. One of the best projectiles for defeating the

AIB will be the Magneto-Mass, which will quickly bring the enemy to the ground.

The enemy has two attacks, one a melee attack and the other a mid-range attack.

� Claw Attack: If in close range, the AIB will be able to slice at Sam with its

two claws, possibly cutting off his rocket-pack. Sam will need to avoid getting

in close range of the AIB in order to avoid this fate.

� Freeze Mist Attack: For the AIB’s second attack, the four metal spikes that

cover the front of the tube will fan outward, revealing a small nozzle. From this

nozzle will come a liquid spray which will freeze whatever it contacts. The

spray generates a cloud of mist in front of the AIB, and if Sam comes in contact

with this cloud before it dissipates he will be frozen solid in a block of ice and

plummet to the ground.

Appendix: Sample Design Document: Atomic Sam 531

Arachnaught The Arachnaught is a fairly easy robotic enemy. The Arachnaught

looks approximately like a four-legged spider, with each leg being a three-jointed

appendage with a spiked end. The legs all come together at a fairly small main

body, which contains a curved vision-sensor that gives the creature a good range of

sight. The Arachnaught cannot fly at all, but instead can climb up the sides of build-

ings just as easily as walking on the ground. The Arachnaught moves quite quickly,

in a scurrying fashion. Since it crawls on surfaces, the Arachnaught will be impervi-

ous to Sam’s projectiles that work on flying adversaries, while being particularly

susceptible to the Goo-Balls projectile.

The Arachnaught has three attacks, one melee, one projectile, and one a

short-range “tractor beam” like effect.

� Claw Attack: The Arachnaught will be able to attack with its sharp legs,

devices that will easily allow it to slice off Sam’s rocket-pack, thereby

incapacitating him.

� Sticky Web Balls: The Arachnaught can shoot large, slow-moving globs of a

uniquely sticky substance. If Sam is on the ground when hit by this substance,

he will be stuck to the ground and immobilized. If Sam is in the air, he will be

temporarily unable to throw any projectiles, as he attempts to struggle out of

the sticky substance. If Sam runs into any surfaces with the web ball still on

him, he will stick to that surface and become incapacitated.

� Web Strand: The Arachnaught’s most fiendish weapon may well be its web

strand attack. Using this, the Arachnaught can shoot a long strand of webbing

towards Sam and, if it hits, can then pull Sam back towards itself. Then, once

Sam is close, the Arachnaught can use its claws to rip Sam’s pack off, thereby

putting him out of commission. Sam will have to fly in the exact opposite

direction of the web strand, only breaking free after five seconds of resistance.

532 Appendix: Sample Design Document: Atomic Sam

Merciless Mercenary Though many of Sam’s adversaries in the game will be

various robotic constructions, Sam will encounter human foes on Max Zeffir’s fly-

ing fortress, the Ikairus. Dubbed the Merciless Mercenaries (MMs), these humans

are highly trained and will be quite difficult for Sam to evade or incapacitate.

Dressed in black uniforms with red trim and fierce-looking steel helmets, the MMs

are able to fly by an anti-gravity belt fastened around their waist. The belt allows

them to float in the air, and in order to actually propel themselves, the MMs need to

perform a “swimming” type motion. Many of Sam’s projectiles will be useless

against the MMs; the only effective weapon will be the Atomic Bola, which will

wrap around the MMs’ legs and prevent them from “swimming” any farther. The

MMs are one of the more mobile adversaries Sam will encounter. For this enemy,

running away will be hard since the MMs will be able to track Sam and move

almost as fast as he does.

The MMs have a total of three attacks: one melee and two ranged.

� Tri-Power Trident Melee: The MMs carry gold-colored, metal tridents called

Tri-Power Tridents, which have two functionalities. The first is as a simple

melee attack, used if Sam gets too close. The sharp ends of the Tri-Power

Trident will easily be able to rip Sam’s rocket-pack right off.

� Tri-Power Trident Ranged Attack: The second attack of the Tri-Power

Trident is to shoot a large, slow-moving mass of light blue, sparking energy

into the air. This travels toward Sam, tracking him, but it alone will not hurt

him. When it gets close enough to Sam, it stops moving and explodes into six

miniature energy balls. These small balls hurtle at great speed in random

directions outward from the main ball, and if they come into contact with Sam

burst into a perfect energy sphere with Sam trapped inside. Unable to break out

of the sphere, Sam is now immobile.

� ElectroNet: Finally, the Mercenaries have an ElectroNet which they will throw

with their other arm (the one that does not have the Tri-Power Trident in it).

This net, similar to Sam’s Atomic Bola, has heavy black balls at its ends which

propel it in the direction thrown. Of course, if the net manages to wrap around

Sam, he is incapacitated.

Visionary At the end of Harmony city—the town that is the hub of robot manu-

facturing— Atomic Sam will face a fierce boss enemy. In appearance the Visionary

is a giant eyeball-like mechanism, with two metal structures on each side, both of

which have helicopter blades on them. These blades keep the Visionary aloft, giving

it great maneuverability. The Visionary can travel up and down at speeds much

faster than Atomic Sam can manage with his rocket-pack, though it is a bit slower at

turning than Sam.

Appendix: Sample Design Document: Atomic Sam 533

From the bottom of the eyeball emerge three steel tentacles, each with a differ-

ent mechanism on its end. Each of these devices is the basis for one of the

Visionary’s three attacks.

� Electric Blades: One tentacle features three rotating blades that all point in the

same direction like a claw. These blades continually rotate menacingly. Their

real power, however, is to shoot an electric shock wave which can stun Sam

into unconsciousness. The blades spin up to a high-speed whirlwind and then

unleash the blast from their center. This ranged “beam style” attack will be

tricky for the player to avoid; once the player sees the Visionary’s blades start

spinning at high speed, she must be careful to move Sam out of the path of

whichever direction the blades are pointing.

� Magnet: One tentacle has a giant, U-shaped magnet on the end of it. By

attracting the metal in Sam’s rocket-pack, the Visionary can turn on this magnet

to suck the player toward the robot. Sam will have to use all his dexterity to

avoid getting too close to the enemy, where the robot will be able to rip Sam’s

rocket-pack off using the tentacle arm with the blade attachment.

� Smog: The third tentacle has a giant funnel on the end of it. From this funnel

the Visionary can shoot a thick, black cloud of gas which will cause Sam to

have an uncontrollable (and game-ending) coughing fit should he be so

unfortunate as to fly into it. This smog cloud will hang in the air for some time

after the Visionary shoots it, and the player will have to be careful not to fly

into that cloud until it dissipates.

As with all the boss monsters in the game, most of Sam’s regular projectiles

will not be very effective against the Visionary. They may slow down the robot for

a short time, but they will not permanently defeat it. The player will need to use the

setup of the level itself in order to incapacitate the Visionary. This makes defeating

the boss less a matter of dexterity, repetition, and perseverance, but more about

understanding the puzzle, which, once figured out, is not that hard to repeat. Since

the player is battling the Visionary at the end of the Harmony levels, the battle will

take place in a robot factory. The Visionary emerges from a storage crate riveted to

the ceiling at the top of the play area where Sam will battle the robot. Scattered

about the area are various appropriate pieces of equipment used in a robot factory,

as well as four high-powered fans. Sam will be able to turn on these fans by using

his “action” ability near them. He will also be able to use his Action button to rotate

the fans and change the direction they are blowing. By activating and blowing all of

the fans upward beneath the storage crate, Sam can create a windy vortex which

will be able to push the Visionary—since it is kept aloft by helicopter blades—back

up into the case. Sam will then, by using a switch near the crate, be able to close the

crate and trap the robot inside, hence defeating the creature.

534 Appendix: Sample Design Document: Atomic Sam

Max Zeffir Zeffir is the founder and owner of Zeffir Zoom, and is widely consid-

ered to be the richest man on the planet. Zeffir started acquiring his fortune with his

zipper company, Zeffir Zippers, and then moved on to virtually every other industry

he possibly could. His companies include the aircraft manufacturer Zeffir Zeppelins,

the clothing line Zeffir Zest, and the Zeffir Zeitgeist news network.

Max Zeffir is also the employer of Sam’s parents and, as it turns out, the one

who kidnapped them in order to keep them quiet. Sam will finally have a show-

down with Zeffir in the end-game, where Zeffir will turn out to be quite a

formidable opponent himself.

When the player finally meets Zeffir he will be wearing a 1920s-style “railroad

baron” black pinstripe suit with an extra large top hat. Zeffir sports a stringy black

mustache and a mischievous grin. Zeffir will battle Sam on his Negativity Platform,

so named because it negates the effects of gravity. A circular disk which floats on

the air and is much more maneuverable than Sam’s rocket-pack, the platform fea-

tures handrails that come up to Zeffir’s waist, which he holds on to while the

platform flies around.

Zeffir’s combat will consist of two methods of attacking the player:

� Robots: Zeffir will battle the player by summoning robots to fight Sam. These

will be all manner of robots that Sam has been fighting throughout the game,

and they will emerge from various compartments throughout the large, domed

room in which Sam and Zeffir battle. Sam will have to defeat these robots as he

normally would in the rest of the game. Zeffir will bring out a maximum of

three robotic adversaries at a time.

� Tuning Fork: Zeffir will also hold a six-foot-long tuning-fork-like device in

his hand. When Zeffir strikes this bar on the bars of the Negativity Platform, it

creates a sonic blast which he can aim at Sam. If the blast hits Sam, he will be

temporarily stunned and have to stop flying and raise up his hands to cover his

ears. This will make Sam particularly susceptible to robot attacks, since he will

be unable to move or throw projectiles.

The player will be able to defeat Zeffir using a variety of different tactics,

which can be used in different combinations.

� Brute Force: Once hit with a lot of projectiles of the right sort, Zeffir will

finally be defeated. Only some of Sam’s projectiles will work, however; the

Magneto-Mass and Spring-Cage will be ineffective against Zeffir, while the

others will slowly wear him down. It will take a lot of hits, however, and Zeffir

will do his best to bring out more robots and to blast Sam with his Tuning Fork

at the same time. As a result this is the most difficult of the ways to defeat

Zeffir, but it is also the most obvious.

Appendix: Sample Design Document: Atomic Sam 535

� Disable Negaposts: Zeffir’s Negativity Platform is actually held aloft by four

Negaposts which are on the ground in four opposite corners of the room. As

Zeffir moves about on the Platform these posts glow. Sam will be able to take

out one of the posts by hitting it with three water balloons. When the post goes

out of commission, Zeffir temporarily loses control of his craft, only to regain it

quickly. Sam will need to incapacitate all four posts before the Negativity

Platform will actually stop working and clatter to the ground of the room,

where Zeffir will surrender.

� Get Zeffir’s Ear Protection: The player will notice that Zeffir is wearing a

bulky pair of “ear protectors,” large devices that look like headphones but

which serve to block out the dangerous sound of the Tuning Fork. If the player

is clever enough, he will realize that if he hits the Negativity Platform hard

enough the ear protectors will be knocked off of Zeffir. They cannot be

knocked off simply by pelting Zeffir with projectiles, however. The player will

need to cause Zeffir to steer the Negativity Platform into a larger swinging

girder that hangs from the top of the domed room. If Sam is simultaneously

pushing the girder while Zeffir is flying toward it, the impact will knock the ear

protectors right off. If the player then flies Sam down to where the ear

protectors fell, Sam will put them on. Now Sam is immune from Zeffir’s blasts

and will have a much easier time defeating him, using either brute force or by

disabling the Negaposts, as described above.

V. Story Overview

Atomic Sam is the story of a young boy, separated from his parents for the first time,

who must rise to the challenge of discovering what has happened to them. Though

Atomic Sam’s focus is as an action/adventure game, the humorous and touching

story sets the game apart from many other console action games.

The setting of Atomic Sam is the Earth of the future, but not exactly the future

as we imagine it now. This is the future as foretold in the first half of the twentieth

century by magazines like Popular Science and The Electrical Experimenter, as

well as by futurists like Norman Bel Geddes and Buckminster Fuller. Certain inno-

vations that we see as obvious today never came to pass, such as jet airplane travel;

instead, people still travel aboard giant propeller craft and zeppelins. Similarly, the

personal computer and certainly the Internet are unheard of, while super-intelligent

and always helpful robots are ubiquitous. Man has even colonized the Moon and

found the extraterrestrial life which lives there, the “Moonies.” It is in this whimsi-

cal and fun future that the story of Atomic Sam takes place.

One day, young Sam returns from school to his parents’ apartment only to dis-

cover them mysteriously missing. Sam’s parents are both scientists at Zeffir Zoom,

536 Appendix: Sample Design Document: Atomic Sam

a transportation company, but they always make it a point to be home when Sam

returns from school. Distraught, Sam decides to go looking for his parents. He dons

a red jacket and puts on the atomic rocket-pack they gave him for his birthday, and

renames himself Atomic Sam, gaining courage through his new alter ego.

Sam travels through the city of Gargantuopolis towards his parents’ office, but

along the way is attacked by robots who try to block his progress. Sam finally

reaches their office, only to find them missing from there as well, with only a mys-

terious note remaining. A friendly robot soon arrives, however, and escorts Sam to

a towering building right next door. Sam travels up to the top floor and meets a

strange woman who calls herself the Electric Priestess. She tells Sam that, though

she does not know what has happened to his parents, she will help him find them.

She offers Sam transportation to three locations where Sam may try to discover

their fate.

Sam will travel to Benthos, the city beneath the sea. There he will meet

Xeraphina, the flying girl, who will help Sam locate his parents’ private office.

Next is Harmony, the robot city, where Sam will try to look for Ike, the robot who

was his parents’ loyal assistant for years. Along the way Sam meets Scrap, a plucky

young robot who strangely doesn’t want to “grow up” and go to work. Finally, Sam

travels to New Boston, the Moon colony, searching for another friend of his par-

ents, Dulo the Moonie. At each of these locations, Sam is attacked by merciless

robots out to defeat him and stop his inquiries. After having fully explored each of

these areas, Sam finds a piece of a wax cylinder which, when all of its pieces are

assembled, can be played back to reveal what happened to his parents.

The cylinder contains a warning message from Sam’s parents: they think they

have stumbled on a safety problem with the monorail system being developed by

Max Zeffir, their employer. Unfortunately, Zeffir does not want to fix the problem

because of its prohibitive cost and, as a result, has kidnapped Sam’s parents to keep

them quiet. The Electric Priestess will now be able to lend Sam an auto-gyro to take

him to the Ikairus, Zeffir’s massive airship. There Sam will battle still more robots

before confronting and defeating Max Zeffir. Then, finally, Sam is reunited with his

parents.

Appendix: Sample Design Document: Atomic Sam 537

VI. Game Progression

Setting

Atomic Sam takes place on an Earth of the future, at an indefinite time, perhaps in

the twenty-first century. This is not the future as our culture of the year 2000 envi-

sions it now, but instead as people optimistically foresaw it in 1920s, 1930s, and

1940s America. Instead of jet planes transporting passengers across continents, the

world of Atomic Sam is filled with zeppelins and “giant wing” propeller craft. In

Atomic Sam, nuclear energy has not turned out to be a disappointment as it has in

the second half of the twentieth century. Instead, it has fulfilled its tremendous

promise of cheap, clean energy, and has been refined to the point where it can be

used safely in a child’s toy or in zeppelins.

This is a future that has conquered poverty through technology, a future in

which the skyscrapers stretch to unprecedented heights, and there is enough room

for all to live happily. Private planes and auto-gyros (a plane/helicopter hybrid) are

not uncommon, and many land on the roofs of the towering skyscrapers. Rail travel

is a very important part of this future, and high-speed monorails provide quicker

travel between cities than slower zeppelins.

Intelligent robots are everywhere, and people can purchase robots either to be

workers in their factories or butlers in their homes. Instead of running people out of

work, however, these robots have increased everyone’s leisure time, while in turn

enhancing everyone’s prosperity. This is not the bleak, troubling future found in so

much science fiction of the last two decades, but an optimistic world where tech-

nology has set the human race free to be happy.

The advance in robots did create some interesting problems, however. Robots

are now basically as smart as the smartest humans, with intelligences so developed

that they have emotions and desires of their own. Certainly many robots are more

physically strong and resilient than humans. Yet the robots have not risen up to con-

quer the humans, as many science fiction works might foresee. (All of the

aggressive robots that Sam faces in the game are following the orders of a villain-

ous human.) Instead, these robots are still obligated to follow the laws humans

make, for reasons that are never fully explained. Indeed, robots have no rights and

are treated very much as property by the humans, not unlike African slaves were

treated in the first hundred years of United States history. For instance, if part of a

robot breaks, it may be cheaper to replace the whole robot than to fix it. If this is

the case, it is the prerogative of the owner of the robot to permanently shut it off if

he so chooses, and few humans would question that decision as being the right one.

Atomic Sam does include some hints of a robot “underground” which tends to the

old robots in the most humane ways possible, as is explored in the Harmony section

of the game.

538 Appendix: Sample Design Document: Atomic Sam

TE
AM
FL
Y

Team-Fly®

In this future earthlings have managed to reach the Moon and have set up a

Moon colony there called New Boston. This colony consists of a number of domed

structures which provide a breathable atmosphere and Earth-like gravity. Moon

walks are allowed for the residents, using space suits, of course, with many Moon

residents finding such excursions to be a fun way to take a break from dome life.

When humans did finally reach the Moon, they were surprised to find a race of

extraterrestrials there. These creatures had lived unnoticed on the Dark Side of the

Moon for many centuries, only in the last thirty years revealing themselves to

humans as the Moon colony was built. In addition to their generally strange appear-

ance, the Moonies come in two varieties: the “Bi-Headers” and the “Torsos.” The

Bi-Headers have two heads on top of their bodies, while the Torsos have none,

instead having a mouth and eyes on the front of their torsos. The Moonies do not

breathe and are much denser creatures than humans, and as a result can survive in

either Earth or Moon atmosphere. The Moonies, though not technologically

advanced, are just as intelligent as humans, and on making contact with earthlings

were quick to learn English. The Moonies and humans now live cooperatively on

the Moon, helping each other in many different ways.

On first contact, the reaction of humans to the Moonies was one of shock and

disbelief. Over time, however, humans came to realize that Moonies did not pose a

threat and became quite friendly with them, in particular with the Bi-Headers. It

seems that, since the Bi-Headers looked a bit more humanoid than the Torsos, that

humans found them more acceptable. As a result, only the Bi-Headers are allowed

in New Boston, while the Torsos must stay outside on the Moon surface. Humans

found the Moonies to be great collaborators on scientific projects, using their

unique way of thought to help advance technology. However, though both sets of

Moonies are equally intelligent, only the Bi-Headers are allowed to work with

humans in an academic capacity.

Though we now see many of the technological advances described above as

either impossible, impractical, or undesirable, this is the world of Atomic Sam,

where the illogical nature of the environment is part of its charm. On the other

hand, while this future contains many advances we see as impossible today, it also

doesn’t include a lot of the advances we take for granted today. For example, in this

future people have no idea what a personal computer is, and in turn, computer

games surely don’t exist. Though television exists, it is still on a tiny television

screen and is vastly inferior to a movie theater experience. While in some ways the

world of the twenty-first century in Atomic Sam is more technologically advanced

than 1990s America, in other key ways it is certainly less advanced, giving it a

unique “primitive future” look.

Appendix: Sample Design Document: Atomic Sam 539

Introduction

The player controls the game’s namesake, Atomic Sam. A normal though preco-

cious boy ten years of age, Sam returns from school one day to find his apartment

home ransacked and his parents mysteriously missing. Donning the atomic-powered

rocket-pack given to him by his parents for his birthday, Sam renames himself

Atomic Sam and vows to venture through Gargantuopolis to find his parents.

Gargantuopolis

Following this brief introductory cut-scene, the player gains control of Sam inside

his parents’ apartment. Here the player will be able to follow the instructions given

to him by the Instructobot that came with his rocket-pack. These instructions will

teach the player how to effectively control Sam. The player will also be able to skip

by that section and proceed out into the city, trying to get to his parents’ office deep

in the city.

Gargantuopolis is a mammoth city of the future, with towering buildings creat-

ing something of a sense of claustrophobia, and Sam’s rocket-pack is unable to fly

him over their tops. Traveling through the city, Sam is attacked by a great variety of

robots that try to prevent him from discovering what has happened to his parents.

Where these robots came from and why they are trying to subdue Sam remains a

mystery at this point in the game.

Sam’s parents are atomic scientists at Zeffir Zoom—a company that works at

harnessing atomic energy for increasingly fast modes of transportation. Upon

reaching his parents’ office at Zeffir Zoom’s main research complex, a cut-scene

will take over showing Sam finding a hastily written note left by his parents pro-

claiming, “Someone has to check on Sam!” Along with the note is a fragment of a

wax cylinder used for voice recording. Since the cylinder is incomplete, Sam is

unable to play it back at this point.

The Electric Priestess’ Bubble Home

Distraught at having failed to find anything out about his parents’ disappearance,

Sam is suddenly approached by a friendly robot who quickly leads him to a nearby

building. Here Sam takes the elevator to the top floor, where he meets a mysterious

woman who calls herself the Electric Priestess. Quite a mysterious figure, the Elec-

tric Priestess lives alone in a sphere-like “bubble home” dwelling atop a high

skyscraper. The ceiling of this bubble home is entirely glass, providing a breathtak-

ing view of the surrounding city. In the home are numerous large steel doors which

lead to various forms of transportation at the Priestess’ disposal.

The Priestess explains to Sam that she knows of his parents’ disappearance, and

offers to help him. At this point in the story, why the Electric Priestess is helping

540 Appendix: Sample Design Document: Atomic Sam

Sam is still unclear, but she seems quite concerned for his well-being. On hearing

of Sam’s concern about his parents she offers to help by guiding him to the other

fragments of the wax cylinder. She offers Sam transportation to three different loca-

tions where she believes he may find more information about his parents and other

fragments of the cylinder. She also gives Sam a miniature radio which he can hook

on to his ear and which will allow him to stay in contact with her.

The player will now regain control and have a choice of navigating Sam

through any of three doors that will lead to transportation to the middle three sec-

tions of the game: Benthos, Harmony, and New Boston. The player can play these

areas in whichever order she chooses, though she must complete all of them before

proceeding to the final area, the Ikairus. The Priestess will be happy to provide Sam

with some background information about any of the areas before he goes there.

Once the player selects one of the doorways, a brief cut-scene of Sam being trans-

ported there will follow, and then the player will regain control in the new area.

Benthos

First is Benthos, the city beneath the sea. The Electric Priestess sends Sam on her

private, robot-operated auto-gyro to the undersea monorail which leads to Benthos.

Benthos’ population is made up primarily of two classes of people: undersea

researchers and visual artists. The latter group mostly relocated to Benthos because

of the solitary, remote lifestyle it provides. Benthos is a domed city, into which oxy-

gen is pumped via ducts which float on the ocean’s surface many miles above.

Because of the low height of the dome, Benthos consists of smaller buildings than

the mega-skyscrapers found in the surface cities. Scattered throughout the city are

many sculptures that have been created by the artists who live there; the work is of

amorphous, abstract, yet streamlined forms, many resembling “space age” versions

of Picasso’s sculpture work.

The Priestess informed Sam that his parents kept a private lab in Benthos, and

Sam will set out across the city to look for it. As in Gargantuopolis, Sam will be

waylaid by numerous mechanized adversaries who try to prevent him from reach-

ing his parents’ lab. Combat in Benthos will have less to do with flying to great

heights as it did in Gargantuopolis, since the dome prevents anyone from flying too

high. Flight will still be the key to fast maneuvering and effectively battling the

robotic creatures Sam must defeat at every turn. In Benthos, Sam soon meets the

flying girl Xeraphina, who will help him find his parents and tells him about

Benthos.

Finally, Sam will make it to his parents’ lab, a small office full of his parents’

equipment and with a number of pictures of Sam on the walls. Once Sam reaches

the office a cut-scene takes over to show Sam discovering another fragment of the

important wax cylinder his parents made before they disappeared. With it in hand,

Appendix: Sample Design Document: Atomic Sam 541

Sam will get back on the monorail and make his way back to the Electric Priestess’

home, where he can proceed to the next area.

Harmony

From the Priestess’ home, one of the doors will lead Sam to her private zeppelin

that will take the player to Harmony. A good distance from Gargantuopolis, Har-

mony is a special “planned” community that includes both large green parks and

industrial, metropolitan areas. Harmony is the city where most of the country’s

robots are built, and here the number of robot inhabitants greatly outnumber the

humans. In Harmony, Sam will need to learn to differentiate between friendly robot

natives and the more vicious adversaries who continue to try to stop his quest for his

parents.

In Harmony, Sam will meet Scrap, a super-friendly robot who befriends Sam

and helps him battle the robots who would block his process. Sam also hopes to

find Ike, the old robot assistant of his parents. The Electric Priestess explains that

Ike went to Harmony to retire among his own kind, and Scrap helps lead Sam to the

senior robot.

However, on finding Ike, it turns out that the aged robot’s memory has been

damaged, leaving him with only two state-sanctioned options: be turned off forever

or have a new head attached. Opting for the latter, Ike is soon to have a replacement

head put on, a common procedure. But Scrap is afraid Ike will lose his memory of

Sam’s parents, since memories are often lost in the head-replacement procedures.

Scrap suggests they try to find an “underground robot doctor,” a fellow robot who

works in secret to repair old robots, thereby saving their minds and memories from

the junk pile.

Sam and Scrap will need to travel across more of Harmony to locate this robot

doctor, and then lead him back to Ike. They eventually find one who is willing, a

massive robot named Tool who agrees to do the necessary work. Of course, while

traveling through Harmony, the player will still have to face ill-intentioned robots at

every turn.

Once Tool is brought to Ike, a cut-scene takes over as Tool performs the proce-

dure to restore the old robot’s memory. Tool is successful, and Ike now remembers

the wax cylinder fragment Sam’s parents sent to him and will pass it on to Sam.

With another piece of the puzzle in hand, Sam can board the Priestess’ zeppelin and

return to her bubble home.

542 Appendix: Sample Design Document: Atomic Sam

New Boston

Finally Sam will be able to travel to New Boston, the Moon colony. Sent there on

the Electric Priestess’ private rocket, Sam will encounter the friendly extraterrestri-

als known by earthlings as “Moonies.”

On some of their research projects, Sam’s parents had worked with one of the

Torso Moonies, a fellow by the name of Dulo. It is this Moonie Sam must find,

since the Electric Priestess suspects that he has another piece of the wax cylinder.

New Boston itself is another domed city—like Benthos—and its inhabitants are

able to live much as they do on Earth. Earth-like gravity is maintained inside the

dome, and a device called an Atmospherator generates breathable air for all the

inhabitants. Some Bi-Header Moonies live inside New Boston, assisting with

research projects.

When Sam inquires about Dulo, he will be told that Dulo, as a Torso Moonie, is

not allowed inside the Moon colony, so Sam will have to acquire a space suit and

go out onto the Moon’s surface to find him. Shortly after going out on to the sur-

face, Sam will meet Dulo. Dulo explains that, as a Torso Moonie, he was not able to

work with humans. Sam’s parents, however, noticed that Dulo had some special tal-

ents in their field of research, and as a result were willing to leave New Boston and

travel to Dulo’s home on the Moon’s surface.

Appendix: Sample Design Document: Atomic Sam 543

Dulo says that, yes, he too has a piece of the wax cylinder, but has stored it in

his home, a good distance from the dome. Sam will go with Dulo to get the cylin-

der. Of course, throughout New Boston as well as on the surface of the Moon, more

robotic adversaries will try to stop Atomic Sam from achieving his goals. Like

Xeraphina and Scrap, Dulo will work with Sam in defeating the adversaries they

encounter on the surface, helping to incapacitate the robotic nuisances. Once Sam

reaches Dulo’s home he will be able to get the fragment of the wax cylinder from

him. Sam must then fight his way back to New Boston and return to Earth from

there.

The Electric Priestess’ Bubble Home

After Sam has completed each of the three areas, he will have collected all of the

fragments of the cylinder he thinks he needs and will return to the Electric Priestess’

bubble home. In a cut-scene, the Electric Priestess says that she is most impressed

with Sam’s work in recovering all the fragments of the cylinder. Unfortunately,

when Sam tries to put it together, he finds that one piece is still missing. The Priest-

ess then reveals that she has the final piece, with which Sam can fully assemble the

complete cylinder.

Fortunately, the Priestess has a machine with which to play back the cylinder.

On the cylinder Sam’s parents explain the work they had been researching, and how

it led them into conflict with Max Zeffir, the owner of their company, Zeffir Zoom,

and the man who has abducted them. Sam hears his parents explaining that in their

work for Zeffir Zoom they discovered a dangerous flaw in one of Zeffir’s new

monorail systems, something that would mean huge losses for the company in order

to successfully redesign. Unfortunately, they relate, Max Zeffir himself became

aware of the problem but refused to have it fixed, and needed to silence them so the

monorail system could go ahead without delay.

With the cylinder’s playback complete, the Electric Priestess reveals that, in

fact, she is Zeffir’s sister. She was the original head scientist for Zeffir Zeppelins,

and lost her leg many years ago in a zeppelin accident which she blames on Zeffir’s

cost-cutting. She suspected all along that Zeffir was behind Sam’s parents’ disap-

pearance, but felt she must have proof before she could reveal her suspicions to

Sam. In fact, she explains, she has been a friend of Sam’s parents for some time,

and when they started to fear that they would be caught by Max Zeffir, they broke

up the evidence, in the form of the wax cylinder, and scattered the pieces, putting

one in their apartment, one in their office in Benthos, and mailing the remaining

pieces to Ike, Dulo, and the Electric Priestess herself. The Priestess now concludes

with certainty that it has been Zeffir sending robot minions to try to stop Sam from

discovering the truth about his parents.

544 Appendix: Sample Design Document: Atomic Sam

The Ikairus

His parents, the Electric Priestess reveals, are most likely being held captive aboard

Zeffir’s atomic-powered flying fortress the Ikairus. A constantly airborne, mam-

moth craft—its atomic power allowing it to fly indefinitely—the flying fortress is

Zeffir’s pride and joy, and is also where he resides. Kept aloft by some eighty pro-

peller engines, the craft looks like a gigantic flying wing, and is large enough for

other aircraft to land on.

The Priestess again lends Sam her private auto-gyro, which flies him to the

Ikairus. On board the flying fortress Sam will have to battle still more robots in

addition to the very challenging Merciless Mercenaries. The battles on the Ikairus

take place in much more small and confined spaces, representing the corridors of

the ship, and the player will need to adjust his fighting style accordingly. Finally,

Sam will be able to confront the quite insane Zeffir. Zeffir not only has Sam’s par-

ents held captive, but he has also captured Xeraphina, Scrap, and Dulo. While Sam

and Zeffir battle, Zeffir brags of what he will do to Sam’s friends once he has

defeated Sam. Finally managing to subdue Zeffir, Sam will at last be reunited with

his parents, who are quite glad they gave him the atomic rocket-pack for his

birthday.

VII. Bibliography

The following books were key points of inspiration for the setting and world of

Atomic Sam. Those working on the game will find researching these books to be

quite useful in getting a feel for what a “retro-futuristic” setting is all about.

Corn, Joseph J. and Brian Horrigan. Yesterday’s Tomorrows. Baltimore: The

Johns Hopkins University Press, 1984.

A great historical treatment of the various visions of future from the past century,

including many invaluable photos and documents.

Moore, Alan and Chris Sprouse. Tom Strong. La Jolla, CA: America’s Best

Comics, 1999.

Moore and Sprouse’s brilliant comic book Tom Strong is set in the “clean and

friendly” world of the twenty-first century, following the adventures of “science

hero” Tom Strong.

Motter, Dean and Michael Lark. Terminal City. New York: DC Comics, 1996.

Motter and Lark’s future as seen in Terminal City is a bit bleaker and darker than

Tom Strong, but with the same sort of retarded technological development. Both

Tom Strong and Terminal City include brilliant visual design and amazing environ-

ments, perfect for a video game such as Atomic Sam.

Appendix: Sample Design Document: Atomic Sam 545

Glossary

T
his section includes brief definitions of a number of the terms referred to in

this book, and should be of particular use to readers less familiar with the jar-

gon of the computer game industry. Some of the definitions veer close to

talking about programming, and in these cases I provide only enough information to

give the reader a general idea of what the term means. Those looking for more com-

plete definitions are advised to pick up a book about computer game development

from a programming standpoint, of which there are many.

A*: The most popular pathfinding algorithm used by computer games, which finds

short and effective paths consistently and quickly, though it is far from perfect. The

basis of the A* algorithm is to search for a path by expanding valid nodes that are clos-

est to the target location first in order to try to find the shortest path possible without

searching too extensively. Of course, this can be found described in more detail in

almost any book about programming games. See also Pathfinding.

Agent: See AI Agent.

AI: See Artificial Intelligence.

AI Agent: The entity that the artificial intelligence controls in a game; the agent of

its actions. In a computer game, the AI agents include the monsters the player fights

and the NPCs to which he talks. Many people make the mistake of referring to those

creatures themselves as “AIs” but this betrays their lack of understanding of what AI

means. Just as you would not say that a person walking down the street was an “intelli-

gence,” you should not refer to the agents in a game as the “AIs”. See Chapter 9,

“Artificial Intelligence.”

Algorithm: In the land of game development this refers to a usually short piece of

code designed to solve a particular problem, typically mathematical in nature. For

instance, you might have an algorithm that determines whether one character in a 3D

environment can see another one or not. Or you could say that the code that finds a

walkable path from the first character to the second one is an algorithm. Or, in a game

like SimCity, algorithms are used to calculate the population density in a given location

based on the options the player has made in building his city.

A-Life: See Artificial Life.

546

Alpha: Customarily describes a game that is not yet close to being complete but

which is playable all the way through. At this point, the design and content is largely

done, and bug-fixing refining, and balancing are all that remain to be done to the title.

This is often used by publishers to define the state of a project they have in develop-

ment and is typically followed by the Beta state. Other developers may define Alpha

differently, such as using it to mean any game that is in a playable state.

Arcade Game: Strictly speaking, a computer game that is found in an arcade envi-

ronment. It may also refer to home conversions of the same games. More broadly,

arcade game describes any game featuring the short and intense gameplay typical of

these games. See Chapter 4, which contains an analysis of the arcade game Centipede

and an exploration of the nature of the arcade game as a genre.

Art: In the context of game development, this is most often used to describe the

graphical content of a game. It can also mean what all game developers engage in, the

creation of computer games themselves, which qualify as art. The author’s favorite def-

inition of art comes from Chapter 7 of Scott McCloud’s excellent book Understanding

Comics: “Art, as I see it, is any human activity which doesn’t grow out of either of our

species’ two basic instincts: survival and reproduction.” Some game developers spend

endless time debating whether or not computer games qualify as art, but these argu-

ments are seldom productive or useful.

Art Bible: A document used in game development which includes concept sketches

of game art assets and possibly some descriptive text. The art bible is used by a game’s

art team as a reference tool in the development of the game’s graphical content, usually

in order to maintain consistency.

Artificial Intelligence: The artificial intelligence in a game controls all of the entities

or agents in the game which have the ability to react to the player or otherwise provide

an unpredictable challenge for the player. Artificial intelligence in a single-player game

typically fulfills the role that human intelligence provides in a multi-player game. Thor-

oughly defined in Chapter 9, “Artificial Intelligence.”

Artificial Life: A system for artificial intelligence that tries to imitate biological life

by assigning AI agents base behaviors and desires which cause them to perform spe-

cific actions by their “nature.” This is the opposite of the type of AI typically used in

most games, though artificial life was famously used in the computer game Creatures.

Assets: The content of a game, customarily used to refer to the art, sound effects,

music, and possibly the levels. Code itself is seldom referred to as an asset.

Avatar: The same as a game-world surrogate, the player’s avatar is whatever charac-

ter represents him in the game-world. It may also be an icon used in chat-room-like

situations. “The Avatar” is also the name of the character the player controls in the

Ultima series of games.

Glossary 547

Beta: The state games reach after passing through Alpha, and the last step before a

game is published or otherwise released to the public. In Beta, changes made to a game

are supposed to be strictly limited to bug fixes. Some developers define Beta to be

when they first have what they consider to be a release candidate. See also Alpha and

Release Candidate.

Bible: Used in the gaming industry to refer to various reference materials used during

a game’s development. See Art Bible and Story Bible.

Boss Monster: An enemy in a game, though not necessarily a “monster” per se,

which is much larger or simply more difficult to defeat than the other opponents in the

game. Typically boss monsters are placed at the end of levels and provide a climax for

that level’s gameplay.

’Bot: Short for “robot,” this refers to artificial intelligence agents that are designed to

appear to play similarly to humans, typically designed to work in first-person shooter

death-match games. Quake III Arena and Unreal Tournament both feature ’bots as the

player’s only opposition in the single-player game.

BSP: Short for Binary Space Partition. A method for storing and rendering 3D space

which involves dividing the world into a tree of space partitions, most famously used in

id Software’s games Doom and Quake.

Builder Games: One term used to describe games in which the player is responsible

for building lasting structures in the game-world. In a sense, in builder games, the play-

ers are responsible for the level design. Examples of this type of game are SimCity,

Civilization, RollerCoaster Tycoon, and The Sims.

Burn Rate: The amount of money a company, typically a developer, spends in a

month to keep itself in business. This typically includes all of the employees’ salaries,

rent, utilities, and other persistent expenses. Sometimes publishers will try to fund a

developer only to the extent of its burn rate, so that the developer does not have any

spare cash and remains forever beholden to the publisher.

Candidate: See Release Candidate.

Capture the Flag: A game involving two teams, both of which have a flag. The flag

is kept at a specific location and possibly guarded, while the players on both teams try

to grab the other team’s flag through stealth or brute force. In computer games, this is

often a game variant offered in first-person shooter multi-player cooperative games,

such as Quake or Unreal.

Choke-Point: A point in a game past which a player can progress only by passing

through a particular area, completing a particular puzzle, or defeating a particular mon-

ster. Often the areas preceding and following a choke-point allow the player more

freedom of play, while the choke-point presents a task the player absolutely must

accomplish before proceeding.

548 Glossary

TE
AM
FL
Y

Team-Fly®

Classic Arcade Game: Does not necessarily mean a game that is a classic, but any

game which was released during the early period of arcade games or which exhibits the

traits typical of those games. Classic arcade games include simple, single-screen-player

games such as Space Invaders, Centipede, Robotron 2084, or Pac-Man. Classic arcade

game is defined more fully in Chapter 4. See also Arcade Game.

Code: When used in reference to games, code is the lines of text that programmers

enter into the computer and which the computer then compiles into the functional

game. A talented programmer is sometimes referred to as a code-jockey.

Color: Beyond the obvious definition, in terms of game design this may also refer to

the specific content and setting of a game. Monopoly, for instance, includes the street

names of Atlantic City and a depression era real-estate mogul theme as a means of pro-

viding color. Color is separate from the gameplay itself.

Concept Document: Also known as a pitch document. This is a short document that

includes text and concept sketches and that is used to initially sell the idea of a project

to a publisher or other financier. A concept document gives the reader an idea of what

the game will involve without including sufficient detail to actually develop the game.

If accepted, the concept document is usually expanded into the design document.

Concept Sketch: A sketch of a particular game art asset which is used to show some-

one what the art will look like, approximately, before that graphic or model is actually

created. May also be a sketch of a scene from the game as it will appear once the game

is functional.

Creative Services: A deceptively titled wing of the publisher which is typically in

charge of creating the box art and other advertisements and logos for a game.

Critical Path: The path that the player is expected and encouraged to follow when

moving through a game or a particular level. Somewhat reminiscent of the yellow brick

road in The Wizard of Oz.

CRPG: A computer version of a role-playing game. See also Role-Playing Game.

CTF: Typically refers to Capture the Flag multi-player games, though it may also

refer to Valve Software’s Classic Team Fortress game. See Capture the Flag.

Cut-Scene: A non-interactive portion of a game typically used to communicate to the

player information about the game’s story line, sometimes involving pre-rendered or

live action full-motion video, other times using the game’s real-time graphics engine.

Cut-scenes often come between levels in a game, and are sometimes used as rewards

for the player having finished a particularly challenging portion of the game.

Death March: When a development team, particularly the programmers, works

every waking moment on a project for a long period of time, typically trying to make an

unachievable deadline of some sort. Often the death march is entered into thinking it

will be over soon enough, but it then drags on long beyond what anyone thought

possible.

Glossary 549

Death-Match: A multi-player game in which the players’ only goals are to kill each

other. Usually refers to games of that sort in first-person shooters such as Doom,

Unreal, or Duke Nukem 3D.

Design Document: The textual reference used in developing a game which attempts

to describe in detail every important aspect of the game’s design. Sometimes referred to

as the Functional Specification. Described more completely in Chapter 17, “The Design

Document.”

DM: Depending on context, see Dungeon Master or Death-Match.

Dungeon Master: The term for the Game Master used in conjunction with Dungeons

& Dragons games. See Game Master.

Engine: The core code that handles the most basic functionality of the game, but not

including the code which governs specific gameplay functionality. Sometimes the

engine is split up into the rendering engine, the sound engine, the behavior engine, and

so forth. Each of these components can be considered to be part of the game’s engine as

a whole. Engines are typically more general than a particular game, which allows them

to be reused for multiple different projects. However, some developers use the term

Engine to refer to the entirety of a game’s source code. For example, id Software has

licensed their Quake engine for use in a broad range of games, from Half-Life to Sol-

dier of Fortune to Heavy Metal: FAKK 2.

Finite State Machine: See State-Based AI.

First-Person Shooter: The type of game exemplified by Doom, Half-Life, Unreal,

Marathon, Quake, and Duke Nukem 3D. In first-person shooters, the player’s perspec-

tive of the world is from the first person and her objective is to shoot everything in

sight, though some first-person shooters offer some subtle variations on this goal.

Flight Simulator: Often shortened to flight sim, this is a type of game which

attempts to model the flight of a real-world aircraft. The amount of realism involved

varies from game to game; some games are extremely realistic and difficult, while oth-

ers prevent the player from crashing entirely. Examples include Microsoft Flight

Simulator, F-15 Strike Eagle, Flight Unlimited, and Hellcats Over the Pacific.

FMV: See Full-Motion Video.

Focus: A brief, three- to five-sentence description of the most important concepts

guiding a game’s development. Described in detail in Chapter 5, “Focus.”

FPS: Depending on the context, this may refer to the first-person shooter genre of

games or to the frames per second that the game’s engine is currently rendering. See

First-Person Shooter.

FSM: Stands for finite state machine. See State-Based AI.

Full-Motion Video: Any non-real-time graphics in a game which are displayed

quickly in a sequential order to create a movie-like effect. Full-motion video can be of

550 Glossary

live actors, computer-generated environments, or a combination of the two.

Functional Specification: The sister document to the Technical Specification, in that

it describes how the game will function from the user’s perspective, as opposed to how

the programmer will implement that functionality. In game development, typically

referred to as the Design Document. See also Design Document.

Fuzzy Logic: A type of AI that introduces some degree of randomness into the deci-

sion making process. This means that, given the exact same inputs, an AI agent will

make different decisions based on chance.

Game: The Oxford Universal Dictionary includes a number of definitions for

“game.” The definition we are most interested in for this book reads as follows: “A

diversion of the nature of a contest, played according to rules, and decided by superior

skill, strength, or good fortune.” To rephrase, a game presents an entertaining challenge

to the player or players, a challenge which the player or players can understand and

may be able to succeed at using their wits, dexterity, luck, or some combination thereof.

To expand, in order for that challenge to be meaningful, the player must be presented

with a number of interesting choices for how to succeed at the game, and those choices

must be non-trivial. And in order for the challenge to be truly meaningful, the game

must define the criterion for success. This excludes “software toys” such as SimCity

from being games. Of course, one could write an entire book about the nature of a

game, but this is not that book.

Game Design: The game design establishes the shape and form of the gameplay in a

game. The game design may be communicated through a design document, or it may

only exist in the head of the implementors of the game. See also Gameplay.

Game Designer: The game designer is the person on a project who is responsible for

establishing the form of the gameplay through the game design. See also Gameplay and

Game Design.

Game Engine: See Engine.

Game Flow: The chain of events that make up the playing of a given game. A game

can be said to flow between its action, exploration, puzzle-solving, and storytelling

components. The proportional amount of time spent in each of these components and

the pace at which the game takes place contributes to its overall flow.

Game Master: In a pen and paper role-playing game, the game master is the player

who governs the actions of all of the other players in the game-world. The game master

often has also dreamt up the adventures that the players are going on, and continues to

dynamically create this story as the players navigate through it.

Game Mechanic: A specific way in which a part of the gameplay is implemented.

For instance, the mechanic for doing an attack-jump in Crash Bandicoot is to hold

down the “down” or “crouch” button while in mid-jump. The mechanic for sending a

unit to a new location in WarCraft is to click on the unit in question with the left mouse

Glossary 551

button, move the pointer to the desired position on the map, and then to click there with

the right mouse button. The gameplay as a whole is made up of a number of different

game mechanics combined together.

Gameplay: The gameplay is the component that distinguishes games from all other

artistic mediums. The gameplay defines how the player is able to interact with the

game-world and how that game-world will react to his actions. One could consider the

gameplay to be the degree and nature of a game’s interactivity. Of course many differ-

ent people have different definitions for gameplay, but as far as this book is concerned,

gameplay does not include the game’s story, graphics, sound, or music. This is easy to

understand if one recalls that gameplay is what separates games from other artistic

mediums; each of these components is found in literature, film, or theater. Gameplay

also does not include the code used to make the game run, the game’s engine, though

that engine does necessarily implement the gameplay. The gameplay, however, could be

implemented using a completely different engine while remaining identical.

Game-World: This is the space in which a game takes place. In a board game such

as The Settlers of Catan, the game-world is represented by the board the game takes

place on. For a sports game, the game-world is the real-world but is limited to the

extent of the field the game is played on. For a role-playing game, the game-world is

maintained within the imaginations of the game master and the players. For a computer

game, this is a “virtual” space which is stored in the computer’s memory and which the

players can view via the computer screen. The actions the player makes in a game are

limited to the game-world, as are the reactions of either the game itself or the other

players.

GM: Depending on the context, see Gold Master or Game Master.

Going Gold: The time when a team completes a game and is thereby able to create

the Gold Master which is sent to the duplicators. See also Gold Master.

Gold Candidate: See Release Candidate.

Gold Master: The version of the game, typically recorded onto gold CDs, which is

going to be used by the duplicator to create copies of the actual shipping game. In other

words, the final version of the game.

Graphical User Interface: This is any communications method the player has of

interacting with the computer that is primarily graphical in nature. For instance, the

Macintosh has always had a graphical user interface, as opposed to the text-oriented

one available in MS-DOS or UNIX. Games use GUIs for starting up new games, load-

ing saved games, and choosing other options from the main menu, but also for

communicating information to the player not readily apparent from their view of the

game-world: the player character’s health, currently equipped weapon, amount of

ammo, number of lives, score, and so forth.

GUI: See Graphical User Interface.

552 Glossary

Heads Up Display: A type of graphical user interface which is overlaid on top of the

player’s game-world view. This may include the player character’s health, a mini-map

of the area, or radar of some sort, and typically communicates vital information to

which the player must always have easy access. Heads up displays take their name from

the displays used by jet fighter pilots, which constantly convey crucial flying informa-

tion to those pilots while they are navigating the plane. See also Graphical User

Interface.

High Concept: An idea for a game which attempts to merge disparate types of

gameplay or setting into one game, without regard to whether those different ideas will

work well together. An example might be making a first-person shooter which is also a

racing game, or a wargame which includes a golf simulator. Usually synonymous with

“bad concept.”

HUD: See Heads Up Display.

IF: See Interactive Fiction.

IK: See Inverse Kinematics.

Input/Output: Often shortened to I/O, this refers to the systems a computer uses to

allow the player to input information (typically a keyboard and a mouse) in combina-

tion with how it communicates information back out to the user (typically the monitor).

In terms of computer games, the I/O refers to the controls with which the player manip-

ulates the game and the way the game then communicates to the player the current

nature of the game-world.

Interactive: An interaction is when two systems, be they a human and a human, a

human and a computer, or a computer and a computer, are mutually active in a given

process. For instance, a television show is not interactive, since only the television out-

puts data and completely ignores whatever the user/audience does. A conversation

between two people is interactive, however, since both parties listen to what the other

has to say and will then say something related or in response to that. As another exam-

ple, a strict lecture is not interactive since the lecturer reads a prepared speech without

any input from the audience. A discussion group, however, is interactive, since the pro-

fessor or leader of the discussion will answer the students’ questions and listen to and

evaluate their ideas. Games are interactive since they allow both the player and the

computer to determine the shape of that particular game. Computer games are not being

especially interactive when they play long cut-scenes over which the player has no

control.

Interactive Fiction: A term originally coined by Infocom, which is an alternate

name for text adventures. Some people use interactive fiction to describe any games

which use text to describe scenes and include a text parser, even if graphics are also

included. See also Text Adventure.

Glossary 553

Interactive Movie: A term coined by those working in games who wish to call their

profession something more glamorous than what it is, similarly to how the comic book

industry sometimes attempts to call some of its longer and more sophisticated works

“graphic novels.” Typically, interactive movies involve more and longer cut-scenes than

your average game. Unfortunately, the makers of so-called “interactive movies” typi-

cally add more movie than they do interactivity, resulting in works which are almost

always not very good movies and lack the interactivity to be good games.

Inverse Kinematics: An animation technique whereby a joint in a character’s skele-

ton is moved to a desired location and the joints that depend on or are influenced by

that joint are automatically moved to the correct location. For example, if animating a

humanoid, the hand could be moved toward a door handle and the elbow and shoulder

would automatically move to reasonable positions. See also Skeletal Animation.

I/O: See Input/Output.

Isometric: Isometric is defined to mean “equality of measure,” particularly in refer-

ence to drawing objects. If one were isometrically drawing a cube from a distance with

one of the points of the cube pointing directly toward the viewer, the lines of the cube

would all be of the same length and would not use any foreshortening. Games such as

Civilization II, SimCity 2000, SimCity 3000, and StarCraft are drawn isometrically.

This allows a game to be drawn from a somewhat 3D overhead view which can then be

scrolled around in all directions, without actually needing to involve a 3D rendering

engine. The perspective on the world is technically wrong, but players do not seem to

mind. Also referred to as a “three-quarters” view of the game world.

LAN: An acronym for a Local Area Network. These networks typically consist of a

small number of computers in a specific area networked to each other but not necessar-

ily to the Internet or other networks.

LAN Party: Held when a bunch of friends get together, bring their computers to one

central location, and play multi-player games over them. Typically the fast “Ping” times

allow players to have much faster and more lag-free games than are available over the

Internet or other long-distance networks.

Linear: When the only one way to get from point A to point B is via the line segment

which connects them, we say that the movement is linear. Linear implies a lack of

choice outside of a single dimension: forward or backward. In gaming, a linear game is

one that does not give the player much choice in what he does. For some games, linear

may mean no choice at all, since backward is often not even an option.

Lone Wolf: Term used to describe game developers who do practically everything

themselves in the development of a game: the design, programming, art, sound, and

writing. At the very least, a lone wolf developer must do all of the game’s design and

programming herself. A lone wolf does not typically develop commercially released

software any more, though there are exceptions. For example, Chris Sawyer designed

554 Glossary

and programmed all of RollerCoaster Tycoon by himself, with a contractor completing

the art to his specifications. Though he did not do the art himself, Sawyer can still be

described as a lone wolf developer.

Massively Multi-Player: Strictly, a multi-player game involving a very large number

of people playing it at once, at least 100 or more. Typically such games are also persis-

tent and played over the Internet. Ultima Online and Ever Quest are examples of

massively multi-player games. See also Multi-Player and Persistent.

Media: Go out and buy Marshall McLuhan’s Understanding Media. Read it. Come

back only when you fully understand it.

Metagame: According to Richard Garfield, creator of Magic: The Gathering, the

metagame is “how a game interfaces with life.” This means what the player takes to

and brings away from a particular playing of a game and how that impacts his subse-

quent playings of that game. This is particularly applicable to multi-player games. Take,

for example, a game of Quake III Arena on the Internet. If one player is known to play

unethically through camping and other undesirable tactics, players will be likely to

make a special effort to eliminate him in subsequent games. This means that the player

may end up losing subsequent games because of his behavior in previous games. This

interaction between the players from game to game is not part of the playing of the

game itself, but is part of the metagame that the playing creates. For another example,

in Magic: The Gathering the time a player spends preparing his deck before a game,

though not part of the game itself, is part of the metagame.

Milestones: A term often used in contracts between publishers and developers. A

milestone is an agreement of how much work on a project will be done at a specific

date, with the publisher only paying the developer when that milestone (usually in the

form of a current build of the game) is delivered to the publisher.

Mod: Short for “modification,” mods are user-created add-ons or changes to an exist-

ing game. Mods were popularized by id Software’s open-architecture policy which

allowed players to make their own levels for Doom. Beyond levels, mods also often

include new AI, new weapons, new art, or some combination of all three, potentially

creating a radically altered gameplay experience from what was found in the original

game.

MUD: Stands for Multi User Dungeon. MUDs resemble a text adventure with heavy

RPG elements in their central play mechanics, with the important difference being that

they take place in persistent, massively multi-player worlds. MUDs were set up and run

by college students starting in the 1980s. Players of the games, when they reached a

high enough experience level or rank, would become the creators of the games’ content

for other, more inexperienced players to explore. The primary interest many players

have in MUDs is the social component, preferring to chat with people they have never

seen before to going on Dungeons & Dragons style adventures. In many ways, Ultima

Online is a carefully regulated graphical MUD. Another popular variant are MOOs,

Glossary 555

which stands for MUD, Object Oriented. In terms of game design, MOOs and MUDs

are identical; only the way they are programmed and set up is different.

Multi-Player: A game that involves more than one player. Today, this typically also

means “networked multi-player” where each player has his own computer and com-

petes with the other players over a network, such as the Internet.

Non-Linear: Obviously, the opposite of linear. In terms of gaming, this means that

the player is not locked into achieving different goals in a specific order or in achieving

all of the goals she is presented with. Instead, the player is able to move through the

game in a variety of paths and can be successful in a variety of ways. Non-linearity

leaves the player with more choice to play the game her own way. See also Linear and

On a Rail.

Non-Player Character: Any character in a computer game which is not controlled

by the player. Typically this refers to game-world characters who are not hostile to the

player, such as townspeople in an RPG.

NPC: See Non-Player Character.

NURBS: Stands for non-uniform rational B-splines. A 3D graphics technique for cre-

ating curved surfaces, a detailed explanation of which should be sought out in a 3D

graphics programming book.

On a Rail or On Rails: A game is said to be on a rail when a player is forced to

move through the game in a very specific, carefully controlled way, as if he were

locked onto a rail that ran through the game. Games which are said to be “on a rail” or

“on rails” are very linear games. A specific type of game called a “rail shooter” is on

rails to such an extent that the flight path of the player’s vehicle is completely predeter-

mined, and the player is only able to shoot at targets as they pass by. Rebel Assault is an

example of a rail shooter. See also Linear.

180 Degree Rule: A film technique for cutting a scene that says that the camera must

always stay on one side of a line that extends between the two centers of attention in the

frame. If the camera never rotates anywhere outside of those 180 degrees, the audience

will not become confused by the scene’s cuts from character to character.

Parser: In gaming, often refers to the input method used by text adventures. A parser

takes natural language words or sentences the player enters and translates them into

commands that the game logic can understand. Parsers can become quite sophisticated

while still failing to understand many of the sentences that players attempt to use as

commands. Natural language processing is a major field of AI research, one that is still

far from perfect, so it is no wonder that parsers have as much trouble as they do. A

more modern usage of the term parser is in reference to the interpreter for a game’s

scripting language. See also Text Adventure.

Pathfinding: This is the portion of the AI code which allows an agent to figure out

how to get from one location to another in the game-world. Ideally, pathfinding allows

556 Glossary

the AI agent to avoid getting stuck on obstacles or other agents, yet pathfinding in

many games is less than perfect. There are various algorithms, such as A*, that can be

used for pathfinding which may have different results in terms of efficiency and the

quality of the paths generated, though that is a topic better explored in a book about

programming. See also A*.

PC: May refer either to a game’s player character or to the Intel-based personal com-

puter originally popularized by IBM and powered by MS-DOS. Also see Player

Character.

Persistent: A persistent game is one which continues running and maintaining the

state of the game-world regardless of whether a particular player is actively playing it

or not. Often persistent games are also massively multi-player, and vice versa. MUDs

were one of the first persistent games, while commercial products such as Ultima

Online and Ever Quest have made persistent games quite popular to mainstream

gamers. See also MUDs.

Pitch Document: See Concept Document.

Place-Holder: Typically refers to sounds or art used in a game while it is in develop-

ment but which the development team plans to replace before the game is released to

the public.

Platform: Often used to describe the different systems a game can be developed for.

Popular gaming platforms past and present include the Apple II, Atari 800, Commodore

64, IBM PC, Commodore Amiga, Macintosh, Atari 2600, Nintendo Entertainment Sys-

tem, Sega Genesis, and the Sony PlayStation.

Player Character: This is the character the player controls in the game, such as

Mario in Super Mario 64, Lara Croft in Tomb Raider, or the space marine in Doom.

This term is a holdover from pencil and paper RPGs such as Dungeons & Dragons.

Player Surrogate: See Surrogate.

Playtesting: A term referring to the process of testing the gameplay of the game to

see how well it plays. Playtesting is different from bug fixing or quality assurance in

general since playtesting focuses on the performance of gameplay itself instead of gen-

eral bug fixing. See Chapter 23, “Playtesting.”

Port/Porting: The process of converting a game from one gaming platform to

another, such as from the PC to the Macintosh, or from the Sony PlayStation to the

Nintendo 64. Typically, games which are ported are completed on one system first, and

only then brought over to the other system.

PR: See Public Relations.

Pre-Rendered: 3D graphics which are rendered into 2D sprites or images before the

player plays the game. Myst features pre-rendered 3D graphics, while Unreal features

real-time 3D graphics. See also Real-Time 3D.

Glossary 557

Proposal: See Concept Document.

PSX: An abbreviation for Sony’s PlayStation console. Actually based on an early

name for the system, the PlayStation X. Nonetheless, the abbreviation stuck. However,

Sony does not like you calling their newer system the PSX2.

Public Relations: A wing of the marketing department whose primary job is to hype

a company’s upcoming games in the press by readying press releases, screenshots, and

other information. They also can be quite helpful in granting permission to use

screenshots in books such as this one.

QA: See Quality Assurance.

Quality Assurance: This is the process of testing a game to make sure that it is

bug-free and plays reasonably well. The quality assurance cycle or period is the time

when a nearly complete project is extensively tested just prior to release. In large com-

panies, the quality assurance department or team are the people who are going to

perform that testing.

Rail, On a: See On a Rail.

Real-Time: Anything that is computed or rendered for the player while he waits,

such as graphics and pathfinding. This differentiates something from being pre-

computed before the actual gameplay is taking place. Can also differentiate a game

from being turn-based. See also Turn-Based.

Real-Time Strategy: A currently popular genre of games, including such titles as

Command & Conquer, WarCraft, Total Annihilation, and Myth: The Fallen Lords. This

term is typically emphasized to differentiate these RTS games from turn-based strategy

games such as Civilization, X-Com: UFO Defense, and Alpha Centauri.

Real-Time 3D: Describes 3D graphics which are rendered while the player is look-

ing at them, so that as the player moves around the world, many different views of

objects and configurations of the game-world can be generated on the fly. Unreal uses

real-time 3D graphics while Myst uses pre-rendered 3D graphics. See also

Pre-Rendered.

Release Candidate: A build of the game which the development team believes may

be the one that can be shipped. A release candidate is generally tested for at least a few

days, optimally a week or two, to determine if it is bug-free enough to be acceptable to

the publisher. It is not uncommon for a particular product to go through five or more

release candidates.

Role-Playing Game: Games based on the type of gameplay established by pencil

and paper role-playing games such as Dungeons & Dragons. Those original

non-computer-games were so titled because in them players took on the roles of charac-

ters of their own creation and guided them through a fantasy world. Much of the

gameplay in RPGs depends on the players role-playing these characters who often had

personalities different from their own. Ironically, most computer role-playing games

558 Glossary

TE
AM
FL
Y

Team-Fly®

often contain very little of the role-playing aspect of traditional RPGs, instead choosing

to concentrate on the combat mechanics and fantasy setting.

RPG: See Role-Playing Game.

RT3D: See Real-Time 3D.

RTS: See Real-Time Strategy.

Scripted: In terms of a game, scripted typically refers to AI behaviors that are

planned in advance to allow the AI agents to look clever in specific situations in a level.

Scripted events play the same way every time a player plays a level. Half-Life used

scripted events to produce very impressive gameplay effects that gave the illusion of a

very smart AI system.

Sim: Short for simulator or simulation. See Simulation.

Simulation: In a game described as a simulation, the primary goal of the game’s

designer is to model a real-life system accurately and realistically, instead of simply

making the game as fun as possible. This system could be anything, such as an aircraft

of some kind, a race car, or a city.

Simulator: See Simulation.

Skeletal Animation: An alternative to vertex deformation for 3D animations. With a

skeletal animation system, the game keeps track of an animating character’s skeleton.

The animation then controls this skeleton, moving the animating character’s mesh to

match the skeleton properly. A skeletal animation system has the advantage of causing

animations to take up much less space than when they are animated using a technique

such as vertex deformation, as well as often leading to superior looking animations.

Furthermore, the skeleton can be controlled procedurally for inverse kinematics effects

of various types. See also Vertex Deformation and Inverse Kinematics.

Skin: In gaming, skin refers to the texture set being used on a 3D player character in

a game like Quake III Arena or Unreal Tournament. Players will get to choose what

skin they play the game with either from the default collection that comes with the

game, or by making their own and importing it into the game. This has recently become

popular outside of the realm of first-person shooters in The Sims.

SKU: Stands for stock keeping unit or shelf keeping unit. It is the unique number

associated with every bar code and used by stores to track their inventory. Each unique

version of a game is sometimes referred to as a different SKU. If one game ships for a

number of different platforms, say Macintosh and PC, then each version is a separate

SKU. Similarly, Thief and Thief Gold are two different SKUs, though they are practi-

cally the same game.

Software Toy: A term coined by Will Wright of Maxis to describe that company’s

first product, SimCity. A software toy is quite similar to a game, except that it defines

no criterion for success. The player is just left to play with the game as she wishes with-

out ever “winning” or “losing.” Yet a player may make a software toy into a game by

Glossary 559

defining her own personal conditions for success. See also Game.

State-Based AI: A type of AI which uses states for each of its agents. States include

actions such as idle, walking, attacking, and so forth. The AI then switches the agent

from one state to another depending on the conditions of the game-world. May also be

referred to as a finite state machine or FSM.

State Machine: See State-Based AI.

Story Bible: A document that contains all the information available about the story

elements of the game-world. Story bibles can be quite large, especially when working

with properties with established histories, such as the Star Trek or Ultima universes.

These documents are usually used as reference works for the developers during the

game’s creation. Described in detail in Chapter 15, “Game Development

Documentation.”

Surrogate: A term used to describe the entity that the player controls in the game,

also known as the player character or the player’s avatar. See also Avatar and Player

Character.

TDD: See Technical Design Document.

Technical Design Document: This document takes the gameplay as described in the

Design Document and explains how that gameplay will be implemented in more techni-

cal, code-centered terms. As a result, this document is often used primarily by the

programming team. Described in detail in Chapter 15, “Game Development

Documentation.”

Technical Specification: Another name for the Technical Design Document. See Tech-

nical Design Document.

Text Adventure: Text adventures are devoid of graphics and describe the game-

world to the player exclusively through text. Players are then able to interact with the

game-world by typing in natural language sentences in the imperative form stating what

they want their character to do next. The form was made extremely popular by Infocom

in the early 1980s. See also Interactive Fiction.

Three-Quarters View: Typically refers to games that have an isometric view point.

This view can be in any rendering system with an overhead view of the ground where

the camera is oriented at a 45-degree angle from the plane of the ground. See also

Isometric.

Turn-Based: Any game where the computer waits for the player to act before pro-

ceeding with its own actions. Civilization, for instance, is a turn-based strategy game,

while WarCraft is a real-time strategy game. For some non-computer game examples,

chess is a turn-based game while football (soccer) is real-time. American football is a

bizarre hybrid of real-time and turn-based gameplay.

Turn-Based Strategy: See Turn-Based.

560 Glossary

Vertex Deformation: A 3D animation system where the individual vertices of a

model are moved one by one to new positions for each frame of the animation. This is

the simplest 3D animation method to code for, but has many disadvantages over a skel-

etal animation system. Sometimes also called key-frame animation. Also see Skeletal

Animation.

Virtual Reality: Technically, virtual reality, or VR, refers to advanced world-

simulation systems at a minimum involving the user wearing a set of goggles with a

small monitor or display device in each eyepiece. This allows the player to get a truly

3D, stereo-vision experience. Also, the VR headset allows the player to turn her head

and have her view of the virtual world change accordingly, to match the new location at

which she is “looking.” VR systems may also involve wearing gloves or full-body suits

which detect the user’s motion and translate that into motion in the virtual world. Vir-

tual reality is one of the most commonly misused terms in all of computer game

parlance. Many game developers with inflated senses of what they are doing will refer

to their RT3D first-person games as VR when, since they do not involve headsets, they

are really nothing of the kind. Marketing people are particularly fond of misusing and

abusing this term.

VR: See Virtual Reality.

Wargame: When used in reference to computer games, wargame typically refers to

strategy-oriented games which employ gameplay based on pen and paper or board

wargames such as those made by Avalon Hill. Computer wargames almost always sim-

ulate historic battles, typically feature hexagon-based play-fields, and use turn-based

gameplay. Games which are set in historical wars but are not strategic in nature are not

generally referred to as wargames. Classic examples of computer wargames include

Kampfgruppe and Eastern Front (1941), while more modern examples include Panzer

General and Close Combat.

Glossary 561

Selected Bibliography

T
he following references have been a great help to me in solidifying my ideas

about computer games. I list them here as a sort of “recommended reading”

list for those who wish to continue to learn about game design outside the

confines of this book.

Books

Bogdanovich, Peter. Who The Devil Made It. New York: Knopf, 1997.

A fascinating collection of interviews with classic film directors. Bogdanovich’s

interview style was my model for the interviews conducted in this book.

Campbell, Joseph. The Hero with a Thousand Faces. New York: Bollingen

Foundation Inc., 1949. Reprint, Princeton: Princeton University Press, 1972.

Campbell’s book is the definitive text on understanding the nature of myths, leg-

ends, and heroic stories from throughout the ages.

Crawford, Chris. The Art of Computer Game Design. Berkeley, CA: Osborne/

McGraw-Hill, 1984.

Crawford’s seminal work was the first book about computer game design and was

the inspiration for this book. Despite its age in computer game industry terms, it

remains largely relevant today. Though it is out of print, it can currently be read in a

number of locations on the Internet, including www.erasmatazz.com.

Hague, James. Halcyon Days: Interviews with Classic Computer and Video

Game Programmers. Issaquah, WA: Dadgum Games, 1997.

Hague’s book is an invaluable source of information about what it was like to work

in the gaming industry just as it was starting to establish itself. All information

comes straight from the source through a series of interviews with a broad range of

subjects, including many whose work is discussed in this book: Eugene Jarvis, Dani

Bunten Berry, Dan Gorlin, Brian Moriarty, Ed Rotberg, Chris Crawford, and so on.

The HTML-format book is available from Hague’s company, Dadgum Games, at

www.dadgum.com.

562

McCloud, Scott. Reinventing Comics. New York: Paradox Press, 2000.

________. Understanding Comics. Northampton, MA: Kitchen Sink Press,

Inc., 1993.

Though these books are technically about comics, they both provide tremendous

insight about media and art of all kinds. It is fair to say that Understanding Comics

fundamentally changed the way I think about art.

McLuhan, Marshall. Understanding Media. New York: McGraw-Hill Book

Co., 1964. Reprint, Cambridge, MA: MIT Press, 1994.

The definitive book on media of all kinds, a work which takes on new meaning in

the age of the Internet. McLuhan may be a bit obtuse in his writing style, but his

insights are without peer.

Strunk, William and E.B. White. The Elements of Style. New York: Macmillan

Publishing, 1959. Reprint 4th Ed., Boston: Allyn and Bacon, 2000.

The Elements of Style remains the last word on clear and concise writing, a book

anyone writing a design document, script, or book about game design would do well

to read.

Periodicals

Computer Gaming World (Ziff Davis Media)

A magazine that has been around almost as long as computer games themselves,

Computer Gaming World remains informative and insightful.

Game Developer (CMP Media, Inc.)

The closest the gaming industry has to a professional journal, which covers all

aspects of game development, including articles on game design.

Next Generation (Imagine Media, Inc.)

A hybrid computer game/console game magazine with an emphasis on cutting-edge

game technology and, sometimes, the theory and people behind the games.

Web Sites

www.mpath.com/dani

A tribute page to the late Dani Bunten Berry, the tremendously gifted designer of

the classic M.U.L.E. Includes some of Berry’s writings about game design and

reflections on her career.

www.costik.com

Greg Costikyan is best known for his pencil and paper game designs, including the

classic games Toon and Paranoia, though he has also done a number of computer

Selected Bibliography 563

games. His web site includes an array of articles he has written, including the very

interesting screed, “I Have No Words & I Must Design.”

www.erasmatazz.com

Chris Crawford’s current home on the web, centered on his interactive storytelling

engine, the Erasmatron. Also includes a vast library of Crawford’s writings about

game design, including everything he ever wrote for the Journal of Computer Game

Design and links to the full text of The Art of Computer Game Design. Required

reading.

www.gamasutra.com

Gamasutra is the sister web site of Game Developer magazine. The site runs origi-

nal content as well as some reprints from the magazine. Within its pages, a vast

wealth of information is archived and searchable.

www.theinspiracy.com

The home page for Noah Falstein’s game consulting company, The Inspiracy.

Includes a number of articles by Falstein and transcripts of some of his talks at the

Game Developer’s Conference.

564 Selected Bibliography

Index

Page numbers in bold indicate an image of that particular game.

1830, 24

2D

adaptation to 3D, 308, 373-374

game-worlds, 381-382

games, 114, 407, 412

graphics, 380

graphics vs. 3D graphics, 306-307, 327, 427

3D

accelerator cards, 249

action games, 136, 141, 374

camera, 451-452, 460

engines, 43-45, 89, 111, 132, 306-308, 369, 427, 460

game-worlds, 16-17, 87, 108-109, 115, 138,
173-176, 211, 373-374, 381, 386-387, 421, 428

games, 110, 114, 383, 407, 450-452

graphics, 152, 380

hardware, 452

modeling packages, 390

vs. 2D games, 7, 77, 89, 114, 407

3D Studio Max, 386-387

7th Guest, The, 221

A
abdicating authorship, 396-398, 400, 409

abstraction vs. representation, 283

Abyss, The, 199

academic conferences, 272

academic techniques, 437

Accolade, 202

accountants, 128-129

action games, xviii, 43, 56, 140-141, 147-149, 172, 306,
352-353, 396, 401

action/adventure games, 44-45, 133, 211, 305, 335,
413-414, 418, 420

action/exploration games, 415, 418-419

active participants, 491

Activision, 187-189, 193, 199, 204-205

actors, 18, 360-361, 371

Adams, Douglas, 182-183

Adams, Scott, 353, 368

adaptation, 182

of non-computer games, 148

story to audience, 217

addictive gameplay, 27-28, 60, 109, 156, 369

Advanced Squirrel Hunting, 261

Adventure, 197

adventure games, xx, 13, 16, 22, 43, 49, 51, 82, 126,
146-147, 179-183, 188, 190, 198, 201-202, 205,
207-208, 211-212, 230, 236-247, 249-250, 285,
298-299, 352-354, 366-368, 396, 408, 413, 429

adventure/RPG games, 237

advertising, 202, 302

Age of Empires, 30, 32, 58, 460

AI, see artificial intelligence

Alexander, Christopher, 454

Alice in Wonderland, 197

Alpha Centauri, 41, 158, 162, 163, 327, 328, 337

alpha, 480

alpha testing, 194

ambient life, 169-170, 329, 365

American Association for Artificial Intelligence, 272

Amiga, 189, 269, 438, 439

Anderson, Tim, 188

animation, 348, 350, 351, 359, 361, 363, 387-388

animators, 340, 371

animé, 300

annual revisions of games, 249

anonymity of player character, 245

anticipatory game design, 122-123, 218

antisocial, 5

Ants, The, 447

AOL, 440

Apple, 191

Apple II, 104, 180, 186-187, 192, 266-267, 349, 372,
376, 435

Apple Invaders, 347

Arabian Nights, 350

arbitrary puzzles, 415

565

arcade games, xvii, xx, 5-6, 15, 45, 53-54, 59-64, 93,
112, 149-151, 161, 179, 189, 227, 435, 485-486

arcades, 111, 113, 149, 93

environment in, 113

architecture, 455

Area 51, 112

Arkanoid, 114

art assets, 232

art bible, 292-294, 300, 302, 341

art deco, 300

art director, 328

art form, 489

Art Nouveau, 362-363

Art of Computer Game Design, The, 76, 263, 271-272

art team, 333, 335

Arthur, 199

artificial intelligence, 5, 17, 36, 46-47, 87, 100-101,
118-119, 153-154, 158-178, 231, 253, 255, 264, 288,
295, 301, 329-332, 334, 339, 341, 344, 379, 389,
393, 417, 429, 432, 473

cheating, 170

collaborative, 162

dumb actions, 163-164

environments, 172-174

equal vs. unequal, 161-162, 170-172, 331

flee/retreat, 17, 177, 330, 334

goals of, 160-170

in design document, 321, 332

irrational, 166

overpowering the player, 162

outnumbering the player, 161-162, 170

realism, 171

simple, 160-161

sophistication of, 172, 175-176

stupid, 163-164, 167, 170, 176

unfair advantage, 170

unpredictable, 164-167

artificial stupidity, 178

artists, xix, 76, 83-84, 102, 114, 116, 298, 300, 309,
334, 339, 343, 371, 388, 421

artistic license, 399

Asteroids, 62, 64, 93, 94, 98, 99-100, 100, 104, 114,
120, 151, 347

lurking, 98-99

saucer, 98, 103

Asteroids Deluxe, 99

Atari, 93-95, 100, 106-107, 109, 110-114, 265-269, 347

Atari 2600, 95, 100, 104-105, 120, 265-266

Atari 800, 186-187, 266, 290

Atari Program Exchange, 267

Atari Research Division, 268, 271

audience, 191, 203-204, 222, 231, 261-262, 311, 446,
459-460, 465-466, 489

target, 477-478, 482

audio, 220, 242, 364-365, 444

designer, 371

subconscious, 445

vs. visual information, 144

AutoCAD, 451

autonomous behavior, 403

Avalon Hill, 24, 26, 264

Avellar, Norm, 109

Avid, 358

awe-inspiring, 414

B
back-story, 227, 296-297, 300, 338-340

Back-Story Tome, 339-340, 343

Bailey, Donna, 59, 101

balance, 96, 107-108, 157, 367, 417

Balance of Power, 263, 269, 270, 273, 274, 290

Balance of Power II: The 1990 Edition, 273, 276, 277,
290

Balance of the Planet, 278, 279, 290

balancing, 36, 103, 173, 208, 256-257, 334, 341,
385-386, 388, 418, 483-486

adjusting settings and massaging data, 389-390, 466,
484

hooks for, 389-390

iterations through, 484

bandwidth, 207

Barbie, 439

Bard’s Tale, The, 142, 491

Bard’s Tale II, The, 491

Barthelet, Luc, 467

baseball, 408

basketball, 420, 423, 439

Bates, Bob, 199

Battle of Hunter’s Run, 30

Battlezone, 64, 111

behavior modeling, 454

behaviors, 160, 167-169, 177, 219, 225-226, 330-331,
362, 389-390, 455-456

Berez, Joel, 186-187

Berkeley, 95, 454

Berry, Dani, 277-278, 470

beta, 480

beta testing, 194

Beyond Zork, 188, 237, 240

Big Sleep, The, 230-231

566 Index

Bjornson, Edith, 281

Blair Witch Project, The, 185

Blank, Marc, 180, 186-188, 195

Bleszinski, Cliff, 417

blind play, 264

blister packs, 195-196

Blitzkrieg, 264

Blizzard Entertainment, 391-392

“Blowin’ in the Wind,” 273-274

board games, 26, 29, 40-41, 152, 154, 264

Boffo Games, 180, 205

Bogart, Humphrey, 205

Bond, James, 171

Bone, 244

bonus objectives, 425

bounds of game-world, 9-10, 210

bragging rights, 5-6, 63

brainstorming, 94, 101-102, 117, 193, 233

branching conversations, 39, 239, 241, 285, 298

branching stories, 232

branching tree, 366

branding, 38, 191

Braun, Jeff, 438

breadth of gameplay, 396

vs. depth, 401

breaking the experience, 364

Breakout, 94-95, 114

bridge (game of), 3

Broadway, 12

Broderbund, 348-349, 437

BSP engines, 306

BTZ engine, 190

budgets, xxi, 55, 57, 75-76, 83, 85, 115-117, 185-186,
196-197, 200, 205-206, 212, 249-250, 252, 270-271,
295, 301-302, 363, 369-371, 373, 458

builder games, 409, 434

building, 25, 407

a functional area, 256-257

as gameplay, xviii, 379, 400, 408, 451-452

game-worlds, 379

incrementally, 254-256

levels, 251

the game, 254-259

Bungie Software, 313, 384

Bunten, Dan, 277-278, 470

burn rate, 75

Bushnell, Nolan, 94

buttons, 137, 324, 352, 402, 458-459

icons for, 144

C
cabinet art, 227

Cambridge, 186

camera, 258, 308, 327

3D, 451-452, 460

control, 307

following, 374

in level editor, 380-381

Cameron, James, 188

Captain Hero, 449

card games, 189

Carlston, Doug, 348, 439

Carlyle, Thomas, 378

cartoons, 285, 362-363

Castle Wolfenstein, 94, 108

Castles of Doctor Creep, The, 350

casual gamers, 88, 204, 209, 311-312, 451-452,
459-460, 477

CD-ROM games, 207, 220-221, 359

cell animation, 18, 300

cellular automata, 437

censorship, 77

Centipede, xviii, xx, 6, 15, 53-56, 61, 63-72, 65, 67, 69,

71, 86-88, 93-94, 101, 102, 101-103, 110, 114-115,
120, 124-125, 130-132, 142, 149, 151, 154, 159-161,
215, 224, 252-253, 336, 408, 485-486

“Bug Shooter” idea, 94, 101

focus, 86

mushrooms, 55-56, 66-71, 102-103, 124

Centipede (3D version), 50, 53-55, 54, 86, 87-88, 164,
221, 252-253, 258, 313, 383, 386-387, 391, 485-486

focus, 87

level editor, 386-387

Cerny, Mark, 104

challenge, 2-3, 5, 15-16, 125-127, 129, 134, 148-150,
153-155, 160-163, 167, 169-170, 176, 237, 312, 385,
427

changes, 257-259

in development, 342

in game design, 37-38, 261-262, 369, 374-376, 390,
425, 428, 438, 484

outcome of story, 245

Chaplin, Charlie, 197

characters, xix, 13, 75, 182, 193, 198, 211, 215, 217,
219, 224-226, 230-232, 245, 249, 255, 268, 294,
296-297, 322, 330, 340, 342, 352-354, 356, 360-361,
367, 377, 425-426

in design document, 331-332

interaction, 181-182

motivations, 296-297, 354

Index 567

personality, 13

strong personalities, 229-230, 245

checkpoint saving, 16

chess, 3, 125, 163, 288

children gamers, 244

choice trees, 355

choices (player), xviii, 50-51, 58, 125-128, 215, 234,
283, 400, 424-425

consequences of, 366

involvement in, 406

meaningful, 400

off-the-wall, 367

Choose Your Own Adventure, 366

Choplifter, 348

Church, Doug, 396, 406

cinema, see film

Civil War, the, 29, 31

Civilization, 17, 20-21, 24-28, 27, 30-32, 34, 35, 37, 39,
40-41, 43, 124, 130-131, 153, 208, 235, 246-247,
249, 331, 336, 379, 397, 401, 408, 418-419, 434,
487

Civilization (board game), 26

Civilization II, 41, 124, 158

Civilization III, 39

classic arcade games, 59-64, 93, 149-151, 161

traits of, 62-64

click-and-drag, 29-30, 139

clicking, 241-243, 246, 402, 459

clone games, xx, 305-306, 347-348, 372-373

Close Combat, 160

Cmiral, Elia, 364-365

Cobb, Ron, 206

“code like hell,” 380

CodeWarrior, 389

coin-op games, 93-94, 98, 100, 102, 105, 107, 109,
110-112, 119-120, 347

collaboration, 82

artificial intelligence for, 331

between designer and player, 456

in level creation, 433

in storytelling, 396

Colonization, 41, 202

color games, 99

Columbia University, 185

comic books, 220, 280, 362-363, 489

Command & Conquer, 28, 136, 144, 215-216, 219, 221,
240, 284, 305-306, 308

commands, 294

commercial

art form, 198

feasibility, 281-282, 288-289

games, 211, 292

software packages, 386-387

committees, 33, 488

Commodore, 438, 442

Commodore 64, 350, 435

Commodore Pet, 265

communication

through sound, 445

to other game developers, 272-273

to player, 401

with team, 116, 209, 259, 317-318, 320, 433, 466

compelling interactive experiences, 492

complex systems, 122-124, 141, 279

complexity

of engine, 417

of games, 25, 27, 80, 88, 152, 156, 287, 325, 334,
367, 371, 374

of programming tasks, 393

comprehensibility, 23, 25, 60, 279, 441-442

CompuServe, 440

computer games, 137-138, 140

vs. video games, 197, 269-270, 279-280

concept document, 293-294, 302

concept sketches, xix, 300, 343

Conflict in Vietnam, 41

confusing the player, 308, 423

consistency, 8-9, 123, 222, 231, 296, 352, 361, 376, 425

console games, 139-140, 249, 409, 460

constellation, 176, 231

constrained space, 353, 408

Consumer Electronics Show, 109

continuous gameplay, 419

Control Data Corp., 95

controllers, 65, 138

controls, xviii, 75, 88-89, 95, 101-103, 109-110, 112,
132-140, 147, 151, 155, 219, 224, 241, 255, 258,
311-312, 314, 324, 333, 338, 344, 352, 357, 374,
376, 473, 475, 477, 479

bad controls, 140

configurable, 140, 380

degree of, 396, 444

multiple ways to achieve the same effect, 138-139

conversations with NPCs, 9-10, 46-48, 50-51, 181-182,
191, 218, 224-226, 239, 246, 275-276, 297-299, 310,
330, 334, 361, 388, 425, 460-461

canned, 457

dynamic, 219

keyword, 298-299

conversions, 93, 104-105, 110, 276-278, 294

568 Index

TE
AM
FL
Y

Team-Fly®

Coppola, Francis Ford, 490

copy protection, 196, 227

Covert Action, 20, 23, 25, 41

Coyote, Wile E. 105-106

Cranford, Michael, 491

Crash Bandicoot, 135, 142-143, 211

Crawford, Chris, 76, 217, 263-290, 292, 398

creation of player characters, 396

creative freedom, 103-104, 185, 265

creativity of player, 245, 265, 352, 441

critical path, 414, 423

cross-cutting, 349, 356

Cruisin’ World, 102, 420

Crusade in Europe, 41

crying, 182

Crying Game, The, 185

cult of personality, 38

cut-scenes, 17-18, 39, 167, 219-220, 222-223, 228, 246,
298, 300-301, 310, 346, 355-356, 362, 366

playback, 222-223

skipping, 223

Cyberball, 111

D
Dalai Lama, 185

Damage Incorporated, 50-53, 52, 135, 164, 168, 173,
174, 175, 176, 223, 225-226, 233, 234, 256, 257

Dane, Warrel, 73

Daniels, Bruce, 188

Dark Crystal, The, 244

Dark Forces, 221

Das Boot, 280

Deadline, 131, 179-180, 187, 192, 195

deadlines, 75-76

Deathbounce, 348

death-match, 3, 5, 256-257, 419-420

debugging, 388-389, 463, 473

DEC PDP-11, 187

DEC Rainbow, 192

Decision in the Desert, 41

Deer Hunter, 41

Defender, 15, 64, 379

depth of gameplay, 35-36, 80, 237, 239, 251, 313, 359,
396, 400-401

design, see game design

design document, 74, 83-85, 106, 117, 193, 251,
253-254, 258, 260-262, 292-296, 300-303, 316-345

artificial intelligence in, 321, 332

assumptions, 328, 331

availability of, 344

characters in, 331-332

communication in, 337

comparisons with other games in, 320

features in, 322

formatting, 318

game elements, 321, 331-334

game mechanics, 321, 323-329, 332, 334

game progression, 321, 332

inauspicious, 338-342

inconsistency, 319

Introduction/Overview/Executive Summary,
320-323, 343

items, 331-332

objects/mechanisms, 331-333

reading, 343-344

revising and updating, 344

sections of, 321-337

standard format, 317, 337

story overview, 320-321, 332, 334-335

system menus, 321, 328, 337-338

table of contents, 318, 321, 339, 343

version number, 344

weight, 343

“designed by a committee, programmed by a horde,” 33

designer’s story, 216-218, 245-246

vs. player’s story, 396-397

designers, see game designers

destruction in games, 442-443

development cycle, xvii, xix, xxi, 84, 176, 193-194,
249-250, 253, 301, 473, 479-480

changes in, 342

chaos of, 249

documentation, xix, 85, 251, 253, 291-303, 316-345

last ten percent, 435-436

Diablo, 32, 136, 201, 240, 324, 325, 333

Diablo II, 137, 325, 333

dialog, in-game, xix, 107, 168, 223, 224-226, 232, 245,
297-300, 310, 342, 351, 354, 356, 365, 429, 460-461

irritating, 230

difficulty, xviii, 15, 89, 103, 104, 126-129, 134,
154-155, 171, 183, 192, 208, 209, 232, 243, 257,
309-310, 312, 314, 335, 424, 475, 477, 481, 484

levels, 208, 242, 486

ramping up, 14, 62, 70, 149, 151, 154-155, 232, 409,
411, 483

“your game is too hard,” 485-486

Dinosaur Game (Sid Meier’s), 31

Diplomacy, 3

Dirt Bike, 95

Disney, 348, 361, 363

Index 569

Disneyland, 119

dissolves, 358-360

distribution, 185-186

documentation for development, xix, 85, 251, 253,
291-303, 316-345

dominant paradigms, 144-145

Doom, xviii, 2, 3, 5-6, 9-10, 15, 44, 51, 53, 131-132,
143, 144, 154, 161-162, 224, 230, 249, 250, 306,
330, 372-374, 384, 409, 411, 413, 418-420, 422,
427, 468

“head” interface, 143-144

Doom II, 9, 329

Doornbos, Jamie, 453

Dornbrook, Mike, 180, 187

downloadable extensions of games, 458

Dragon Speech, 280

Drakan, 327, 392

dramatic, 217, 287-288

dramatically reasonable, 284-286

dream, the, 234-235, 492

Dreamcast, 93, 120, 388

Driver, 7

driving games, 112, 249

Dub Media, 205

Duke Nukem 3D, 429

Dungeon, 95

Dungeon Master, 107, 218

Dungeons & Dragons, 107, 217-218

dying, 14-15, 62-63, 70, 102, 150-151, 154, 175, 229,
237, 243, 274, 349, 364, 462, 464

Dylan, Bob, 273-274

E
Earth Day, 278-279

Eastern Front (1941), 263, 266-268, 274, 290

easy-to-learn, 113, 138, 144, 151, 155, 192

easy-to-play, 35, 63, 64, 88-90, 237, 447

eBay, 196

economic simulations, 7-8, 24-26, 82, 130, 444

ecosystems, 443-446

Edith, 450, 463-464, 466

educational games, 278-279, 468, 469

Egyptian Rumba, 78

Elderen, Dan Van, 94, 102

Electric Ladyland, 490

Electronic Arts, 112, 182, 202, 277-278, 467

Electronic Entertainment Expo, 33, 272

Elements of Style, The, 291

Elliot, Lauren, 350

Ellipsis Special Document, 338-339, 340, 342

Ellison, Harlan, 42-43

embedded help, 401-402, 459

embracing limitations, 46, 54-57, 409

emergence, 123-125

Emotion Engine, The, 288

emotions in games, 6, 75, 182, 268, 286-288, 335,
460-462

Empire, 21, 26, 277

Empire Strikes Back, The, 181

empowerment, 396, 491

Enchanter, 184, 188

end-games, 17

Energy Czar, 290

engine, 43-46, 89, 142, 313, 379, 394, 417, 484

licensed, 46

entity editors, 386

epic stories, 39-40, 80

Erasmatron, 263, 280-289, 285

creation of story-worlds, 281-282

pre-determined ending, 283

story-worlds, 281-282, 285

verbs, 286

escapism, 7, 405

eternal vigilance, 418

ethics, 461-463

Excalibur, 290

expandability, 463-464

expansion packs, 191

expectations (player), 8-19, 131-132, 160-161

experimental games, 185-186, 249, 259, 447, 466

experimentation, 200, 245, 250-251, 253, 259, 399-400

with game design, 372

exploration, xviii, 15-17, 25, 48, 148, 232, 237,
244-245, 255, 413-415, 417-418, 420-421, 426,
428-429, 431, 441, 481

extension of the player, 352

external materials, 219, 227-228

F
F-15 Strike Eagle, 20, 41

F-19 Stealth Fighter, 20, 41

facial expressions, 285

fairness of game-world, 14-15

Fallout, 15, 409, 413

Falstein, Noah, 129-130

fame, 38

familiarity, 139

development team with project, 258

with game-world, 131

with subject matter of game, 398-399

570 Index

family gaming, 204

fan letters, 449

fans, 231, 478

fantasy fulfillment, 7-8, 13

feature-creep, 84

feedback, 12, 35, 94, 141-145, 185, 194, 476, 480,
482-483

between designer and programmer, 259

on game design, 469-470, 474

positive to player, 422

feel of gameplay, 103, 116, 122, 254, 260-262, 384,
428-429, 486, 488

feng shui, 454

field testing, 94-95, 111

fighting games, 101, 112

film, 228, 346, 348, 355, 440, 489

scripts, 298

techniques, 348, 355-356

filming, 357-358

Final Fantasy, 33

finishing games, 129

Firaxis, 20, 33, 39

first impressions, 14, 258-259

first-person shooter, xx, 21, 44-45, 48, 131-132, 140,
164, 177, 212, 233-234, 305, 307, 328, 332, 335,
337, 374, 408, 425, 428-429

first-person view, 327, 356

first-time players, 475, 485

Flanagan, Bob, 99, 107

flexible simulation of game elements, 406

Flight Simulator, 435

flight simulators, 20, 37-38, 43, 45, 335, 408

flow of game, 73, 410, 428

flowcharts, 295, 343

Floyd, 181-182

FMV, see full motion video

focus, xix, 74-92, 250, 279, 292, 303, 320, 322,
400-401, 412, 433, 453

change of, 84-88, 456

comparisons in, 79-80

establishing, 74-76

example, 78-79

fleshing out, 83-84

maintaining, 82

present tense, 78

referring to, 83-84, 87

size, 75

sub-focuses, 88-91

using, 91-92

writing it down, 80-81

focus groups, 18-19, 395, 453, 487-488

focused game design, 238-239, 253, 308, 349, 458

food in games, 130-131, 141

football, 103

Football (4-player conversion), 99, 101, 120

foreshadowing, 217

Forester, Jay, 436

Forge, 384, 385

Fossilized Document, 342, 344

franchises, 451, 478

Free Tibet, 185

freedom of player, 129, 284, 397

Freeman, Gordon, 230

Frogger, 53, 61

frustrated linear writers, 228-230

frustrating gameplay, 16-17, 192, 210, 243, 341, 401,
424-425

full motion video, 18, 217, 221, 356, 359-260, 362

fun, 36-37

as sine qua non, 279-280

functional specification, 294

funding, 253-254

fuzzy logic, 166-167

G
Gaia hypothesis, 443, 447

Galaga, 61, 151

game design, xviii-xxii, 122, 124-125, 128, 136, 208,
229-230, 233, 265, 292, 367, 371, 475, 489

anticipatory, 122-123, 218

artificial intelligence, 160

by committee, 488

changes in, 37-38, 261-262, 369, 374-376, 390, 425,
428, 438, 484

elegance, 152

elements of, 145

evolution of, 32, 40, 115

experimenting with, 372

extrapolatory approach to, 279

experience at, 459, 486

goals, 161, 425

modular, 351

open-ended, 457, 461-462

original, 114, 117, 201, 249-250, 348, 371, 374,
404-405, 434

personal, 33

philosophy, 237

rules, 19, 22, 40, 101, 122, 145, 237, 486

simplicity, 93, 97, 147, 151-152, 155-157, 237, 239,
241, 352, 364, 401, 481

Index 571

tools, 378-394

unconventional, 275-276

unexplored territory, 32

uniqueness of, xx, 75, 322, 332

vision, xxi, 118, 147, 303, 337, 344, 433, 487-488

game designers, xvii, xix-xxi, 19-20, 71-72, 74, 76, 83,
93, 102, 125, 128-130, 139-140, 145, 178, 216-217,
227, 232-233, 249-250, 259-261, 277, 289, 292,
299-300, 303, 308, 317, 334, 338, 340, 342,
344-345, 368, 378, 385-386, 388, 396, 401, 411,
414, 418, 420, 425, 429, 431, 458, 470, 473-474,
476, 479, 481, 484-485, 489

designer/programmers, 33-34, 71-72, 82-83, 116,
209, 259-261, 308, 466

vs. programmers, 390-393

Game Developer’s Conference, 129-130, 170, 176, 185,
263, 272-273, 281, 396, 439

game engine, xviii, xxi, 191, 220-221, 249, 251-252,
254, 259-260, 281, 300, 384, 407

“game sense,” 103

GameFX, 203, 206

gameographies, 41, 120, 213, 290, 377, 470

gameplay, xviii-xix, 43-46, 48, 53-57, 61-64, 323

addictive, 27-28, 60, 109, 156, 369

assumptions about, 251

continuous, 419

depth of, 35-36, 80, 237, 239, 251, 313, 359, 396,
400-401

editor, 390

feeling, 103, 116, 122, 254, 260-262, 384, 428, 429,
486, 488

frustrating, 16-17, 192, 210, 243, 341, 401, 424-425

hardwiring, 123

non-linear gameplay, 365-367

variations on, 95, 105, 149, 250, 372

game-world, 75, 215

boundaries, 9-10, 210

characters, 13

conversations, 9-10

editing, 383, 385-388

fairness, 14-15

objects, 387

rules, 114, 361

seamless, 410

understandable, 23, 25, 60, 279, 441-442

gamers, see players

games

definition of, 284-285

elements, 335, 351

emotional involvement in, 247

innovative, 249, 404, 434, 487

length, 205, 208-209, 349

literary, 191, 200

mechanics, 256, 296, 426

modes, 327

naming, 77-78, 186-187, 204-205

people in, 457

playing time, 205, 208-209, 349

progression, 335-336

replaying, 129, 169, 208, 242, 246, 418

repercussions in, 400

simple, 203-204

solitaire, 3, 5, 153, 178, 222, 491

sophisticated, 407

stages in, 335-336

stories, 230-234

storytelling techniques, 218-228

systems, 483

vs. toys, 439-440

waves, 335-336

gamma testing, 194

Garriott, Richard, 316

Gauntlet, 93, 105, 106, 106-108, 111, 114, 117, 120

Gauntlet II, 93, 99, 108, 120

Gauntlet III, 108

Gauntlet Legends, 115

genres, 21-22, 112, 201-202, 354, 367-368, 372-373,
377, 478

Gettysburg!, 20, 24, 28, 29, 30, 31, 36, 40-41, 139, 416

Gilbert, Ron, 238-239

Glass, Philip, 185

Global Conquest, 277

Global Dilemma: Guns & Butter, The, 277, 278, 290

goal-oriented games, 397

goals, 130, 396-397, 406, 416, 422

accomplishing incrementally, 12

bonus objectives, 425

directed by, 440-441

game-world, 10-12, 101-102

project, 76

of AI, 166

of game design, 268, 280

optional, 423

sub-goals, 422

Godfather, The, 490

God-games, 24, 44

gold master, 249

Goldberg, Rube, 350

golf, 112

Gollop, Julian, 121

572 Index

Gone With the Wind, 197

“good artists borrow, great artists steal,” 144-145

Gorlin, Dan, 348

Gossip, 268-269, 275-276, 290

Graduate, The, 350

grammatical mistakes, 320

Grand Unified Game Theory, A, 129-130

graphic adventures, 49, 190, 206, 208, 241

graphical games, 200, 207-208

graphics, xviii, xxi, 32, 37-38, 89, 102, 128, 151-152,
172, 188-191, 194, 197-200, 202, 205, 212, 249,
252, 257, 267-268, 279-280, 285, 288, 300, 357-360,
362-363, 365, 367, 370, 376, 381, 387-388, 392,
407, 430, 432-433, 435, 437-438, 448, 450-451,
474-475

greed, 281

Greek mythology, 43, 58

green-lighting games, 254, 293, 343, 470

Griffith, D.W., 349

Grim Fandango, 148, 212, 240, 261, 262

GUIs, 12, 137, 142-144, 191, 241-242, 327-328, 376,
475, 479

front-end, 328

Gunship, 41

H
Half-Life, 46-47, 133-134, 177, 219, 224, 230, 332,

337, 381, 390, 410, 416

Hard Drivin’, 111

hard-boiled detective novels, 59

hard-core gamers, 88, 135, 203, 208, 243, 261-262,
311-312, 374, 394, 397, 459, 463, 475, 477-478

hardware, 96-97, 100-102, 106, 111, 114, 117, 288, 409

hardwiring, 123

Hasbro Interactive, 53, 56

Haslam, Fred, 448

Hawks, Howard, 230-231

Heads Up Display, 141-143

height-map, 386-387

Heinlein, Robert, 181

Hellcat Ace, 41

Henry V, 287

hex-grid, 264

hidden movement, 264

hideous execution device, 171

high-brow audience, 190

high-concept ideas, 44

high scores, 5-6, 60, 63, 100, 151

Hindenburg, The, 452-453

hint books, 208, 243

historical games, 7, 31, 34, 36-37, 416

hit games, 91, 274, 369-370, 446

hit-driven business, 271

Hitchcock, Alfred, 130, 356, 490

Hitchhiker’s Guide to the Galaxy, The, 180, 182-183,
193, 198, 202, 210, 213

babel fish puzzle, 183

hobbies, 440, 464

Hobbit, The, 244

Hobbs, Ed, 350

Hodj ’n’ Podj, 203, 204-205, 209, 213

“holding the reins tightly,” 292

Hollywood, 171, 185, 280, 288, 317, 365, 372-373

Hollywood system, 249

home games vs. coin-op games, 104-105, 112-113,
119-120

humorous games, 184

hybrid games, 188-189, 201-202, 237, 305

hyperlinks, 319-320

I
I Love Lucy, 197

IBM 1130, 164

IBM PC, 187, 189

iconic interface, 457, 459-461

buttons, 144

id Software, 306, 394

ideas, 19, 42-58, 94, 99, 101-102, 109, 117, 184, 211,
233, 260, 272-273, 275, 369, 429

pie-in-the-sky, 331

sharing with other developers, 272-273

starting with gameplay, 44-45

starting with story, 48-50

starting with technology, 45-47

unusual/wacky, 470

illustrated text adventures, 190

imagination, 37-38, 200, 230, 245

immersion, 12-13, 136, 140, 143, 215, 227, 305, 353,
406

improvised theater, 160

independent developers, 273

Independent Games Festival, 185

Indiana Jones and the Infernal Machine, 411

infinite play, 62, 64, 150

Infocom, 49, 179-181, 184, 186-198, 191, 199, 212,
219, 227-228, 237-238, 249-250, 270, 476

development system (ZIL), 183, 190-193, 197

Imp Lunches, 193, 476

implementors, 188-189, 193, 196, 228

in-game storytelling, 219, 224-227, 310

Index 573

innovative games, 249, 404, 434, 487

input/output, 65-66, 136-145, 241, 401, 480

Inside Mac Games, 347, 377

Insomniac, 409

intellectual property, 267-268

interaction between player and game’s creator, 491

interactive

experience, 223-224

fiction, 179, 182, 184, 237

movies, 17-18, 220-221, 228, 355

storytelling, 169, 215-216, 218, 234-235, 263,
287-289

television, 40

writing, 228-230

Interactive Fiction Plus, 184, 191

interactivity, xviii, 40-41, 231, 246-247, 284, 346, 491

interconnectedness, 66-68

interesting decisions, 21, 25, 27-28, 425

interface, 118, 198-199, 202, 239-241, 269-270, 275,
327-328, 357, 374, 376, 401-403, 447, 458-459

conventions/standards, 29, 35, 241, 402-403

single-button, 239

transparent, 364

typing, 199, 237

Internet, xx, 4, 41, 114, 157, 185-186, 204, 206-207,
284-285, 288, 440, 458, 465, 473, 481

interpersonal relationships, 169, 268

interpreters, 192-193

intuitiveness, 133, 141, 192, 242, 258, 364, 401, 475,
480

inverse kinematics, 58

inverse parser, 275, 286-287

invisible art, 136, 144-145

isometric, 451-452, 460

iterative, 259, 294, 385-386, 484

J
Jarvis, Eugene, 214

jazz, 489

jigsaw puzzles, 147-148, 358, 407

Jimi Hendrix Experience, The, 490

Jones, Chuck, 105-106

Jones, Jason, 304-306, 309, 486

Journal of Computer Game Design, 263, 272

Joust, 62, 408

joystick, xvii, 270, 348, 352, 357

Jung, Carl, 375

K
Karateka, 221, 222, 346-347, 348, 349, 350, 355, 368,

374, 376-377

Kassar, Ray, 268, 271

Kawasaki, Guy, 266

Kay, Alan, 268

Keaton, Buster, 197

keyboards, 137-138, 222, 312, 324

Kieslowski, Krzysztof, 491

KIM-1, 264

King’s Quest, 212

kleenex playtesters, 469, 475

Koble, Dennis, 95, 265

L
Lakehurst, 452

LAN-fests, 3

Lanning, Lorne, 142

laser disk games, 105-106

Last Express, The, 222, 223, 346-347, 352-372, 353,
356, 357, 360, 362, 366, 372, 377

Le Morte D’Arthur, 282, 283, 289

lead artist, 340

lead designer, 302, 433

lead programmer, xix, 260-261, 301, 453

leadership, xxi-xxii

leading the player, 10-11, 130, 284

Leaping Lizard Software, 53

learning, 2, 29, 63, 132-133, 136, 453, 469

to program, 260

Leather Goddesses of Phobos, 186-187, 196, 208, 213

Leather Goddesses of Phobos II: Gas Pump Girls Meet

the Pulsating Inconvenience from Planet X, 213

Lebling, Dave, 179-180, 188-189, 193

Legend Entertainment, 180, 199, 202

Legend of Zelda: Ocarina of Time, The, 135, 222,
441-442, 457, 465

Legionnaire, 265, 290

legitimate art, 489

LegoLand, xvii

Legos, 11, 451-452

Lemmings, 325, 329

length of game, 349

“less is more,” 137

level design, 173, 177, 256, 406-433

aesthetics, 413, 416-418, 429, 432

architecture, 414, 427-429

branching, 418

“faking,” 417

hub levels, 418

574 Index

one designer, one level, 432-433

process, 425-432

puzzle solving, 413, 415, 418, 421

rules of, 421-425

sketches of levels, 427, 429

level designers, 330-332, 335, 379, 385-387, 391, 407,
410-413, 416-417, 421, 426, 432-433

level editors, 378-394, 417, 436

auto-transitioning in, 392

bug-free, 394

debugging information, 382-384

desired functionality, 380-388

editing view, 381

entity only, 386

flight mode, 380-381, 384

importing files, 386

landmarks, 423

multiple views, 381

player’s view, 380, 385

software vs. hardware rendering, 381

top-down view, 381, 386-387

viewing invisible objects, 383

visual mode, 384-385

visually authentic view, 382-384

levels, xix, 85, 165, 172-175, 177, 216, 223, 250,
252-253, 255, 257-258, 294, 310-311, 324, 326,
331-332, 335-336, 344, 379, 407, 474-475, 483

action, 413, 418, 421

alternate paths, 420

auto-generated, 379

backtracking in, 423

beginning point to end point, 418

conflict in, 413

elements, 421-425

failure in, 424

flow of, 411, 414, 418-421, 431

quality of, 387

loading, 409, 410

navigable areas, 424

order, 410-412

predictability of the, 419

progressions, 302

separation, 409-410

settings, 224

shoot-out, 410

start location to end location, 420

strategic, 410

synergy with story, 415

tutorial/training, 134

Levy, Jim, 187

licenses used in games, 76, 201

life algorithm, 104

“life with the dull bits cut out,” 130, 399

limitations, 50, 54-57, 60-61, 195, 233, 308, 351, 367,
375-376, 409, 452

embracing, 46, 54-57, 409

“line look,” 191

linear, 125, 214, 245, 420

fiction, 182

form, 377

setting, 355, 367

vs. non-linear, 182

Lisa, The, 438

literary games, 191, 200

living worlds, 169-170, 354, 356

Loch Ness Monster, 449

Logg, Ed, 59, 71-72, 86, 93-120, 124-125, 268

logic, 159, 166-167, 172, 245, 403

lone wolf developers, xxi, 55, 57, 80-83, 198, 273,
435-436

Loom, xx, 238, 240, 242, 244, 246, 236-247

lottery, 92, 370

Lovecraft, H.P., 300

Lovelock, James, 447

low-brow audience, 200

LucasArts, 49, 190, 236-239, 244

luck, 153-154

Lunar Lander, 94

Lurking Horror, The, 196

M
Macintosh, 143, 189, 191-192, 197, 241, 266, 269, 276,

285, 358, 438-439, 450

MacPaint, 438

Macro-Economic Conquest, 278

MacSoft, 51-52

magic numbers, 484

Magic: The Gathering, 313

mainstream audience, 357

Major Havoc, 108

managers, 338-339

Maniac Mansion, 49, 238, 240-241, 409

manuals, 31, 89, 132-133, 195-196, 219, 227-228,
237-238, 240-241, 243, 329, 347

Marathon, 51, 131, 215, 225, 305, 307, 313, 384, 486

Marathon 2, 51, 53, 164, 226, 305-306, 486

Marathon Infinity, 384

Marine Corps, 168

Mario, 377

Mario Bros., 62

Index 575

marketing, 75, 91, 102, 104, 110, 157, 187, 193, 227,
234-235, 266, 284, 295, 302, 313, 322, 354, 371,
394, 453, 477-478

marketplace, the, 198, 368, 407, 438

Markle Foundation, 281, 282

mass market, 261-262

mass medium, 491

massively multi-player, 4

Maxis, 142, 438, 439, 450-451, 467-468, 475

Maya, 387

Maze Invaders, 105

Maze Wars, 180

McCarthy, Pat, 106

McCloud, Scott, 280, 283, 456, 489

McLuhan, Marshall, 490

“meat on the bones,” 194, 200, 205, 208

Mechner, Jordan, 346-377

MechWarrior 2, 221

media, xvii, xxii, 40-41, 219-220, 224, 228, 490-491

Meier, Sid, 20-41, 80, 139, 277, 434

menus, 199, 283, 285-286, 295, 376, 402-403

pop-up, 286-287, 390, 402-403

Meretzky, Steve, 6, 179-213, 228, 476

metagame, 420

Metrowerks, 389

micro-management, 24-25, 340, 404

Microprose, 20, 33, 38

Microsoft, 389

Middle Earth, 36

middle-brow audience, 190

Midway, 102

Millipede, 93, 99, 103-105, 110, 120

Mind Forever Voyaging, A, 180, 184-185, 191, 202,
208, 209, 211, 213, 215

mini-games, 22-23, 80, 205

minimal, 56, 244-245

Minotaur, 304, 306

Missile Command, 61, 379

mission statement, 74

MIT, 180-181

MIT Lab for Computer Science, 180

mixing media, 224

Mixon, Laura, 282-283

Miyamoto, Shigeru, 1, 414

mock-ups, 300-301, 338

modeling reality, 130-132, 145

modernization, 53-54

mods, 388, 394

Molyneux, Peter, 472

Monopoly, 3, 224, 364

Moore, Rich, 94

morals, 184-186, 211, 281, 461-463

Moriarty, Brian, 176, 188, 200, 231, 236, 237-239

mouse, 136-138, 198-199, 239, 312, 327, 337, 357,
402-403, 438, 459

cursors, 357

movement in game-world, see exploration

Mucha, Alphonse, 362-363

MUDs, see Multi User Dungeons

M.U.L.E., 3, 277-278, 470

Multi User Dungeons, 3-5

multi-media, 224

multi-player games, 3, 31, 40-41, 107, 110-111,
164-165, 178, 206, 222, 304-305, 313-314, 419-420,
491

chatting in, 4

memorizing the map, 420

multiple choice responses, 224-225

multiple lives, 62, 64, 150-151

multiple paths, 424-425

multiple solutions, 10, 81, 122-128, 481

murder mystery, 283

Murder Off Miami, 195

music, 242, 364-365

musical theater, 12

Myst, 146-148, 215, 239, 369, 452

Myth: The Fallen Lords, xx, 304-315, 307, 309, 311,
314, 416

N
name above the title, 38

naming a game, 77-78, 186-187, 204-205

National Center for Atmospheric Research, 444

NATO Commander, 41

natural language, 191-192, 239-240, 285, 342

navigation, see exploration

Nazis, 453

NEC PC-800, 192

NES, 120

networked games, 256-257, 304-305

New York, 42

New York Times Book Review, 179-180

New York Times, The, 204

New Zork Times, The, 204

Next Generation, 40

Next Tetris, The, 148, 150, 153, 156, 165, 487

NFL Blitz, 15

Nintendo, 64, 93, 110, 112-113, 120, 460

Nintendo Entertainment System, 109-110, 435

Nintendo Gameboy, 151

576 Index

non-default responses, 210

non-gamers, 477

non-interactive experience, 220, 222-224

non-linear gameplay, 365-367

non-linear storytelling, 50-51, 81, 377

non-linearity, 125-130, 145, 169, 232, 298-299, 355,
418, 420, 423

implementation of 127-129

purpose of, 129-130

non-player characters, 48, 50, 169, 191, 218, 224-226,
230, 298, 324, 330-331, 335, 383, 386, 388-389, 429

non-transitive relationships, 275-276

notebook, 84, 231, 292

Notes on the Synthesis of Form, 455

novice players, 135, 208, 243, 257

NPCs, see non-player characters

nuance, 286

NURBS, 327

O
object behaviors, 388-390

obsolescence, 32

Oddworld: Abe’s Oddysee, 142

Odyssey: The Legend of Nemesis, 50, 51, 81, 82, 127,
128, 135, 251, 252, 381-382, 392

non-linear storytelling in, 50-51, 81

off-the-wall games, 470

on a rail, 130

one person, one game, 71

one-handed playing, 136

online community, 440

order of challenges, 125-126

order of story components, 232

organic process, 193, 207-208, 251-254, 294, 456

Orient Express, 353-354, 360

Origin, 270-271

original game designs, 114, 117, 201, 249-250, 348,
371, 374, 404-405, 434

origins of game development, 43

Othello, 100-101, 120

out-of-date, 342

out-of-game storytelling, 219-224

Overkill Document, 340-341, 343

over-the-shoulder view, 373

P
packaging, 191, 195-196

Pac-Man, 53-54, 61-63, 101, 105, 151, 222, 408-409,
487

paint programs, 436, 438

Pajitnov, Alexey, 146, 148, 152, 156

palette, 331-332, 335

parsers, 182-183, 191-192, 197, 210-211, 237-240, 275,
342

participation, 491

particle system, 259-260

patches, 249

pathfinding, 175, 177, 324, 330-331, 417

paths in the game-world, 229, 382-383, 420

Pathways into Darkness, 305

Pattern Language, A, 454-455

Patton Strikes Back, 290

Patton vs. Rommel, 290

payoffs, 34

PDP-11, 347

Peart, Neil, 248

pen-and-paper games, 152, 217-218

pentomino, 147-148, 152, 156

people in games, 457

people not things, 268, 276, 287, 398

persistence, 466, 470

persistent universes and worlds, 4-5

personal game design, 33

personal investment, 489

Personal Software, 195

personalities, 219, 225-226, 229-230, 233-234, 332,
354, 356, 400

Photoshop, 386-387

physics, 77, 306, 309, 324-325, 415

Pie-in-the-Sky Document, 341-342

pie-in-the-sky ideas, 331

Pierce, Tomi, 354

pinball, 9, 62, 97, 111

piracy, 196, 435

Pirates!, 20, 22, 23, 25, 32, 38-39, 41, 80

pitch document, 293-294

Pizza Time Theater, 95

place-holder art, 252, 256

Planetfall, 6, 181, 188, 193, 209, 211, 213

platform independent, 324, 464

playable builds, 256

player freedom, 103

player surrogate, see surrogate

player’s story, 216-218

vs. designer’s story, 396-397

players,

capabilities of, 324

casual gamers, 88, 204, 209, 311-312, 451-452,
459-460, 477

children gamers, 244

Index 577

choices, xviii, 50-51, 58, 125-128, 215, 234, 283,
400, 424-425

comprehension, 23, 25, 60, 279, 441-442

creativity of, 245, 265, 352, 441

expectations, 8-19, 131-132, 160-161

failure in game, 14, 424

families, 204

fooling, 456

freedom in game-world, 129, 284, 397

hard-core gamers, 88, 135, 203, 208, 243, 261-262,
311-312, 374, 394, 397, 459, 463, 475, 477

high-brow, 190

involvement of, 216-218

knowledgeable of subject matter, 31, 34, 398,
457-458

leading, 433

learning, 453

low-brow, 200

mainstream, 357

middle-brow, 190

novice players, 135, 208, 243, 257

novice vs. expert, 138

pride, 391, 393, 409

reacting to, xviii, 148, 159, 329, 330, 362

respect for, 361

responsibility of, 226-227

rewards for, 134, 243, 417, 422, 427

risk taking, 155

sense of accomplishment, 101, 154-155

success, 11, 14, 234, 424

teaching, 132-136, 145, 405

women gamers, 101-102

younger gamers, 184

playing experience, 482

“playing it in my mind,” 99

playing other games, 486

playing pieces, 26-27

playing the game, 35-36, 250, 472

playing time, 205, 208-209, 349

PlayStation, 112, 135, 139, 409

PlayStation 2, 288

playtesters, xxii, 136, 183, 204, 256-257, 375, 459,
473-478

first-impression, 475, 477, 479-480

friends as, 477-478

kleenex testers, 469, 475

traditional, 475, 480, 482

trusting, 479

who should test, 474-477

playtesting, xix, xxi, 18-19, 36, 98-99, 137, 140, 173,
180-181, 183, 193-194, 197, 257-259, 341, 385-386,
401, 431-432, 457, 469-470, 472-488

coaching during, 481

complaints about game design, 482

early, 479

fresh eyes, 475

guided vs. unguided, 482-483

how to, 481-482

time for, 479-480

watching instead of telling, 481

plot, 230-231, 283

pocket veto, 260

point-and-click, 49, 191, 239-241, 324, 337, 357, 438

adventure games, 191

Pokemon, 1

Pole Position, 420

political gameplay, 25

Pong, 100, 105, 95

popularity, 198

Populous, 44

pop-up menus, 286-287, 390, 402-403

ports, 93, 104-105, 110, 276-278, 294, 388

Portwood, Gene, 350

positive reinforcement, 12

PR, 186, 202, 302

predetermined, 214, 229-230, 418

outcome, 397

story, 165, 246-247

predictably buggy, 394

pre-production, 334, 412

prequel, 188

press, xx, 147, 186, 202, 234-235, 364, 372

Prime Target, 53

primrose path games, 366

Prince of Persia, 133, 142, 326, 346, 350, 351, 352,
354-355, 367-368, 374-377, 375

Prince of Persia 2, 352, 356, 377

Prince of Persia 3D, 373-374, 377

producers, xix, 76, 207, 249, 298-300, 322, 337,
342-343, 371, 467

production cycle, see development cycle

production values, 186

profitability, 91, 185

programmers, xix, xxi, 76, 83-84, 102, 114, 152, 160,
166, 170-171, 173, 176, 207, 249, 254, 259-261,
265, 301, 308, 324, 328, 330-331, 333-334, 340,
342, 379-380, 383, 385-386, 388-389, 410, 421, 438,
453-454, 466, 474, 484

578 Index

TE
AM
FL
Y

Team-Fly®

designer/programmers, 33-34, 71-72, 82-83, 116,
209, 259-261, 308, 466

vs. designers, 390-393

programming, xvii, xix, xxi, 96-97, 100-101, 106, 108,
114, 128, 171, 183, 208, 265, 268, 301, 348, 351,
368-369, 371-372, 375-376, 379-380, 388, 433,
435-436, 463-464, 473

complexity of tasks, 393

Project Z, 452-453

proof-of-concept, 250

proposal document, 293-294

proprietary tools, 386, 388

protectionist, 394

prototyping, 34-35, 37-38, 117-118, 250, 253-254,
256-257, 262, 448

publisher, 74, 76, 157, 202, 245, 254, 274, 276,
292-293, 295, 302, 312, 343, 368-369, 371, 434, 439

Pulitzer Prize, 447

puzzle games, 105, 112, 147-149, 189, 413

puzzles, 13, 15, 68, 122-124, 126, 129-130, 136,
148-149, 156, 183-184, 191, 193-194, 200, 202, 209,
211-212, 243, 245-246, 326, 332, 335, 366-367, 410,
412, 417, 421, 425, 429, 483

arbitrary, 243, 415

single-solution, 148

Q
Q*Bert, 63

Quake, 3, 44, 46-47, 91, 138, 143-144, 284, 313, 325,
328, 338, 381, 410-411, 419, 468

Quake II, 47, 313

Quake III Arena, 55, 412, 413, 427, 428

Quake IV, 55

Quake XIII, 55

quality games, 197, 237, 407

R
racing games, 44, 396, 408, 420, 429

Radio Shack, 195

Raid Over Bungeling Bay, 435-436, 471

Raid Over Bungeling Bay II, 468

Raider, 53

Raiders of the Lost Ark, 350

Railroad Tycoon, 20-21, 23-26, 24, 26, 30, 34, 39, 41,
325

Railroad Tycoon II, 39

Rains, Lyle, 94, 98

ramping up difficulty, 14, 62, 70, 149, 151, 154-155,
232, 409, 411, 483

randomness, 92, 102-103, 114, 152-155, 159-160,
165-167, 176, 226, 299, 336, 443, 448, 453

reacting to player, xviii, 148, 159, 329-330, 362

realism, 36-37, 160, 166, 170, 274, 278, 361, 399,
452-453, 469

modeling, 130-132, 145

vs. abstraction, 132

vs. cartoons, 285

real-time, 22, 28-29, 68, 222-223, 341, 354, 356, 364

3D graphics, xxi, 138, 221, 374

graphics vs. pre-rendered, 327

vs. turn-based, 21, 22

real-time strategy games, xxi, 20-22, 28-30, 43, 52, 58,
138-139, 162, 208, 212, 305-312, 314, 324, 331-333,
335, 423, 429, 447-448, 473

Rear Window, 356

reasonable solutions, 10, 194

recombining game elements, 351

Red Baron, the, 110

red herrings, 246

Red Planet, 181

redoing work, 83, 85-87, 173, 194, 251-253, 258, 313,
413, 426-427, 429

releasing development tools, 394, 464

remakes, 8, 10, 27, 53-54, 86, 114-115

repetition, 15-16, 319, 460-461

replaying games, 129, 169, 208, 242, 246, 418

representation vs. abstraction, 283

research materials, 26

respect for the player, 361

responses to input, 210-211, 224-225

Return of the Jedi, 181

revolutionary improvements, 40, 434

rewards for the player, 134, 243, 417, 422, 427

rewatching, 223

rewinding the game, 364

reworking, 83, 85-87, 173, 194, 251-253, 313, 413,
426-427, 429, 258

Reynolds, Brian, 158

Rich Text Format, 318-319

Riot Engine Level Editor, 389, 392

Rivera, Greg, 109

Road Runner, 105-106

Roberts, Chris, 270-271

Robotron 2084, 161, 162, 332

Rocket Science Games, 205

rock-paper-scissors, 275-276

role-play, 8, 12-13, 23-24

role-playing games, xx, 43, 45, 48, 50-51, 82, 101, 122,
127, 130-131, 135, 141-142, 160, 167, 188, 201-203,
208, 217-218, 237, 298, 324, 333-335, 368, 396,
408, 416, 418, 420, 422, 429

Index 579

RollerCoaster Tycoon, 32-33

romance, 58, 171

Ronin, 365

Rotberg, Ed, 111

rotoscoping, 348, 363, 370-371

Royce, Wanda, 268

RPGs, see role-playing games

RT3D, see real-time 3D graphics

RTS, see real-time strategy games

Rubik’s Cube, 2

Rubin, Owen, 94

rules

of game design, 19, 22, 40, 101, 122, 145, 237, 486

of level design, 421-425

of the game-world, 114, 361

Russia, 147, 151, 157

S
S.S.I., 267

Sakaguchi, Hironobu, 33

sales, 188-190, 202, 211-212, 276, 295, 301-302,
367-368

San Francisco Rush, xviii, 15, 93, 102, 113, 114, 120,
215, 397, 413, 420, 422

San Francisco Rush 2, 120

San Francisco Rush 2049, 119, 120

Santa Fe Research Institute, 444

satire, 201

save/load game, 15-16, 337, 364, 409

automatic/checkpoint, 16

Saving Private Ryan, 280

scale, 24, 27, 30-31

scenarios, 30-31, 336, 419

scents, 196

schedules, 55, 57, 85, 115-116, 176, 197, 249-250, 295,
301-302, 369-371, 480

scheme for world domination, 171

Schenectady, 42

Schindler’s List, 280

schlack, 417

science fiction, 181-182, 187

Science Fiction Authors of America, 180

scope, 21, 80

scoring, 5-6, 60, 63-64, 70, 100, 102, 104, 142, 151,
153-155, 422

Scrabble, 3

SCRAM, 290

scratch ’n’ sniff, 196

screenshots, 157, 417

screenwriting, 350-351, 376-377

script, xix, 251, 254, 294, 297-300, 303

scripted behaviors, 224, 226

scripted events, 48, 177, 390, 457

scripting languages, 388-390, 463-464

compiling, 389-390

scriptwriters, 230-231, 299, 371, 411

SCUMM Story System, 49, 238-239

seamless world, 410

Seastalker, 184

second guessing, 477-478

Secret of Monkey Island, The, 238-239, 244

Sega, 460

Sega Dreamcast, 93, 120, 388

selection of challenges, 126-127

Sente, 111

sequels, 39, 95, 188, 274, 276-277, 296-297, 332,
372-373, 449-451, 478

serious games, 184-186, 202, 270

setting, xviii, 53-54, 75, 151, 157, 171, 294, 415, 423

Settlers of Catan, The, 3

Seven Samurai, The, 348, 349

Shakespeare, William, 197, 287

shareware, xxi, 157, 186

Shattertown Sky, 282

Shaw, Carol, 100

shell-shocked, 168-169, 226

Shelley, Bruce, 24

Sheppard, Dave, 99

Shogun, 189

shooters, 53, 68, 112, 118, 334

show don’t tell, 167, 224, 227

side-scrollers, 408

side-view, 327, 373

Sierra, 190, 192, 249

adventure game engine, 190

Silent Service, 41

silent slapstick comedy, 59

Silicon Valley, 281

Sim games, 142, 444

SimAnt, 444, 446-449, 446, 448, 452, 471

encyclopedia in, 447

interest in subject matter, 337

meta-level disasters, 448

mystery button, 447-448

SimCity, xviii, 11-12, 21, 26, 32, 34, 131, 186, 235, 279,
325, 332, 336, 379, 403, 408, 434, 436-440, 436,
438, 441, 443-444, 448-451, 457, 460, 469, 470-471

disasters in, 442-443

inspiration for, 436

SimCity 2, 447

580 Index

SimCity 2000, 336, 438, 444, 448-451, 449, 471

SimCity 3000, 11, 438, 451-452, 452, 459-460, 467

SimCopter, 450, 451-452, 468, 471

SimEarth, 279, 398, 443, 444-446, 445, 448, 469, 471

audio in, 444-445

SimFarm, 444

SimLife, 444

simple games, 203-204

simplicity in game design, 93, 97, 147, 151-152,
155-157, 237, 239, 241, 352, 364, 401, 481

simplification, 279, 287, 312, 458

Sims, The, xx, 32, 136, 144, 160, 161, 249, 287-288,
327, 395-405, 397, 399, 402, 404, 434, 440, 442,
444, 448, 450, 452, 454, 456, 457-459, 460, 461,
463-464, 465, 467, 469, 470, 471, 475, 476, 487

accessibility, 459

interpretation by players, 456-457

social aspects of, 396, 456, 463

SimTower, 444

simulation rides, 119

simulations, 7-8, 11-12, 20, 88, 110, 118, 160, 208, 278,
287, 396, 398-399, 405, 416, 436, 438, 441, 447,
454-455, 458

economic, 7-8, 24-26, 82, 130, 444

economic vs. biological, 444

modeling, 436-437

single-button interface, 239

single-player games, 3, 5, 153, 178, 222, 491

single-screen play, 62, 150

Sinistar, 64

sketches of levels, 427, 429

skins, 440

sliding number puzzles, 148

Slingo, 41

small decisions/big decisions, 39-40

small working environment, 33

Smoking Car Productions, 370

smooth visual experience, 355

Snow Carnage Derby, 77-79, 88-90

focus, 78-79, 90

Snow White and the Seven Dwarfs, 348, 362

snowmobiles, 77

Snyder, Doug, 94

So Long and Thanks for All the Fish, 183

socializing in games, 3-5, 163, 165, 277-278

socially relevant, 316, 468

socially unacceptable behavior, 7

Softimage, 387

software toys, 11-12, 336, 397-440

solitaire games, 3, 5, 153, 178, 222, 491

Solo Flight, 41

solo game development, xxi, 80-81, 115, 292, 368-369

Sony PlayStation, 112, 135, 139, 288, 409

sophisticated games, 407

Sorcerer, 188-189, 193, 211, 213

sound, see audio

source code release, 267-268

Space Bar, The, 180, 204, 205, 206, 211, 213

Space Invaders, xvii, 6, 53-54, 61, 64-65, 180, 379, 408

Space Lords, 111-112, 120

Space War, 100, 114

Spectrum Holobyte, 151

Spellcasting 101: Sorcerers Get All the Girls, 199, 213

Spellcasting 201: The Sorcerer’s Appliance, 200, 213

Spellcasting 301: Spring Break, 213

Spellcasting series, 198-200

Spiegelman, Art, 280

Spitfire Ace, 41

spoiled brats, 13, 230

sports games, 15, 82, 101, 112, 249, 379, 408-409, 423,
429

Sprint, 95

Spyro the Dragon, 135, 409

stadiums, 379, 408

stage directions, 298

stage plays, 228

standard documentation, 302-303, 317, 337

standard interfaces, 29, 35, 139-140

Stanford, 95, 100, 453

Star Raiders, 267

Star Trek, 95, 231

Star Wars, 36, 181, 205, 280

StarCraft, xviii, 30, 32, 138, 139, 162, 332, 381-382,
408-409, 412, 420

StarCraft Campaign Editor, 382, 390-392, 391

Starcross, 181, 187, 196

Stationfall, 188, 209, 213

statistics, 325, 327, 335, 341, 396

Status Line, The, 205

Stealey, Bill, 38

Steel Talons, 110-111, 118-119, 120

Stewart, James, 356

Stigmata, 365

story, xviii, 43, 45-51, 53-54, 63-64, 81, 90, 119, 125,
151, 157, 182, 184, 204, 208-209, 211, 215, 238,
244-247, 249, 294-298, 303, 305, 310-311, 322, 332,
353-354, 364, 366-367, 396, 410-411, 416-417, 423,
427, 440

changes in outcome, 232, 245

dramatic, 217

Index 581

epic, 39-40, 80

game, 230-234

non-linear, 50-51, 81

player’s significant role in, 232

plot, 230-231, 283

predetermined, 165, 246-247

pre-written, 263

uncovering, 465

unique, 234

vs. puzzles, 198

story bible, 295-297, 300, 303

format of, 296

storyboards, 301

storybook, 356

storytelling, xix, 7, 18, 39-40, 48-51, 53-54, 126,
167-171, 214-237, 246-247, 276, 295, 310-311, 340,
346, 367, 413, 415-416, 418, 421, 432, 465-466

dynamic, 169, 218, 263

game techniques, 218-228

images, 220

in-game, 219, 224-227, 310

missing, 226-227

NPC behaviors, 225

non-linear, 377

out-of-game, 219-224

parent/child, 217, 289

situations, 230-231

strategies, 101-103, 234, 413, 425

strategy games, 21, 45, 48, 141, 208, 331, 336, 368,
408, 420, 425

campaigns in, 408

Street Fighter II, 58, 112

strong characters/personalities, 229-230, 245

Strunk, William, 291

Stubben, Dave 97

stuck, 16-17, 243, 421

sub-games, 22-23, 80, 205

sub-goals, 422

success (player), 11, 14, 234, 424

Summers, Larry, 268

Super Breakout, 93-95, 120

Super Mario 64, 13, 16, 44, 138, 211, 219, 229, 230,
319, 320, 338, 374, 409, 413, 418-420, 423

Super Mario Bros., 361, 413, 414

Superhero League of Hoboken, 201, 202, 203, 208, 213

superheroes, 75, 201-203

Surreal Software, 389

surrogate, xx, 13, 62, 65-66, 138, 141, 230, 255,
324-326, 417

anonymity of, 245

Suspended, 208

suspension of disbelief, 12-13, 135, 221, 362, 399

switch flipping, 415

symmetry, 155-157

Synapse Software, 190

synergies, 205, 415

system dynamics, 436-437

System Shock, 142

systems, 484

combining, 25-26, 28, 400

complex, 122-124, 141, 279

interesting, 25

phase-space of, 441

sophisticated, 398

T
taboo activities, 7

tactical combat, 29, 264, 309

Tajiri, Satoshi, 1

Tank 8, 107

Tanktics, 265, 290

target audience, 477-478, 482

teaching the player, 132-136, 145, 405

team (development) xxi, 73-74, 82-85, 117, 173, 249,
253, 257-258, 292, 294, 301-303, 313, 317-318,
321-323, 341, 343-344, 368, 378, 387-388, 394-395,
407, 411, 414, 427, 432, 450-451, 454, 473-474

large vs. small, 33, 466-467

team lead, 427

teammates in games, 52, 168-169, 173-175, 225-226,
233-234

teamwork, 278

technical design document, 117, 292, 294, 300, 301

technology, 28-29, 32, 37-38, 43-48, 51-57, 60, 74,
96-97, 117, 142, 147-148, 151-152, 184, 197, 207,
211, 218, 228, 233, 249, 250, 254-255, 259-261,
267, 288-289, 294-295, 304-309, 314-315, 327, 341,
375-376, 409, 435, 451-452

tedious details, 7, 130

Tekken, 8, 219

Tempest, 61, 99, 104, 379

Tengen, 109

tension, 68-71, 103, 154-155, 217, 409

testing, see playtesting

Tetris, xx, 15, 91, 101, 109-110, 120, 130-132, 146-157,
160, 165-166, 215, 332, 369, 487

completeness of, 156-157

“next” feature, 153

Texas Instruments, 275

text, 191, 200, 224, 225

582 Index

text adventures, 49, 189, 196-198, 200, 208, 237,
239-240

text parser, see parsers

Theurer, Dave, 99, 105

Thief, 215, 323, 324

Thief II, 323, 324

third-person perspective/view, 89, 133, 141-142, 245,
356

THQ, 206

Threadbare, Bobbin, 240-241, 244

throw away work, 251-253, 255-258, 377

Thurman, Bob, 185

Thurman, Uma, 185

Tibet, 185

Time Warner, 105, 110

Titanic, 188

Tolkien, 201

Tomb Raider, 15, 79, 133, 138, 211, 230, 325, 369, 374,
409, 413, 418, 426

tools, 49, 289, 378-394, 421

development, 370

proprietary, 386, 388

user available, 465-466

topics, 21-22, 26-27, 31, 35

interesting part, 31

Toulouse-Lautrec, Henri, 362-363

tower of Hanoi, 189

toys, 11-12, 336, 397-398, 439-440

trackball, 65, 103

Trameil, Jack, 110

trial and error, 14, 424, 429

trilogies, 193

Trinity, 237, 240

TRS-80, 186-187, 193

Trust & Betrayal: The Legacy of Siboot, 263, 274-276,
275, 278, 286, 287, 290

use of language, 275-276

Tube Chase, 111

Turing test, 159, 211

Turman, Larry, 350

turn-based, 34, 135

vs. real-time, 21-22, 419

turn-based strategy games, 162-163, 331

tutorial, 401, 134

typing as interface 199, 237

Tyrannosaurus rex, 31

U
Ultima, 215

Ultima IV: Quest of the Avatar, 316

Ultima Underworld, 406

unconventional game design, 275-276

uncovering the story, 465

under the radar, 254

understanding the game-world, 23, 25, 60, 279,
441-442

Understanding Comics, 283, 456, 489

Understanding Media, 490

understanding technology, 259-260

unexplored territory in game design, 32

unfair, 243, 258

unintuitive, 473

unique experience, 148-149

unique solutions, 122-125, 145, 441

unique stories, 234

uniqueness of a game design, xx, 75, 322, 332

units, 26-27

unpredictable, 8-9, 164-167, 251, 420

Unreal, 16, 17, 411, 417

Unreal Tournament, 3, 4, 159

USSR, 157

V
Valve Software, 46, 390, 410

variations on gameplay, 95, 105, 149, 250, 372

vector hardware, 98-99

venture capitalists, 340

Vezza, Al, 187

video game crash, 197, 269-270

video games vs. computer games, 197, 269-270,
279-280

Video Pinball, 97-98, 120

Vietnam, 273, 278

view of game-world, 141-142, 307-308, 327, 356, 373,
451-452

editing view, 381

first-person, 327, 356

over-the-shoulder, 373

side, 327, 373

third-person, 89, 133, 141-142, 245, 356

violence, 77, 277-278, 375, 442-443, 462, 468

Visicalc, 195

Visicorp, 195

Visio, 295

vision for game design, xxi, 118, 147, 303, 337, 344,
433, 487-488

Visual Basic, 464

visual medium, 167

visual representation of information, 143-144

Visual Studio, 389

Index 583

Voltarr, 79

Vulcan, 384-385

W
wackiness, 449, 470

Wafer Thin Documents, 338-339

Waiting for Dark, 355, 376

War and Peace, 339

WarCraft, 28, 30, 144, 208, 305-306, 308-310, 331,
418, 423

WarCraft Adventures, 213

WarCraft II, 330

wargames, 7, 20, 29, 48, 160, 167, 264-267, 273-274,
288, 416, 447-448, 468

Warner Bros., 105-106, 300

Wasteland, 227

watching vs. doing, 17-18

Waterloo, 7-8, 48

Wayne Gretzky 3D Hockey, 112-113, 120

Welltris, 152

Wheatley, Dennis, 195

whiners, 393, 474

Who Killed Marshall Robner?, 195

Who Killed Robert Prentiss?, 195

willful self-delusion, 371

Williams, Robin, 38

Wilmunder, Aric, 238

Wilson, Edward, 447

win/loss conditions, 397, 437, 440-442

Windows, 137, 143, 241, 402, 459

Wing Commander, 270-271

wire-frame, 381, 383, 435

Wishbringer, 184, 237, 240

Wizard, 266

Wolfenstein 3D, 306

women gamers, 101-102

Wood, Dennis, 109

World War I, 110

Worldcraft, 381

WorldWinner.com, 180, 206

Wright, Frank Lloyd, 405

Wright, Will, 11, 279, 287, 395-396, 398, 400, 404-405,
434-471, 475, 487

Wrigley Field, 408

writing, 181-183, 190, 212, 230-231, 244-245, 291,
368-369, 376

for games, 193, 207, 230

style, 297, 318-320

tools, 318-319

with bullet points, 318, 335

writers, 230-231, 299-300, 371, 411

wrong reasons for working in games, 492

WYSIWYG, 380

X
X-Com: UFO Defense, 121

Xybots, 93-94, 108, 109, 111, 117, 120

Y
Yale, 348

Yankee Stadium, 408

“you can never stop playing the game” phenomenon,
28, 401

“you can’t do that,” 200

younger gamers, 184

“your game is too hard,” 485-486

Z
Zeuch, David, 264

ZIL, see Infocom development system

Ziploc bags, 195

zombies, 466

Zoner editor, 382

Zork, 148, 180, 183-184, 188

Zork I, 180, 187, 195, 200, 208, 210

Zork II, 180-181, 187

Zork III, 181, 196

Zork V, 188

Zork Zero: The Revenge of Megaboz, 188-189, 199,
202, 209, 213

584 Index

About the Companion CD

The CD comes with a fully readable and searchable version of the .PDF version of this

book, for those who prefer to read on their computers. It also includes an HTML docu-

ment with a collection of links to various useful game design and development

resources on the Internet, including all of those listed in the bibliography.

The CD also contains a wide variety of software, both demos as well as fully func-

tional packages. All of the software included is used by professional game developers

for various aspects of game creation, ranging from sound editing to 3D modeling to

image manipulation to programming to interactive storytelling. It is included to provide

the reader with useful and instructive companion materials for this book. There are

fourteen packages in all, covering the full range of game development software,

including:
� DarkBasic: Blending the power of DirectX and the remarkable ease of BASIC,

DarkBasic is a language that gives absolute beginners unprecedented power to

create professional software.
� Erasmatron: Chris Crawford’s powerful interactive storytelling tool allows users

to create their own complex interactive storytelling experiences.
� Nendo: Nendo is a fine 3D modeling and 3D painting package that is both simple

enough for the novice and powerful enough for the professional.
� Hugo & TADS: Compilers, debuggers, and interpreters for creating sophisticated,

immersive, and platform-independent text and graphical adventures.
� SmartDraw: Smart Draw is a terrific program for drawing flowcharts, level

layouts, and other diagrams essential to game development.
� SpriteLib: SpriteLib is a free sprite graphics library for all multimedia developers.

Containing well over 780 professionally drawn images in over a dozen sizes and

themes, SpriteLib is the ideal tool for developing the latest generation of games.
� Visual SlickEdit: Visual SlickEdit is an award-winning source code editor that

increases development productivity and improves software quality. It supports most

languages out of the box and is extensible to support your favorite language as

well.

The CD contains ReadMe.txt and ReadMe.html files, which are a good place to begin

exploration of the CD.

System Requirements

The CD is a hybrid Windows/Macintosh disk and provides software for both platforms,

though not all of the packages are available for both systems. The requirements of the

different pieces of software differ from package to package. The base requirements for

use of the CD are any system running Windows 95 or later, or any system with

Macintosh System 7 or later.

CD/Source Code Usage License Agreement

Please read the following CD/Source Code usage license agreement before opening the CD and using the

contents therein:

1. By opening the accompanying software package, you are indicating that you have read and agree to be

bound by all terms and conditions of this CD/Source Code usage license agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted and protected

by both U.S. copyright law and international copyright treaties, and is owned by Wordware Publishing, Inc.

Individual source code, example programs, help files, freeware, shareware, utilities, and evaluation packages,

including their copyrights, are owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware, freeware, utili-

ties, example programs, or evaluation programs, may be made available on a public forum (such as a World

Wide Web page, FTP site, bulletin board, or Internet news group) without the express written permission of

Wordware Publishing, Inc. or the author of the respective source code, help files, shareware, freeware, utili-

ties, example programs, or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or otherwise use the

enclosed programs, help files, freeware, shareware, utilities, or evaluation programs except as stated in this

agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without warranty of any

kind. Wordware Publishing, Inc. and the authors specifically disclaim all other warranties, express or implied,

including but not limited to implied warranties of merchantability and fitness for a particular purpose with

respect to defects in the disk, the program, source code, sample files, help files, freeware, shareware, utilities,

and evaluation programs contained therein, and/or the techniques described in the book and implemented in

the example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors, or the authors

be liable or held responsible for any loss of profit or any other alleged or actual private or commercial dam-

age, including but not limited to special, incidental, consequential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The CD and all

accompanying source code, sample files, help files, freeware, shareware, utilities, and evaluation programs

may be copied to your hard drive. With the exception of freeware and shareware programs, at no time can

any part of the contents of this CD reside on more than one computer at one time. The contents of the CD can

be copied to another computer, as long as the contents of the CD contained on the original computer are

deleted.

7. You may not include any part of the CD contents, including all source code, example programs, share-

ware, freeware, help files, utilities, or evaluation programs in any compilation of source code, utilities, help

files, example programs, freeware, shareware, or evaluation programs on any media, including but not lim-

ited to CD, disk, or Internet distribution, without the express written permission of Wordware Publishing, Inc.

or the owner of the individual source code, utilities, help files, example programs, freeware, shareware, or

evaluation programs.

8. You may use the source code, techniques, and example programs in your own commercial or private

applications unless otherwise noted by additional usage agreements as found on the CD.

Warning:

Opening the CD package makes this book non-returnable.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

